extra/pari to 2.17.0-2

This commit is contained in:
Kevin Mihelich 2024-10-06 13:32:36 +00:00
parent 8922e0e2d4
commit 8034411bbc
3 changed files with 28 additions and 10 deletions

View file

@ -1,7 +1,7 @@
pkgbase = pari pkgbase = pari
pkgdesc = Computer algebra system designed for fast computations in number theory pkgdesc = Computer algebra system designed for fast computations in number theory
pkgver = 2.15.5 pkgver = 2.17.0
pkgrel = 1 pkgrel = 2
url = https://pari.math.u-bordeaux.fr/ url = https://pari.math.u-bordeaux.fr/
arch = x86_64 arch = x86_64
license = GPL-2.0-or-later license = GPL-2.0-or-later
@ -23,10 +23,12 @@ pkgbase = pari
optdepends = pari-galdata: to compute Galois groups in degrees 8 through 11 optdepends = pari-galdata: to compute Galois groups in degrees 8 through 11
optdepends = pari-seadata: needed by ellap for large primes optdepends = pari-seadata: needed by ellap for large primes
optdepends = pari-galpol: GALPOL database of polynomials defining Galois extensions of the rationals optdepends = pari-galpol: GALPOL database of polynomials defining Galois extensions of the rationals
source = https://pari.math.u-bordeaux.fr/pub/pari/unix/pari-2.15.5.tar.gz source = https://pari.math.u-bordeaux.fr/pub/pari/unix/pari-2.17.0.tar.gz
source = https://pari.math.u-bordeaux.fr/pub/pari/unix/pari-2.15.5.tar.gz.asc source = https://pari.math.u-bordeaux.fr/pub/pari/unix/pari-2.17.0.tar.gz.asc
source = qfcvp.patch
validpgpkeys = 42028EA404A2E9D80AC453148F0E7C2B4522E387 validpgpkeys = 42028EA404A2E9D80AC453148F0E7C2B4522E387
sha256sums = 0efdda7515d9d954f63324c34b34c560e60f73a81c3924a71260a2cc91d5f981 sha256sums = e723e7cef18d08c6ece2283af9a9b4d56077c22b4fce998faaa588d389b1aea8
sha256sums = SKIP sha256sums = SKIP
sha256sums = 9dc74c77e2f72d672db4ee857057a18dd947474ebe8214358a8c2ea7dbf54d8c
pkgname = pari pkgname = pari

View file

@ -5,8 +5,8 @@
# - generalize cd Olinux-* for install-bin-sta # - generalize cd Olinux-* for install-bin-sta
pkgname=pari pkgname=pari
pkgver=2.15.5 pkgver=2.17.0
pkgrel=1 pkgrel=2
pkgdesc='Computer algebra system designed for fast computations in number theory' pkgdesc='Computer algebra system designed for fast computations in number theory'
url='https://pari.math.u-bordeaux.fr/' url='https://pari.math.u-bordeaux.fr/'
license=(GPL-2.0-or-later) license=(GPL-2.0-or-later)
@ -26,14 +26,17 @@ optdepends=('perl: gphelp, tex2mail'
'pari-seadata: needed by ellap for large primes' 'pari-seadata: needed by ellap for large primes'
'pari-galpol: GALPOL database of polynomials defining Galois extensions of the rationals') 'pari-galpol: GALPOL database of polynomials defining Galois extensions of the rationals')
checkdepends=(pari-elldata pari-galdata pari-seadata pari-galpol) checkdepends=(pari-elldata pari-galdata pari-seadata pari-galpol)
source=(https://pari.math.u-bordeaux.fr/pub/pari/unix/$pkgname-$pkgver.tar.gz{,.asc}) source=(https://pari.math.u-bordeaux.fr/pub/pari/unix/$pkgname-$pkgver.tar.gz{,.asc}
sha256sums=('0efdda7515d9d954f63324c34b34c560e60f73a81c3924a71260a2cc91d5f981' qfcvp.patch)
'SKIP') sha256sums=('e723e7cef18d08c6ece2283af9a9b4d56077c22b4fce998faaa588d389b1aea8'
'SKIP'
'9dc74c77e2f72d672db4ee857057a18dd947474ebe8214358a8c2ea7dbf54d8c')
validpgpkeys=('42028EA404A2E9D80AC453148F0E7C2B4522E387') validpgpkeys=('42028EA404A2E9D80AC453148F0E7C2B4522E387')
prepare() { prepare() {
cd $pkgname-$pkgver cd $pkgname-$pkgver
sed -e 's|DLLDFLAGS = \$DLLDFLAGS|DLLDFLAGS = $DLLDFLAGS $LDFLAGS|' -i config/Makefile.SH # Honor system LDFLAGS sed -e 's|DLLDFLAGS = \$DLLDFLAGS|DLLDFLAGS = $DLLDFLAGS $LDFLAGS|' -i config/Makefile.SH # Honor system LDFLAGS
patch -p1 -i ../qfcvp.patch # https://pari.math.u-bordeaux.fr/cgi-bin/bugreport.cgi?bug=2575
} }
build() { build() {

13
extra/pari/qfcvp.patch Normal file
View file

@ -0,0 +1,13 @@
diff --git a/src/functions/linear_algebra/qfcvp b/src/functions/linear_algebra/qfcvp
index 5ee883390a..7be5fa9570 100644
--- a/src/functions/linear_algebra/qfcvp
+++ b/src/functions/linear_algebra/qfcvp
@@ -1,7 +1,7 @@
Function: qfcvp
Section: linear_algebra
C-Name: qfcvp0
-Prototype: GGDGDGD0,L,p
+Prototype: GGDGDGD0,L,
Help: qfcvp(x,t,{B},{m},{flag=0}): x being a square and symmetric
matrix representing a positive definite quadratic form, and t a vector of
the same dimension, this function deals with the vectors of whose squared