PKGBUILDs/extra/thunderbird/0033-bmo-1882209-update-crates-for-rust-1.78-stripped-patch-from-bugs.freebsd.org-bug278834.patch
2024-07-24 11:48:46 +00:00

3580 lines
188 KiB
Diff

# HG changeset patch
# User Henri Sivonen <hsivonen@hsivonen.fi>
# Date 1714462184 0
# Node ID 1db2ef126a6a8555dbf50345e16492c977b42e92
# Parent a545e84b3674c4878f2e618b7bce23058f2ac690
Bug 1882209 - Update encoding_rs to 0.8.34 to deal with rustc changes. r=glandium,supply-chain-reviewers
Differential Revision: https://phabricator.services.mozilla.com/D207167
diff --git a/.cargo/config.in b/.cargo/config.in
--- a/.cargo/config.in
+++ b/.cargo/config.in
@@ -35,31 +35,31 @@ git = "https://github.com/gfx-rs/wgpu"
rev = "f71a1bc736fde37509262ca03e91d8f56a13aeb5"
replace-with = "vendored-sources"
[source."git+https://github.com/glandium/warp?rev=4af45fae95bc98b0eba1ef0db17e1dac471bb23d"]
git = "https://github.com/glandium/warp"
rev = "4af45fae95bc98b0eba1ef0db17e1dac471bb23d"
replace-with = "vendored-sources"
+[source."git+https://github.com/hsivonen/any_all_workaround?rev=7fb1b7034c9f172aade21ee1c8554e8d8a48af80"]
+git = "https://github.com/hsivonen/any_all_workaround"
+rev = "7fb1b7034c9f172aade21ee1c8554e8d8a48af80"
+replace-with = "vendored-sources"
+
[source."git+https://github.com/hsivonen/chardetng?rev=3484d3e3ebdc8931493aa5df4d7ee9360a90e76b"]
git = "https://github.com/hsivonen/chardetng"
rev = "3484d3e3ebdc8931493aa5df4d7ee9360a90e76b"
replace-with = "vendored-sources"
[source."git+https://github.com/hsivonen/chardetng_c?rev=ed8a4c6f900a90d4dbc1d64b856e61490a1c3570"]
git = "https://github.com/hsivonen/chardetng_c"
rev = "ed8a4c6f900a90d4dbc1d64b856e61490a1c3570"
replace-with = "vendored-sources"
-[source."git+https://github.com/hsivonen/packed_simd?rev=e588ceb568878e1a3156ea9ce551d5b63ef0cdc4"]
-git = "https://github.com/hsivonen/packed_simd"
-rev = "e588ceb568878e1a3156ea9ce551d5b63ef0cdc4"
-replace-with = "vendored-sources"
-
[source."git+https://github.com/jfkthame/mapped_hyph.git?rev=c7651a0cffff41996ad13c44f689bd9cd2192c01"]
git = "https://github.com/jfkthame/mapped_hyph.git"
rev = "c7651a0cffff41996ad13c44f689bd9cd2192c01"
replace-with = "vendored-sources"
[source."git+https://github.com/mozilla-spidermonkey/jsparagus?rev=64ba08e24749616de2344112f226d1ef4ba893ae"]
git = "https://github.com/mozilla-spidermonkey/jsparagus"
rev = "64ba08e24749616de2344112f226d1ef4ba893ae"
diff --git a/Cargo.lock b/Cargo.lock
--- a/Cargo.lock
+++ b/Cargo.lock
@@ -80,16 +80,25 @@ dependencies = [
name = "android_system_properties"
version = "0.1.5"
source = "registry+https://github.com/rust-lang/crates.io-index"
checksum = "819e7219dbd41043ac279b19830f2efc897156490d7fd6ea916720117ee66311"
dependencies = [
"libc",
]
+[[package]]
+name = "any_all_workaround"
+version = "0.1.0"
+source = "git+https://github.com/hsivonen/any_all_workaround?rev=7fb1b7034c9f172aade21ee1c8554e8d8a48af80#7fb1b7034c9f172aade21ee1c8554e8d8a48af80"
+dependencies = [
+ "cfg-if 1.0.0",
+ "version_check",
+]
+
[[package]]
name = "anyhow"
version = "1.0.69"
source = "registry+https://github.com/rust-lang/crates.io-index"
checksum = "224afbd727c3d6e4b90103ece64b8d1b67fbb1973b1046c2281eed3f3803f800"
[[package]]
name = "app_services_logger"
@@ -1431,22 +1440,22 @@ dependencies = [
"encoding_rs",
"nserror",
"nsstring",
"xmldecl",
]
[[package]]
name = "encoding_rs"
-version = "0.8.33"
+version = "0.8.34"
source = "registry+https://github.com/rust-lang/crates.io-index"
-checksum = "7268b386296a025e474d5140678f75d6de9493ae55a5d709eeb9dd08149945e1"
+checksum = "b45de904aa0b010bce2ab45264d0631681847fa7b6f2eaa7dab7619943bc4f59"
dependencies = [
+ "any_all_workaround",
"cfg-if 1.0.0",
- "packed_simd",
]
[[package]]
name = "enum-primitive-derive"
version = "0.2.2"
source = "registry+https://github.com/rust-lang/crates.io-index"
checksum = "c375b9c5eadb68d0a6efee2999fef292f45854c3444c86f09d8ab086ba942b0e"
dependencies = [
@@ -3901,25 +3910,16 @@ checksum = "8d91edf4fbb970279443471345a4e8c491bf05bb283b3e6c88e4e606fd8c181b"
[[package]]
name = "oxilangtag-ffi"
version = "0.1.0"
dependencies = [
"nsstring",
"oxilangtag",
]
-[[package]]
-name = "packed_simd"
-version = "0.3.9"
-source = "git+https://github.com/hsivonen/packed_simd?rev=e588ceb568878e1a3156ea9ce551d5b63ef0cdc4#e588ceb568878e1a3156ea9ce551d5b63ef0cdc4"
-dependencies = [
- "cfg-if 1.0.0",
- "num-traits",
-]
-
[[package]]
name = "parking_lot"
version = "0.11.2"
source = "registry+https://github.com/rust-lang/crates.io-index"
checksum = "7d17b78036a60663b797adeaee46f5c9dfebb86948d1255007a1d6be0271ff99"
dependencies = [
"instant",
"lock_api",
diff --git a/Cargo.toml b/Cargo.toml
--- a/Cargo.toml
+++ b/Cargo.toml
@@ -154,22 +154,22 @@ rure = { path = "third_party/rust/rure" }
# 0.31.1 but without rust-cssparser#342.
# TODO: Remove these, and just use v0.31.1 once bug 1836219 lands
# (which will get syn 2 into the tree).
cssparser = { path = "third_party/rust/cssparser" }
cssparser-macros = { path = "third_party/rust/cssparser-macros" }
# Other overrides
+any_all_workaround = { git = "https://github.com/hsivonen/any_all_workaround", rev = "7fb1b7034c9f172aade21ee1c8554e8d8a48af80" }
chardetng = { git = "https://github.com/hsivonen/chardetng", rev="3484d3e3ebdc8931493aa5df4d7ee9360a90e76b" }
chardetng_c = { git = "https://github.com/hsivonen/chardetng_c", rev="ed8a4c6f900a90d4dbc1d64b856e61490a1c3570" }
coremidi = { git = "https://github.com/chris-zen/coremidi.git", rev="fc68464b5445caf111e41f643a2e69ccce0b4f83" }
firefox-on-glean = { path = "toolkit/components/glean/api" }
libudev-sys = { path = "dom/webauthn/libudev-sys" }
-packed_simd = { git = "https://github.com/hsivonen/packed_simd", rev = "e588ceb568878e1a3156ea9ce551d5b63ef0cdc4" }
midir = { git = "https://github.com/mozilla/midir.git", rev = "519e651241e867af3391db08f9ae6400bc023e18" }
# warp 0.3.3 + https://github.com/seanmonstar/warp/pull/1007
warp = { git = "https://github.com/glandium/warp", rev = "4af45fae95bc98b0eba1ef0db17e1dac471bb23d" }
# application-services overrides to make updating them all simpler.
interrupt-support = { git = "https://github.com/mozilla/application-services", rev = "86c84c217036c12283d19368867323a66bf35883" }
sql-support = { git = "https://github.com/mozilla/application-services", rev = "86c84c217036c12283d19368867323a66bf35883" }
sync15 = { git = "https://github.com/mozilla/application-services", rev = "86c84c217036c12283d19368867323a66bf35883" }
diff --git a/config/makefiles/rust.mk b/config/makefiles/rust.mk
--- a/config/makefiles/rust.mk
+++ b/config/makefiles/rust.mk
@@ -260,17 +260,17 @@ export COREAUDIO_SDK_PATH=$(IPHONEOS_SDK
export IPHONEOS_SDK_DIR
PATH := $(topsrcdir)/build/macosx:$(PATH)
endif
endif
ifndef RUSTC_BOOTSTRAP
RUSTC_BOOTSTRAP := mozglue_static,qcms
ifdef MOZ_RUST_SIMD
-RUSTC_BOOTSTRAP := $(RUSTC_BOOTSTRAP),encoding_rs,packed_simd
+RUSTC_BOOTSTRAP := $(RUSTC_BOOTSTRAP),encoding_rs,any_all_workaround
endif
export RUSTC_BOOTSTRAP
endif
target_rust_ltoable := force-cargo-library-build $(ADD_RUST_LTOABLE)
target_rust_nonltoable := force-cargo-test-run force-cargo-program-build
ifdef MOZ_PGO_RUST
diff --git a/supply-chain/audits.toml b/supply-chain/audits.toml
--- a/supply-chain/audits.toml
+++ b/supply-chain/audits.toml
@@ -596,16 +596,29 @@ who = "Mike Hommey <mh+mozilla@glandium.
criteria = "safe-to-deploy"
delta = "0.1.2 -> 0.1.4"
[[audits.android_system_properties]]
who = "Mike Hommey <mh+mozilla@glandium.org>"
criteria = "safe-to-deploy"
delta = "0.1.4 -> 0.1.5"
+[[audits.any_all_workaround]]
+who = "Henri Sivonen <hsivonen@hsivonen.fi>"
+criteria = "safe-to-deploy"
+version = "0.1.0"
+notes = "The little code that is in this crate I reviewed and modified from packed_simd (which has previously been vendored in full instead of just this small part)."
+
+[[audits.any_all_workaround]]
+who = "Henri Sivonen <hsivonen@hsivonen.fi>"
+criteria = "safe-to-deploy"
+delta = "0.1.0 -> 0.1.0@git:7fb1b7034c9f172aade21ee1c8554e8d8a48af80"
+importable = false
+notes = "This is a trivial workaround copied from elsewhere in m-c, specifically qcms."
+
[[audits.anyhow]]
who = "Mike Hommey <mh+mozilla@glandium.org>"
criteria = "safe-to-deploy"
delta = "1.0.57 -> 1.0.61"
[[audits.anyhow]]
who = "Bobby Holley <bobbyholley@gmail.com>"
criteria = "safe-to-deploy"
diff --git a/supply-chain/config.toml b/supply-chain/config.toml
--- a/supply-chain/config.toml
+++ b/supply-chain/config.toml
@@ -14,16 +14,20 @@ url = "https://raw.githubusercontent.com
url = "https://raw.githubusercontent.com/google/supply-chain/main/audits.toml"
[imports.isrg]
url = "https://raw.githubusercontent.com/divviup/libprio-rs/main/supply-chain/audits.toml"
[imports.mozilla]
url = "https://raw.githubusercontent.com/mozilla/supply-chain/main/audits.toml"
+[policy.any_all_workaround]
+audit-as-crates-io = true
+notes = "This is the upstream code plus the ARM intrinsics workaround from qcms, see bug 1882209."
+
[policy.autocfg]
audit-as-crates-io = true
notes = "This is the upstream code plus a few local fixes, see bug 1685697."
[policy.chardetng]
audit-as-crates-io = true
notes = "This is a crate Henri wrote which is also published. We should probably update Firefox to tip and certify that."
diff --git a/supply-chain/imports.lock b/supply-chain/imports.lock
--- a/supply-chain/imports.lock
+++ b/supply-chain/imports.lock
@@ -115,16 +115,23 @@ user-name = "David Tolnay"
[[publisher.encoding_rs]]
version = "0.8.33"
when = "2023-08-23"
user-id = 4484
user-login = "hsivonen"
user-name = "Henri Sivonen"
+[[publisher.encoding_rs]]
+version = "0.8.34"
+when = "2024-04-10"
+user-id = 4484
+user-login = "hsivonen"
+user-name = "Henri Sivonen"
+
[[publisher.etagere]]
version = "0.2.7"
when = "2022-05-04"
user-id = 1281
user-login = "nical"
user-name = "Nicolas Silva"
[[publisher.euclid]]
diff --git a/third_party/rust/any_all_workaround/.cargo-checksum.json b/third_party/rust/any_all_workaround/.cargo-checksum.json
new file mode 100644
--- /dev/null
+++ b/third_party/rust/any_all_workaround/.cargo-checksum.json
@@ -0,0 +1,1 @@
+{"files":{"Cargo.toml":"f8c127449dc9432d404c21c99833e4617ab88a797445af249a7fe3c989985d6d","LICENSE-APACHE":"a60eea817514531668d7e00765731449fe14d059d3249e0bc93b36de45f759f2","LICENSE-MIT":"6485b8ed310d3f0340bf1ad1f47645069ce4069dcc6bb46c7d5c6faf41de1fdb","LICENSE-MIT-QCMS":"36d847ae882f6574ebc72f56a4f354e4f104fde4a584373496482e97d52d31bc","README.md":"4c617b8ced3a27b7edecf0e5e41ed451c04e88dab529e7a35fccc4e1551efbd7","build.rs":"56b29ab6da3e49075bfd0a7b690267c8016298bf0d332e2e68bbaf19decbbf71","src/lib.rs":"7118106690b9d25c5d0a3e2079feb83d76f1d434d0da36b9d0351806d27c850d"},"package":null}
\ No newline at end of file
diff --git a/third_party/rust/any_all_workaround/Cargo.toml b/third_party/rust/any_all_workaround/Cargo.toml
new file mode 100644
--- /dev/null
+++ b/third_party/rust/any_all_workaround/Cargo.toml
@@ -0,0 +1,28 @@
+# THIS FILE IS AUTOMATICALLY GENERATED BY CARGO
+#
+# When uploading crates to the registry Cargo will automatically
+# "normalize" Cargo.toml files for maximal compatibility
+# with all versions of Cargo and also rewrite `path` dependencies
+# to registry (e.g., crates.io) dependencies.
+#
+# If you are reading this file be aware that the original Cargo.toml
+# will likely look very different (and much more reasonable).
+# See Cargo.toml.orig for the original contents.
+
+[package]
+edition = "2021"
+name = "any_all_workaround"
+version = "0.1.0"
+authors = ["Henri Sivonen <hsivonen@hsivonen.fi>"]
+description = "Workaround for bad LLVM codegen for boolean reductions on 32-bit ARM"
+homepage = "https://docs.rs/any_all_workaround/"
+documentation = "https://docs.rs/any_all_workaround/"
+readme = "README.md"
+license = "MIT OR Apache-2.0"
+repository = "https://github.com/hsivonen/any_all_workaround"
+
+[dependencies]
+cfg-if = "1.0"
+
+[build-dependencies]
+version_check = "0.9"
diff --git a/third_party/rust/packed_simd/LICENSE-APACHE b/third_party/rust/any_all_workaround/LICENSE-APACHE
rename from third_party/rust/packed_simd/LICENSE-APACHE
rename to third_party/rust/any_all_workaround/LICENSE-APACHE
diff --git a/third_party/rust/packed_simd/LICENSE-MIT b/third_party/rust/any_all_workaround/LICENSE-MIT
rename from third_party/rust/packed_simd/LICENSE-MIT
rename to third_party/rust/any_all_workaround/LICENSE-MIT
diff --git a/third_party/rust/any_all_workaround/LICENSE-MIT-QCMS b/third_party/rust/any_all_workaround/LICENSE-MIT-QCMS
new file mode 100644
--- /dev/null
+++ b/third_party/rust/any_all_workaround/LICENSE-MIT-QCMS
@@ -0,0 +1,21 @@
+qcms
+Copyright (C) 2009-2024 Mozilla Corporation
+Copyright (C) 1998-2007 Marti Maria
+
+Permission is hereby granted, free of charge, to any person obtaining
+a copy of this software and associated documentation files (the "Software"),
+to deal in the Software without restriction, including without limitation
+the rights to use, copy, modify, merge, publish, distribute, sublicense,
+and/or sell copies of the Software, and to permit persons to whom the Software
+is furnished to do so, subject to the following conditions:
+
+The above copyright notice and this permission notice shall be included in
+all copies or substantial portions of the Software.
+
+THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND,
+EXPRESS OR IMPLIED, INCLUDING BUT NOT LIMITED TO
+THE WARRANTIES OF MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND
+NONINFRINGEMENT. IN NO EVENT SHALL THE AUTHORS OR COPYRIGHT HOLDERS BE
+LIABLE FOR ANY CLAIM, DAMAGES OR OTHER LIABILITY, WHETHER IN AN ACTION
+OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, OUT OF OR IN CONNECTION
+WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE SOFTWARE.
diff --git a/third_party/rust/any_all_workaround/README.md b/third_party/rust/any_all_workaround/README.md
new file mode 100644
--- /dev/null
+++ b/third_party/rust/any_all_workaround/README.md
@@ -0,0 +1,13 @@
+# any_all_workaround
+
+This is a workaround for bad codegen ([Rust bug](https://github.com/rust-lang/portable-simd/issues/146), [LLVM bug](https://github.com/llvm/llvm-project/issues/50466)) for the `any()` and `all()` reductions for NEON-backed SIMD vectors on 32-bit ARM. On other platforms these delegate to `any()` and `all()` in `core::simd`.
+
+The plan is to abandon this crate once the LLVM bug is fixed or `core::simd` works around the LLVM bug.
+
+The code is forked from the [`packed_simd` crate](https://raw.githubusercontent.com/hsivonen/packed_simd/d938e39bee9bc5c222f5f2f2a0df9e53b5ce36ae/src/codegen/reductions/mask/arm.rs).
+
+This crate requires Nightly Rust as it depends on the `portable_simd` feature.
+
+# License
+
+`MIT OR Apache-2.0`, since that's how `packed_simd` is licensed. (The ARM intrinsics Rust version workaround is from qcms, see LICENSE-MIT-QCMS.)
diff --git a/third_party/rust/any_all_workaround/build.rs b/third_party/rust/any_all_workaround/build.rs
new file mode 100644
--- /dev/null
+++ b/third_party/rust/any_all_workaround/build.rs
@@ -0,0 +1,7 @@
+extern crate version_check as rustc;
+
+fn main() {
+ if rustc::is_min_version("1.78.0").unwrap_or(false) {
+ println!("cargo:rustc-cfg=stdsimd_split");
+ }
+}
diff --git a/third_party/rust/any_all_workaround/src/lib.rs b/third_party/rust/any_all_workaround/src/lib.rs
new file mode 100644
--- /dev/null
+++ b/third_party/rust/any_all_workaround/src/lib.rs
@@ -0,0 +1,110 @@
+// This code began as a fork of
+// https://raw.githubusercontent.com/rust-lang/packed_simd/d938e39bee9bc5c222f5f2f2a0df9e53b5ce36ae/src/codegen/reductions/mask/arm.rs
+// which didn't have a license header on the file, but Cargo.toml said "MIT OR Apache-2.0".
+// See LICENSE-MIT and LICENSE-APACHE.
+
+#![no_std]
+#![feature(portable_simd)]
+#![cfg_attr(
+ all(
+ stdsimd_split,
+ target_arch = "arm",
+ target_endian = "little",
+ target_feature = "neon",
+ target_feature = "v7"
+ ),
+ feature(stdarch_arm_neon_intrinsics)
+)]
+#![cfg_attr(
+ all(
+ not(stdsimd_split),
+ target_arch = "arm",
+ target_endian = "little",
+ target_feature = "neon",
+ target_feature = "v7"
+ ),
+ feature(stdsimd)
+)]
+
+use cfg_if::cfg_if;
+use core::simd::mask16x8;
+use core::simd::mask32x4;
+use core::simd::mask8x16;
+
+cfg_if! {
+ if #[cfg(all(target_arch = "arm", target_endian = "little", target_feature = "neon", target_feature = "v7"))] {
+ use core::simd::mask8x8;
+ use core::simd::mask16x4;
+ use core::simd::mask32x2;
+ macro_rules! arm_128_v7_neon_impl {
+ ($all:ident, $any:ident, $id:ident, $half:ident, $vpmin:ident, $vpmax:ident) => {
+ #[inline]
+ pub fn $all(s: $id) -> bool {
+ use core::arch::arm::$vpmin;
+ use core::mem::transmute;
+ unsafe {
+ union U {
+ halves: ($half, $half),
+ vec: $id,
+ }
+ let halves = U { vec: s }.halves;
+ let h: $half = transmute($vpmin(transmute(halves.0), transmute(halves.1)));
+ h.all()
+ }
+ }
+ #[inline]
+ pub fn $any(s: $id) -> bool {
+ use core::arch::arm::$vpmax;
+ use core::mem::transmute;
+ unsafe {
+ union U {
+ halves: ($half, $half),
+ vec: $id,
+ }
+ let halves = U { vec: s }.halves;
+ let h: $half = transmute($vpmax(transmute(halves.0), transmute(halves.1)));
+ h.any()
+ }
+ }
+ }
+ }
+ } else {
+ macro_rules! arm_128_v7_neon_impl {
+ ($all:ident, $any:ident, $id:ident, $half:ident, $vpmin:ident, $vpmax:ident) => {
+ #[inline(always)]
+ pub fn $all(s: $id) -> bool {
+ s.all()
+ }
+ #[inline(always)]
+ pub fn $any(s: $id) -> bool {
+ s.any()
+ }
+ }
+ }
+ }
+}
+
+arm_128_v7_neon_impl!(
+ all_mask8x16,
+ any_mask8x16,
+ mask8x16,
+ mask8x8,
+ vpmin_u8,
+ vpmax_u8
+);
+arm_128_v7_neon_impl!(
+ all_mask16x8,
+ any_mask16x8,
+ mask16x8,
+ mask16x4,
+ vpmin_u16,
+ vpmax_u16
+);
+arm_128_v7_neon_impl!(
+ all_mask32x4,
+ any_mask32x4,
+ mask32x4,
+ mask32x2,
+ vpmin_u32,
+ vpmax_u32
+);
diff --git a/third_party/rust/encoding_rs/Cargo.toml b/third_party/rust/encoding_rs/Cargo.toml
--- a/third_party/rust/encoding_rs/Cargo.toml
+++ b/third_party/rust/encoding_rs/Cargo.toml
@@ -6,18 +6,19 @@
# to registry (e.g., crates.io) dependencies.
#
# If you are reading this file be aware that the original Cargo.toml
# will likely look very different (and much more reasonable).
# See Cargo.toml.orig for the original contents.
[package]
edition = "2018"
+rust-version = "1.36"
name = "encoding_rs"
-version = "0.8.33"
+version = "0.8.34"
authors = ["Henri Sivonen <hsivonen@hsivonen.fi>"]
description = "A Gecko-oriented implementation of the Encoding Standard"
homepage = "https://docs.rs/encoding_rs/"
documentation = "https://docs.rs/encoding_rs/"
readme = "README.md"
keywords = [
"encoding",
"web",
@@ -31,23 +32,23 @@ categories = [
"internationalization",
]
license = "(Apache-2.0 OR MIT) AND BSD-3-Clause"
repository = "https://github.com/hsivonen/encoding_rs"
[profile.release]
lto = true
+[dependencies.any_all_workaround]
+version = "0.1.0"
+optional = true
+
[dependencies.cfg-if]
version = "1.0"
-[dependencies.packed_simd]
-version = "0.3.9"
-optional = true
-
[dependencies.serde]
version = "1.0"
optional = true
[dev-dependencies.bincode]
version = "1.0"
[dev-dependencies.serde_derive]
@@ -69,15 +70,9 @@ fast-legacy-encode = [
"fast-hanja-encode",
"fast-kanji-encode",
"fast-gb-hanzi-encode",
"fast-big5-hanzi-encode",
]
less-slow-big5-hanzi-encode = []
less-slow-gb-hanzi-encode = []
less-slow-kanji-encode = []
-simd-accel = [
- "packed_simd",
- "packed_simd/into_bits",
-]
-
-[badges.travis-ci]
-repository = "hsivonen/encoding_rs"
+simd-accel = ["any_all_workaround"]
diff --git a/third_party/rust/encoding_rs/README.md b/third_party/rust/encoding_rs/README.md
--- a/third_party/rust/encoding_rs/README.md
+++ b/third_party/rust/encoding_rs/README.md
@@ -162,50 +162,36 @@ wrappers.
* [C++](https://github.com/hsivonen/recode_cpp)
## Optional features
There are currently these optional cargo features:
### `simd-accel`
-Enables SIMD acceleration using the nightly-dependent `packed_simd` crate.
+Enables SIMD acceleration using the nightly-dependent `portable_simd` standard
+library feature.
This is an opt-in feature, because enabling this feature _opts out_ of Rust's
guarantees of future compilers compiling old code (aka. "stability story").
Currently, this has not been tested to be an improvement except for these
-targets:
+targets and enabling the `simd-accel` feature is expected to break the build
+on other targets:
* x86_64
* i686
* aarch64
* thumbv7neon
If you use nightly Rust, you use targets whose first component is one of the
above, and you are prepared _to have to revise your configuration when updating
Rust_, you should enable this feature. Otherwise, please _do not_ enable this
feature.
-_Note!_ If you are compiling for a target that does not have 128-bit SIMD
-enabled as part of the target definition and you are enabling 128-bit SIMD
-using `-C target_feature`, you need to enable the `core_arch` Cargo feature
-for `packed_simd` to compile a crates.io snapshot of `core_arch` instead of
-using the standard-library copy of `core::arch`, because the `core::arch`
-module of the pre-compiled standard library has been compiled with the
-assumption that the CPU doesn't have 128-bit SIMD. At present this applies
-mainly to 32-bit ARM targets whose first component does not include the
-substring `neon`.
-
-The encoding_rs side of things has not been properly set up for POWER,
-PowerPC, MIPS, etc., SIMD at this time, so even if you were to follow
-the advice from the previous paragraph, you probably shouldn't use
-the `simd-accel` option on the less mainstream architectures at this
-time.
-
Used by Firefox.
### `serde`
Enables support for serializing and deserializing `&'static Encoding`-typed
struct fields using [Serde][1].
[1]: https://serde.rs/
@@ -376,18 +362,19 @@ It is a goal to support the latest stabl
the version of Rust that's used for Firefox Nightly.
At this time, there is no firm commitment to support a version older than
what's required by Firefox, and there is no commitment to treat MSRV changes
as semver-breaking, because this crate depends on `cfg-if`, which doesn't
appear to treat MSRV changes as semver-breaking, so it would be useless for
this crate to treat MSRV changes as semver-breaking.
-As of 2021-02-04, MSRV appears to be Rust 1.36.0 for using the crate and
+As of 2024-04-04, MSRV appears to be Rust 1.36.0 for using the crate and
1.42.0 for doc tests to pass without errors about the global allocator.
+With the `simd-accel` feature, the MSRV is even higher.
## Compatibility with rust-encoding
A compatibility layer that implements the rust-encoding API on top of
encoding_rs is
[provided as a separate crate](https://github.com/hsivonen/encoding_rs_compat)
(cannot be uploaded to crates.io). The compatibility layer was originally
written with the assuption that Firefox would need it, but it is not currently
@@ -441,20 +428,27 @@ To regenerate the generated code:
- [x] Implement the rust-encoding API in terms of encoding_rs.
- [x] Add SIMD acceleration for Aarch64.
- [x] Investigate the use of NEON on 32-bit ARM.
- [ ] ~Investigate Björn Höhrmann's lookup table acceleration for UTF-8 as
adapted to Rust in rust-encoding.~
- [x] Add actually fast CJK encode options.
- [ ] ~Investigate [Bob Steagall's lookup table acceleration for UTF-8](https://github.com/BobSteagall/CppNow2018/blob/master/FastConversionFromUTF-8/Fast%20Conversion%20From%20UTF-8%20with%20C%2B%2B%2C%20DFAs%2C%20and%20SSE%20Intrinsics%20-%20Bob%20Steagall%20-%20C%2B%2BNow%202018.pdf).~
- [x] Provide a build mode that works without `alloc` (with lesser API surface).
-- [ ] Migrate to `std::simd` once it is stable and declare 1.0.
+- [x] Migrate to `std::simd` ~once it is stable and declare 1.0.~
+- [ ] Migrate `unsafe` slice access by larger types than `u8`/`u16` to `align_to`.
## Release Notes
+### 0.8.34
+
+* Use the `portable_simd` nightly feature of the standard library instead of the `packed_simd` crate. Only affects the `simd-accel` optional nightly feature.
+* Internal documentation improvements and minor code improvements around `unsafe`.
+* Added `rust-version` to `Cargo.toml`.
+
### 0.8.33
* Use `packed_simd` instead of `packed_simd_2` again now that updates are back under the `packed_simd` name. Only affects the `simd-accel` optional nightly feature.
### 0.8.32
* Removed `build.rs`. (This removal should resolve false positives reported by some antivirus products. This may break some build configurations that have opted out of Rust's guarantees against future build breakage.)
* Internal change to what API is used for reinterpreting the lane configuration of SIMD vectors.
diff --git a/third_party/rust/encoding_rs/src/ascii.rs b/third_party/rust/encoding_rs/src/ascii.rs
--- a/third_party/rust/encoding_rs/src/ascii.rs
+++ b/third_party/rust/encoding_rs/src/ascii.rs
@@ -46,71 +46,87 @@ cfg_if! {
#[allow(dead_code)]
#[inline(always)]
fn likely(b: bool) -> bool {
b
}
}
}
+// Safety invariants for masks: data & mask = 0 for valid ASCII or basic latin utf-16
+
// `as` truncates, so works on 32-bit, too.
#[allow(dead_code)]
pub const ASCII_MASK: usize = 0x8080_8080_8080_8080u64 as usize;
// `as` truncates, so works on 32-bit, too.
#[allow(dead_code)]
pub const BASIC_LATIN_MASK: usize = 0xFF80_FF80_FF80_FF80u64 as usize;
#[allow(unused_macros)]
macro_rules! ascii_naive {
($name:ident, $src_unit:ty, $dst_unit:ty) => {
+ /// Safety: src and dst must have len_unit elements and be aligned
+ /// Safety-usable invariant: will return Some() when it fails
+ /// to convert. The first value will be a u8 that is > 127.
#[inline(always)]
pub unsafe fn $name(
src: *const $src_unit,
dst: *mut $dst_unit,
len: usize,
) -> Option<($src_unit, usize)> {
// Yes, manually omitting the bound check here matters
// a lot for perf.
for i in 0..len {
+ // Safety: len invariant used here
let code_unit = *(src.add(i));
+ // Safety: Upholds safety-usable invariant here
if code_unit > 127 {
return Some((code_unit, i));
}
+ // Safety: len invariant used here
*(dst.add(i)) = code_unit as $dst_unit;
}
return None;
}
};
}
#[allow(unused_macros)]
macro_rules! ascii_alu {
($name:ident,
+ // safety invariant: src/dst MUST be u8
$src_unit:ty,
$dst_unit:ty,
+ // Safety invariant: stride_fn must consume and produce two usizes, and return the index of the first non-ascii when it fails
$stride_fn:ident) => {
+ /// Safety: src and dst must have len elements, src is valid for read, dst is valid for
+ /// write
+ /// Safety-usable invariant: will return Some() when it fails
+ /// to convert. The first value will be a u8 that is > 127.
#[cfg_attr(feature = "cargo-clippy", allow(never_loop, cast_ptr_alignment))]
#[inline(always)]
pub unsafe fn $name(
src: *const $src_unit,
dst: *mut $dst_unit,
len: usize,
) -> Option<($src_unit, usize)> {
let mut offset = 0usize;
// This loop is only broken out of as a `goto` forward
loop {
+ // Safety: until_alignment becomes the number of bytes we need to munch until we are aligned to usize
let mut until_alignment = {
// Check if the other unit aligns if we move the narrower unit
// to alignment.
// if ::core::mem::size_of::<$src_unit>() == ::core::mem::size_of::<$dst_unit>() {
// ascii_to_ascii
let src_alignment = (src as usize) & ALU_ALIGNMENT_MASK;
let dst_alignment = (dst as usize) & ALU_ALIGNMENT_MASK;
if src_alignment != dst_alignment {
+ // Safety: bails early and ends up in the naïve branch where usize-alignment doesn't matter
break;
}
(ALU_ALIGNMENT - src_alignment) & ALU_ALIGNMENT_MASK
// } else if ::core::mem::size_of::<$src_unit>() < ::core::mem::size_of::<$dst_unit>() {
// ascii_to_basic_latin
// let src_until_alignment = (ALIGNMENT - ((src as usize) & ALIGNMENT_MASK)) & ALIGNMENT_MASK;
// if (dst.add(src_until_alignment) as usize) & ALIGNMENT_MASK != 0 {
// break;
@@ -129,74 +145,104 @@ macro_rules! ascii_alu {
// Moving pointers to alignment seems to be a pessimization on
// x86_64 for operations that have UTF-16 as the internal
// Unicode representation. However, since it seems to be a win
// on ARM (tested ARMv7 code running on ARMv8 [rpi3]), except
// mixed results when encoding from UTF-16 and since x86 and
// x86_64 should be using SSE2 in due course, keeping the move
// to alignment here. It would be good to test on more ARM CPUs
// and on real MIPS and POWER hardware.
+ //
+ // Safety: This is the naïve code once again, for `until_alignment` bytes
while until_alignment != 0 {
let code_unit = *(src.add(offset));
if code_unit > 127 {
+ // Safety: Upholds safety-usable invariant here
return Some((code_unit, offset));
}
*(dst.add(offset)) = code_unit as $dst_unit;
+ // Safety: offset is the number of bytes copied so far
offset += 1;
until_alignment -= 1;
}
let len_minus_stride = len - ALU_STRIDE_SIZE;
loop {
+ // Safety: num_ascii is known to be a byte index of a non-ascii byte due to stride_fn's invariant
if let Some(num_ascii) = $stride_fn(
+ // Safety: These are known to be valid and aligned since we have at
+ // least ALU_STRIDE_SIZE data in these buffers, and offset is the
+ // number of elements copied so far, which according to the
+ // until_alignment calculation above will cause both src and dst to be
+ // aligned to usize after this add
src.add(offset) as *const usize,
dst.add(offset) as *mut usize,
) {
offset += num_ascii;
+ // Safety: Upholds safety-usable invariant here by indexing into non-ascii byte
return Some((*(src.add(offset)), offset));
}
+ // Safety: offset continues to be the number of bytes copied so far, and
+ // maintains usize alignment for the next loop iteration
offset += ALU_STRIDE_SIZE;
+ // Safety: This is `offset > len - stride. This loop will continue as long as
+ // `offset <= len - stride`, which means there are `stride` bytes to still be read.
if offset > len_minus_stride {
break;
}
}
}
break;
}
+
+ // Safety: This is the naïve code, same as ascii_naive, and has no requirements
+ // other than src/dst being valid for the the right lens
while offset < len {
+ // Safety: len invariant used here
let code_unit = *(src.add(offset));
if code_unit > 127 {
+ // Safety: Upholds safety-usable invariant here
return Some((code_unit, offset));
}
+ // Safety: len invariant used here
*(dst.add(offset)) = code_unit as $dst_unit;
offset += 1;
}
None
}
};
}
#[allow(unused_macros)]
macro_rules! basic_latin_alu {
($name:ident,
+ // safety invariant: use u8 for src/dest for ascii, and u16 for basic_latin
$src_unit:ty,
$dst_unit:ty,
+ // safety invariant: stride function must munch ALU_STRIDE_SIZE*size(src_unit) bytes off of src and
+ // write ALU_STRIDE_SIZE*size(dst_unit) bytes to dst
$stride_fn:ident) => {
+ /// Safety: src and dst must have len elements, src is valid for read, dst is valid for
+ /// write
+ /// Safety-usable invariant: will return Some() when it fails
+ /// to convert. The first value will be a u8 that is > 127.
#[cfg_attr(
feature = "cargo-clippy",
allow(never_loop, cast_ptr_alignment, cast_lossless)
)]
#[inline(always)]
pub unsafe fn $name(
src: *const $src_unit,
dst: *mut $dst_unit,
len: usize,
) -> Option<($src_unit, usize)> {
let mut offset = 0usize;
// This loop is only broken out of as a `goto` forward
loop {
+ // Safety: until_alignment becomes the number of bytes we need to munch from src/dest until we are aligned to usize
+ // We ensure basic-latin has the same alignment as ascii, starting with ascii since it is smaller.
let mut until_alignment = {
// Check if the other unit aligns if we move the narrower unit
// to alignment.
// if ::core::mem::size_of::<$src_unit>() == ::core::mem::size_of::<$dst_unit>() {
// ascii_to_ascii
// let src_alignment = (src as usize) & ALIGNMENT_MASK;
// let dst_alignment = (dst as usize) & ALIGNMENT_MASK;
// if src_alignment != dst_alignment {
@@ -232,66 +278,89 @@ macro_rules! basic_latin_alu {
// Moving pointers to alignment seems to be a pessimization on
// x86_64 for operations that have UTF-16 as the internal
// Unicode representation. However, since it seems to be a win
// on ARM (tested ARMv7 code running on ARMv8 [rpi3]), except
// mixed results when encoding from UTF-16 and since x86 and
// x86_64 should be using SSE2 in due course, keeping the move
// to alignment here. It would be good to test on more ARM CPUs
// and on real MIPS and POWER hardware.
+ //
+ // Safety: This is the naïve code once again, for `until_alignment` bytes
while until_alignment != 0 {
let code_unit = *(src.add(offset));
if code_unit > 127 {
+ // Safety: Upholds safety-usable invariant here
return Some((code_unit, offset));
}
*(dst.add(offset)) = code_unit as $dst_unit;
+ // Safety: offset is the number of bytes copied so far
offset += 1;
until_alignment -= 1;
}
let len_minus_stride = len - ALU_STRIDE_SIZE;
loop {
if !$stride_fn(
+ // Safety: These are known to be valid and aligned since we have at
+ // least ALU_STRIDE_SIZE data in these buffers, and offset is the
+ // number of elements copied so far, which according to the
+ // until_alignment calculation above will cause both src and dst to be
+ // aligned to usize after this add
src.add(offset) as *const usize,
dst.add(offset) as *mut usize,
) {
break;
}
+ // Safety: offset continues to be the number of bytes copied so far, and
+ // maintains usize alignment for the next loop iteration
offset += ALU_STRIDE_SIZE;
+ // Safety: This is `offset > len - stride. This loop will continue as long as
+ // `offset <= len - stride`, which means there are `stride` bytes to still be read.
if offset > len_minus_stride {
break;
}
}
}
break;
}
+ // Safety: This is the naïve code once again, for leftover bytes
while offset < len {
+ // Safety: len invariant used here
let code_unit = *(src.add(offset));
if code_unit > 127 {
+ // Safety: Upholds safety-usable invariant here
return Some((code_unit, offset));
}
+ // Safety: len invariant used here
*(dst.add(offset)) = code_unit as $dst_unit;
offset += 1;
}
None
}
};
}
#[allow(unused_macros)]
macro_rules! latin1_alu {
+ // safety invariant: stride function must munch ALU_STRIDE_SIZE*size(src_unit) bytes off of src and
+ // write ALU_STRIDE_SIZE*size(dst_unit) bytes to dst
($name:ident, $src_unit:ty, $dst_unit:ty, $stride_fn:ident) => {
+ /// Safety: src and dst must have len elements, src is valid for read, dst is valid for
+ /// write
#[cfg_attr(
feature = "cargo-clippy",
allow(never_loop, cast_ptr_alignment, cast_lossless)
)]
#[inline(always)]
pub unsafe fn $name(src: *const $src_unit, dst: *mut $dst_unit, len: usize) {
let mut offset = 0usize;
// This loop is only broken out of as a `goto` forward
loop {
+ // Safety: until_alignment becomes the number of bytes we need to munch from src/dest until we are aligned to usize
+ // We ensure the UTF-16 side has the same alignment as the Latin-1 side, starting with Latin-1 since it is smaller.
let mut until_alignment = {
if ::core::mem::size_of::<$src_unit>() < ::core::mem::size_of::<$dst_unit>() {
// unpack
let src_until_alignment = (ALU_ALIGNMENT
- ((src as usize) & ALU_ALIGNMENT_MASK))
& ALU_ALIGNMENT_MASK;
if (dst.wrapping_add(src_until_alignment) as usize) & ALU_ALIGNMENT_MASK
!= 0
@@ -308,373 +377,485 @@ macro_rules! latin1_alu {
!= 0
{
break;
}
dst_until_alignment
}
};
if until_alignment + ALU_STRIDE_SIZE <= len {
+ // Safety: This is the naïve code once again, for `until_alignment` bytes
while until_alignment != 0 {
let code_unit = *(src.add(offset));
*(dst.add(offset)) = code_unit as $dst_unit;
+ // Safety: offset is the number of bytes copied so far
offset += 1;
until_alignment -= 1;
}
let len_minus_stride = len - ALU_STRIDE_SIZE;
loop {
$stride_fn(
+ // Safety: These are known to be valid and aligned since we have at
+ // least ALU_STRIDE_SIZE data in these buffers, and offset is the
+ // number of elements copied so far, which according to the
+ // until_alignment calculation above will cause both src and dst to be
+ // aligned to usize after this add
src.add(offset) as *const usize,
dst.add(offset) as *mut usize,
);
+ // Safety: offset continues to be the number of bytes copied so far, and
+ // maintains usize alignment for the next loop iteration
offset += ALU_STRIDE_SIZE;
+ // Safety: This is `offset > len - stride. This loop will continue as long as
+ // `offset <= len - stride`, which means there are `stride` bytes to still be read.
if offset > len_minus_stride {
break;
}
}
}
break;
}
+ // Safety: This is the naïve code once again, for leftover bytes
while offset < len {
+ // Safety: len invariant used here
let code_unit = *(src.add(offset));
*(dst.add(offset)) = code_unit as $dst_unit;
offset += 1;
}
}
};
}
#[allow(unused_macros)]
macro_rules! ascii_simd_check_align {
(
$name:ident,
$src_unit:ty,
$dst_unit:ty,
+ // Safety: This function must require aligned src/dest that are valid for reading/writing SIMD_STRIDE_SIZE src_unit/dst_unit
$stride_both_aligned:ident,
+ // Safety: This function must require aligned/unaligned src/dest that are valid for reading/writing SIMD_STRIDE_SIZE src_unit/dst_unit
$stride_src_aligned:ident,
+ // Safety: This function must require unaligned/aligned src/dest that are valid for reading/writing SIMD_STRIDE_SIZE src_unit/dst_unit
$stride_dst_aligned:ident,
+ // Safety: This function must require unaligned src/dest that are valid for reading/writing SIMD_STRIDE_SIZE src_unit/dst_unit
$stride_neither_aligned:ident
) => {
+ /// Safety: src/dst must be valid for reads/writes of `len` elements of their units.
+ ///
+ /// Safety-usable invariant: will return Some() when it encounters non-ASCII, with the first element in the Some being
+ /// guaranteed to be non-ASCII (> 127), and the second being the offset where it is found
#[inline(always)]
pub unsafe fn $name(
src: *const $src_unit,
dst: *mut $dst_unit,
len: usize,
) -> Option<($src_unit, usize)> {
let mut offset = 0usize;
+ // Safety: if this check succeeds we're valid for reading/writing at least `SIMD_STRIDE_SIZE` elements.
if SIMD_STRIDE_SIZE <= len {
let len_minus_stride = len - SIMD_STRIDE_SIZE;
// XXX Should we first process one stride unconditionally as unaligned to
// avoid the cost of the branchiness below if the first stride fails anyway?
// XXX Should we just use unaligned SSE2 access unconditionally? It seems that
// on Haswell, it would make sense to just use unaligned and not bother
// checking. Need to benchmark older architectures before deciding.
let dst_masked = (dst as usize) & SIMD_ALIGNMENT_MASK;
+ // Safety: checking whether src is aligned
if ((src as usize) & SIMD_ALIGNMENT_MASK) == 0 {
+ // Safety: Checking whether dst is aligned
if dst_masked == 0 {
loop {
+ // Safety: We're valid to read/write SIMD_STRIDE_SIZE elements and have the appropriate alignments
if !$stride_both_aligned(src.add(offset), dst.add(offset)) {
break;
}
offset += SIMD_STRIDE_SIZE;
+ // Safety: This is `offset > len - SIMD_STRIDE_SIZE` which means we always have at least `SIMD_STRIDE_SIZE` elements to munch next time.
if offset > len_minus_stride {
break;
}
}
} else {
loop {
+ // Safety: We're valid to read/write SIMD_STRIDE_SIZE elements and have the appropriate alignments
if !$stride_src_aligned(src.add(offset), dst.add(offset)) {
break;
}
offset += SIMD_STRIDE_SIZE;
+ // Safety: This is `offset > len - SIMD_STRIDE_SIZE` which means we always have at least `SIMD_STRIDE_SIZE` elements to munch next time.
if offset > len_minus_stride {
break;
}
}
}
} else {
if dst_masked == 0 {
loop {
+ // Safety: We're valid to read/write SIMD_STRIDE_SIZE elements and have the appropriate alignments
if !$stride_dst_aligned(src.add(offset), dst.add(offset)) {
break;
}
offset += SIMD_STRIDE_SIZE;
+ // Safety: This is `offset > len - SIMD_STRIDE_SIZE` which means we always have at least `SIMD_STRIDE_SIZE` elements to munch next time.
if offset > len_minus_stride {
break;
}
}
} else {
loop {
+ // Safety: We're valid to read/write SIMD_STRIDE_SIZE elements and have the appropriate alignments
if !$stride_neither_aligned(src.add(offset), dst.add(offset)) {
break;
}
offset += SIMD_STRIDE_SIZE;
+ // Safety: This is `offset > len - SIMD_STRIDE_SIZE` which means we always have at least `SIMD_STRIDE_SIZE` elements to munch next time.
if offset > len_minus_stride {
break;
}
}
}
}
}
while offset < len {
+ // Safety: uses len invariant here and below
let code_unit = *(src.add(offset));
if code_unit > 127 {
+ // Safety: upholds safety-usable invariant
return Some((code_unit, offset));
}
*(dst.add(offset)) = code_unit as $dst_unit;
offset += 1;
}
None
}
};
}
#[allow(unused_macros)]
macro_rules! ascii_simd_check_align_unrolled {
(
$name:ident,
$src_unit:ty,
$dst_unit:ty,
+ // Safety: This function must require aligned src/dest that are valid for reading/writing SIMD_STRIDE_SIZE src_unit/dst_unit
$stride_both_aligned:ident,
+ // Safety: This function must require aligned/unaligned src/dest that are valid for reading/writing SIMD_STRIDE_SIZE src_unit/dst_unit
$stride_src_aligned:ident,
+ // Safety: This function must require unaligned src/dest that are valid for reading/writing SIMD_STRIDE_SIZE src_unit/dst_unit
$stride_neither_aligned:ident,
+ // Safety: This function must require aligned src/dest that are valid for reading/writing 2*SIMD_STRIDE_SIZE src_unit/dst_unit
$double_stride_both_aligned:ident,
+ // Safety: This function must require aligned/unaligned src/dest that are valid for reading/writing 2*SIMD_STRIDE_SIZE src_unit/dst_unit
$double_stride_src_aligned:ident
) => {
- #[inline(always)]
+ /// Safety: src/dst must be valid for reads/writes of `len` elements of their units.
+ ///
+ /// Safety-usable invariant: will return Some() when it encounters non-ASCII, with the first element in the Some being
+ /// guaranteed to be non-ASCII (> 127), and the second being the offset where it is found #[inline(always)]
pub unsafe fn $name(
src: *const $src_unit,
dst: *mut $dst_unit,
len: usize,
) -> Option<($src_unit, usize)> {
let unit_size = ::core::mem::size_of::<$src_unit>();
let mut offset = 0usize;
// This loop is only broken out of as a goto forward without
// actually looping
'outer: loop {
+ // Safety: if this check succeeds we're valid for reading/writing at least `SIMD_STRIDE_SIZE` elements.
if SIMD_STRIDE_SIZE <= len {
// First, process one unaligned
+ // Safety: this is safe to call since we're valid for this read/write
if !$stride_neither_aligned(src, dst) {
break 'outer;
}
offset = SIMD_STRIDE_SIZE;
// We have now seen 16 ASCII bytes. Let's guess that
// there will be enough more to justify more expense
// in the case of non-ASCII.
// Use aligned reads for the sake of old microachitectures.
+ //
+ // Safety: this correctly calculates the number of src_units that need to be read before the remaining list is aligned.
+ // This is less that SIMD_ALIGNMENT, which is also SIMD_STRIDE_SIZE (as documented)
let until_alignment = ((SIMD_ALIGNMENT
- ((src.add(offset) as usize) & SIMD_ALIGNMENT_MASK))
& SIMD_ALIGNMENT_MASK)
/ unit_size;
- // This addition won't overflow, because even in the 32-bit PAE case the
+ // Safety: This addition won't overflow, because even in the 32-bit PAE case the
// address space holds enough code that the slice length can't be that
// close to address space size.
// offset now equals SIMD_STRIDE_SIZE, hence times 3 below.
+ //
+ // Safety: if this check succeeds we're valid for reading/writing at least `2 * SIMD_STRIDE_SIZE` elements plus `until_alignment`.
+ // The extra SIMD_STRIDE_SIZE in the condition is because `offset` is already `SIMD_STRIDE_SIZE`.
if until_alignment + (SIMD_STRIDE_SIZE * 3) <= len {
if until_alignment != 0 {
+ // Safety: this is safe to call since we're valid for this read/write (and more), and don't care about alignment
+ // This will copy over bytes that get decoded twice since it's not incrementing `offset` by SIMD_STRIDE_SIZE. This is fine.
if !$stride_neither_aligned(src.add(offset), dst.add(offset)) {
break;
}
offset += until_alignment;
}
+ // Safety: At this point we're valid for reading/writing 2*SIMD_STRIDE_SIZE elements
+ // Safety: Now `offset` is aligned for `src`
let len_minus_stride_times_two = len - (SIMD_STRIDE_SIZE * 2);
+ // Safety: This is whether dst is aligned
let dst_masked = (dst.add(offset) as usize) & SIMD_ALIGNMENT_MASK;
if dst_masked == 0 {
loop {
+ // Safety: both are aligned, we can call the aligned function. We're valid for reading/writing double stride from the initial condition
+ // and the loop break condition below
if let Some(advance) =
$double_stride_both_aligned(src.add(offset), dst.add(offset))
{
offset += advance;
let code_unit = *(src.add(offset));
+ // Safety: uses safety-usable invariant on ascii_to_ascii_simd_double_stride to return
+ // guaranteed non-ascii
return Some((code_unit, offset));
}
offset += SIMD_STRIDE_SIZE * 2;
+ // Safety: This is `offset > len - 2 * SIMD_STRIDE_SIZE` which means we always have at least `2 * SIMD_STRIDE_SIZE` elements to munch next time.
if offset > len_minus_stride_times_two {
break;
}
}
+ // Safety: We're valid for reading/writing one more, and can still assume alignment
if offset + SIMD_STRIDE_SIZE <= len {
if !$stride_both_aligned(src.add(offset), dst.add(offset)) {
break 'outer;
}
offset += SIMD_STRIDE_SIZE;
}
} else {
loop {
+ // Safety: only src is aligned here. We're valid for reading/writing double stride from the initial condition
+ // and the loop break condition below
if let Some(advance) =
$double_stride_src_aligned(src.add(offset), dst.add(offset))
{
offset += advance;
let code_unit = *(src.add(offset));
+ // Safety: uses safety-usable invariant on ascii_to_ascii_simd_double_stride to return
+ // guaranteed non-ascii
return Some((code_unit, offset));
}
offset += SIMD_STRIDE_SIZE * 2;
+ // Safety: This is `offset > len - 2 * SIMD_STRIDE_SIZE` which means we always have at least `2 * SIMD_STRIDE_SIZE` elements to munch next time.
+
if offset > len_minus_stride_times_two {
break;
}
}
+ // Safety: We're valid for reading/writing one more, and can still assume alignment
if offset + SIMD_STRIDE_SIZE <= len {
if !$stride_src_aligned(src.add(offset), dst.add(offset)) {
break 'outer;
}
offset += SIMD_STRIDE_SIZE;
}
}
} else {
// At most two iterations, so unroll
if offset + SIMD_STRIDE_SIZE <= len {
+ // Safety: The check above ensures we're allowed to read/write this, and we don't use alignment
if !$stride_neither_aligned(src.add(offset), dst.add(offset)) {
break;
}
offset += SIMD_STRIDE_SIZE;
if offset + SIMD_STRIDE_SIZE <= len {
+ // Safety: The check above ensures we're allowed to read/write this, and we don't use alignment
if !$stride_neither_aligned(src.add(offset), dst.add(offset)) {
break;
}
offset += SIMD_STRIDE_SIZE;
}
}
}
}
break 'outer;
}
while offset < len {
+ // Safety: relies straightforwardly on the `len` invariant
let code_unit = *(src.add(offset));
if code_unit > 127 {
+ // Safety-usable invariant upheld here
return Some((code_unit, offset));
}
*(dst.add(offset)) = code_unit as $dst_unit;
offset += 1;
}
None
}
};
}
#[allow(unused_macros)]
macro_rules! latin1_simd_check_align {
(
$name:ident,
$src_unit:ty,
$dst_unit:ty,
+ // Safety: This function must require aligned src/dest that are valid for reading/writing SIMD_STRIDE_SIZE src_unit/dst_unit
$stride_both_aligned:ident,
+ // Safety: This function must require aligned/unaligned src/dest that are valid for reading/writing SIMD_STRIDE_SIZE src_unit/dst_unit
$stride_src_aligned:ident,
+ // Safety: This function must require unaligned/aligned src/dest that are valid for reading/writing SIMD_STRIDE_SIZE src_unit/dst_unit
$stride_dst_aligned:ident,
+ // Safety: This function must require unaligned src/dest that are valid for reading/writing SIMD_STRIDE_SIZE src_unit/dst_unit
$stride_neither_aligned:ident
+
) => {
+ /// Safety: src/dst must be valid for reads/writes of `len` elements of their units.
#[inline(always)]
pub unsafe fn $name(src: *const $src_unit, dst: *mut $dst_unit, len: usize) {
let mut offset = 0usize;
+ // Safety: if this check succeeds we're valid for reading/writing at least `SIMD_STRIDE_SIZE` elements.
if SIMD_STRIDE_SIZE <= len {
let len_minus_stride = len - SIMD_STRIDE_SIZE;
+ // Whether dst is aligned
let dst_masked = (dst as usize) & SIMD_ALIGNMENT_MASK;
+ // Whether src is aligned
if ((src as usize) & SIMD_ALIGNMENT_MASK) == 0 {
if dst_masked == 0 {
loop {
+ // Safety: Both were aligned, we can use the aligned function
$stride_both_aligned(src.add(offset), dst.add(offset));
offset += SIMD_STRIDE_SIZE;
+ // Safety: This is `offset > len - SIMD_STRIDE_SIZE`, which means in the next iteration we're valid for
+ // reading/writing at least SIMD_STRIDE_SIZE elements.
if offset > len_minus_stride {
break;
}
}
} else {
loop {
+ // Safety: src was aligned, dst was not
$stride_src_aligned(src.add(offset), dst.add(offset));
offset += SIMD_STRIDE_SIZE;
+ // Safety: This is `offset > len - SIMD_STRIDE_SIZE`, which means in the next iteration we're valid for
+ // reading/writing at least SIMD_STRIDE_SIZE elements.
if offset > len_minus_stride {
break;
}
}
}
} else {
if dst_masked == 0 {
loop {
+ // Safety: src was aligned, dst was not
$stride_dst_aligned(src.add(offset), dst.add(offset));
offset += SIMD_STRIDE_SIZE;
+ // Safety: This is `offset > len - SIMD_STRIDE_SIZE`, which means in the next iteration we're valid for
+ // reading/writing at least SIMD_STRIDE_SIZE elements.
if offset > len_minus_stride {
break;
}
}
} else {
loop {
+ // Safety: Neither were aligned
$stride_neither_aligned(src.add(offset), dst.add(offset));
offset += SIMD_STRIDE_SIZE;
+ // Safety: This is `offset > len - SIMD_STRIDE_SIZE`, which means in the next iteration we're valid for
+ // reading/writing at least SIMD_STRIDE_SIZE elements.
if offset > len_minus_stride {
break;
}
}
}
}
}
while offset < len {
+ // Safety: relies straightforwardly on the `len` invariant
let code_unit = *(src.add(offset));
*(dst.add(offset)) = code_unit as $dst_unit;
offset += 1;
}
}
};
}
#[allow(unused_macros)]
macro_rules! latin1_simd_check_align_unrolled {
(
$name:ident,
$src_unit:ty,
$dst_unit:ty,
+ // Safety: This function must require aligned src/dest that are valid for reading/writing SIMD_STRIDE_SIZE src_unit/dst_unit
$stride_both_aligned:ident,
+ // Safety: This function must require aligned/unaligned src/dest that are valid for reading/writing SIMD_STRIDE_SIZE src_unit/dst_unit
$stride_src_aligned:ident,
+ // Safety: This function must require unaligned/aligned src/dest that are valid for reading/writing SIMD_STRIDE_SIZE src_unit/dst_unit
$stride_dst_aligned:ident,
+ // Safety: This function must require unaligned src/dest that are valid for reading/writing SIMD_STRIDE_SIZE src_unit/dst_unit
$stride_neither_aligned:ident
) => {
+ /// Safety: src/dst must be valid for reads/writes of `len` elements of their units.
#[inline(always)]
pub unsafe fn $name(src: *const $src_unit, dst: *mut $dst_unit, len: usize) {
let unit_size = ::core::mem::size_of::<$src_unit>();
let mut offset = 0usize;
+ // Safety: if this check succeeds we're valid for reading/writing at least `SIMD_STRIDE_SIZE` elements.
if SIMD_STRIDE_SIZE <= len {
+ // Safety: this correctly calculates the number of src_units that need to be read before the remaining list is aligned.
+ // This is by definition less than SIMD_STRIDE_SIZE.
let mut until_alignment = ((SIMD_STRIDE_SIZE
- ((src as usize) & SIMD_ALIGNMENT_MASK))
& SIMD_ALIGNMENT_MASK)
/ unit_size;
while until_alignment != 0 {
+ // Safety: This is a straightforward copy, since until_alignment is < SIMD_STRIDE_SIZE < len, this is in-bounds
*(dst.add(offset)) = *(src.add(offset)) as $dst_unit;
offset += 1;
until_alignment -= 1;
}
+ // Safety: here offset will be `until_alignment`, i.e. enough to align `src`.
let len_minus_stride = len - SIMD_STRIDE_SIZE;
+ // Safety: if this check succeeds we're valid for reading/writing at least `2 * SIMD_STRIDE_SIZE` elements.
if offset + SIMD_STRIDE_SIZE * 2 <= len {
let len_minus_stride_times_two = len_minus_stride - SIMD_STRIDE_SIZE;
+ // Safety: at this point src is known to be aligned at offset, dst is not.
if (dst.add(offset) as usize) & SIMD_ALIGNMENT_MASK == 0 {
loop {
+ // Safety: We checked alignment of dst above, we can use the alignment functions. We're allowed to read/write 2*SIMD_STRIDE_SIZE elements, which we do.
$stride_both_aligned(src.add(offset), dst.add(offset));
offset += SIMD_STRIDE_SIZE;
$stride_both_aligned(src.add(offset), dst.add(offset));
offset += SIMD_STRIDE_SIZE;
+ // Safety: This is `offset > len - 2 * SIMD_STRIDE_SIZE` which means we always have at least `2 * SIMD_STRIDE_SIZE` elements to munch next time.
if offset > len_minus_stride_times_two {
break;
}
}
} else {
loop {
+ // Safety: we ensured alignment of src already.
$stride_src_aligned(src.add(offset), dst.add(offset));
offset += SIMD_STRIDE_SIZE;
$stride_src_aligned(src.add(offset), dst.add(offset));
offset += SIMD_STRIDE_SIZE;
+ // Safety: This is `offset > len - 2 * SIMD_STRIDE_SIZE` which means we always have at least `2 * SIMD_STRIDE_SIZE` elements to munch next time.
if offset > len_minus_stride_times_two {
break;
}
}
}
}
+ // Safety: This is `offset > len - SIMD_STRIDE_SIZE` which means we are valid to munch SIMD_STRIDE_SIZE more elements, which we do
if offset < len_minus_stride {
$stride_src_aligned(src.add(offset), dst.add(offset));
offset += SIMD_STRIDE_SIZE;
}
}
while offset < len {
+ // Safety: uses len invariant here and below
let code_unit = *(src.add(offset));
// On x86_64, this loop autovectorizes but in the pack
// case there are instructions whose purpose is to make sure
// each u16 in the vector is truncated before packing. However,
// since we don't care about saturating behavior of SSE2 packing
// when the input isn't Latin1, those instructions are useless.
// Unfortunately, using the `assume` intrinsic to lie to the
// optimizer doesn't make LLVM omit the trunctation that we
@@ -688,138 +869,180 @@ macro_rules! latin1_simd_check_align_unr
offset += 1;
}
}
};
}
#[allow(unused_macros)]
macro_rules! ascii_simd_unalign {
+ // Safety: stride_neither_aligned must be a function that requires src/dest be valid for unaligned reads/writes for SIMD_STRIDE_SIZE elements of type src_unit/dest_unit
($name:ident, $src_unit:ty, $dst_unit:ty, $stride_neither_aligned:ident) => {
+ /// Safety: src and dst must be valid for reads/writes of len elements of type src_unit/dst_unit
+ ///
+ /// Safety-usable invariant: will return Some() when it encounters non-ASCII, with the first element in the Some being
+ /// guaranteed to be non-ASCII (> 127), and the second being the offset where it is found
#[inline(always)]
pub unsafe fn $name(
src: *const $src_unit,
dst: *mut $dst_unit,
len: usize,
) -> Option<($src_unit, usize)> {
let mut offset = 0usize;
+ // Safety: if this check succeeds we're valid for reading/writing at least `stride` elements.
if SIMD_STRIDE_SIZE <= len {
let len_minus_stride = len - SIMD_STRIDE_SIZE;
loop {
+ // Safety: We know we're valid for `stride` reads/writes, so we can call this function. We don't need alignment.
if !$stride_neither_aligned(src.add(offset), dst.add(offset)) {
break;
}
offset += SIMD_STRIDE_SIZE;
+ // This is `offset > len - stride` which means we always have at least `stride` elements to munch next time.
if offset > len_minus_stride {
break;
}
}
}
while offset < len {
+ // Safety: Uses len invariant here and below
let code_unit = *(src.add(offset));
if code_unit > 127 {
+ // Safety-usable invariant upheld here
return Some((code_unit, offset));
}
*(dst.add(offset)) = code_unit as $dst_unit;
offset += 1;
}
None
}
};
}
#[allow(unused_macros)]
macro_rules! latin1_simd_unalign {
+ // Safety: stride_neither_aligned must be a function that requires src/dest be valid for unaligned reads/writes for SIMD_STRIDE_SIZE elements of type src_unit/dest_unit
($name:ident, $src_unit:ty, $dst_unit:ty, $stride_neither_aligned:ident) => {
+ /// Safety: src and dst must be valid for unaligned reads/writes of len elements of type src_unit/dst_unit
#[inline(always)]
pub unsafe fn $name(src: *const $src_unit, dst: *mut $dst_unit, len: usize) {
let mut offset = 0usize;
+ // Safety: if this check succeeds we're valid for reading/writing at least `stride` elements.
if SIMD_STRIDE_SIZE <= len {
let len_minus_stride = len - SIMD_STRIDE_SIZE;
loop {
+ // Safety: We know we're valid for `stride` reads/writes, so we can call this function. We don't need alignment.
$stride_neither_aligned(src.add(offset), dst.add(offset));
offset += SIMD_STRIDE_SIZE;
+ // This is `offset > len - stride` which means we always have at least `stride` elements to munch next time.
if offset > len_minus_stride {
break;
}
}
}
while offset < len {
+ // Safety: Uses len invariant here
let code_unit = *(src.add(offset));
*(dst.add(offset)) = code_unit as $dst_unit;
offset += 1;
}
}
};
}
#[allow(unused_macros)]
macro_rules! ascii_to_ascii_simd_stride {
+ // Safety: load/store must be valid for 16 bytes of read/write, which may be unaligned. (candidates: `(load|store)(16|8)_(unaligned|aligned)` functions)
($name:ident, $load:ident, $store:ident) => {
+ /// Safety: src and dst must be valid for 16 bytes of read/write according to
+ /// the $load/$store fn, which may allow for unaligned reads/writes or require
+ /// alignment to either 16x8 or u8x16.
#[inline(always)]
pub unsafe fn $name(src: *const u8, dst: *mut u8) -> bool {
let simd = $load(src);
if !simd_is_ascii(simd) {
return false;
}
$store(dst, simd);
true
}
};
}
#[allow(unused_macros)]
macro_rules! ascii_to_ascii_simd_double_stride {
+ // Safety: store must be valid for 32 bytes of write, which may be unaligned (candidates: `store(8|16)_(aligned|unaligned)`)
($name:ident, $store:ident) => {
+ /// Safety: src must be valid for 32 bytes of aligned u8x16 read
+ /// dst must be valid for 32 bytes of unaligned write according to
+ /// the $store fn, which may allow for unaligned writes or require
+ /// alignment to either 16x8 or u8x16.
+ ///
+ /// Safety-usable invariant: Returns Some(index) if the element at `index` is invalid ASCII
#[inline(always)]
pub unsafe fn $name(src: *const u8, dst: *mut u8) -> Option<usize> {
let first = load16_aligned(src);
let second = load16_aligned(src.add(SIMD_STRIDE_SIZE));
$store(dst, first);
if unlikely(!simd_is_ascii(first | second)) {
+ // Safety: mask_ascii produces a mask of all the high bits.
let mask_first = mask_ascii(first);
if mask_first != 0 {
+ // Safety: on little endian systems this will be the number of ascii bytes
+ // before the first non-ascii, i.e. valid for indexing src
+ // TODO SAFETY: What about big-endian systems?
return Some(mask_first.trailing_zeros() as usize);
}
$store(dst.add(SIMD_STRIDE_SIZE), second);
let mask_second = mask_ascii(second);
+ // Safety: on little endian systems this will be the number of ascii bytes
+ // before the first non-ascii, i.e. valid for indexing src
return Some(SIMD_STRIDE_SIZE + mask_second.trailing_zeros() as usize);
}
$store(dst.add(SIMD_STRIDE_SIZE), second);
None
}
};
}
#[allow(unused_macros)]
macro_rules! ascii_to_basic_latin_simd_stride {
+ // Safety: load/store must be valid for 16 bytes of read/write, which may be unaligned. (candidates: `(load|store)(16|8)_(unaligned|aligned)` functions)
($name:ident, $load:ident, $store:ident) => {
+ /// Safety: src and dst must be valid for 16/32 bytes of read/write according to
+ /// the $load/$store fn, which may allow for unaligned reads/writes or require
+ /// alignment to either 16x8 or u8x16.
#[inline(always)]
pub unsafe fn $name(src: *const u8, dst: *mut u16) -> bool {
let simd = $load(src);
if !simd_is_ascii(simd) {
return false;
}
let (first, second) = simd_unpack(simd);
$store(dst, first);
$store(dst.add(8), second);
true
}
};
}
#[allow(unused_macros)]
macro_rules! ascii_to_basic_latin_simd_double_stride {
+ // Safety: store must be valid for 16 bytes of write, which may be unaligned
($name:ident, $store:ident) => {
+ /// Safety: src must be valid for 2*SIMD_STRIDE_SIZE bytes of aligned reads,
+ /// aligned to either 16x8 or u8x16.
+ /// dst must be valid for 2*SIMD_STRIDE_SIZE bytes of aligned or unaligned reads
#[inline(always)]
pub unsafe fn $name(src: *const u8, dst: *mut u16) -> Option<usize> {
let first = load16_aligned(src);
let second = load16_aligned(src.add(SIMD_STRIDE_SIZE));
let (a, b) = simd_unpack(first);
$store(dst, a);
+ // Safety: divide by 2 since it's a u16 pointer
$store(dst.add(SIMD_STRIDE_SIZE / 2), b);
if unlikely(!simd_is_ascii(first | second)) {
let mask_first = mask_ascii(first);
if mask_first != 0 {
return Some(mask_first.trailing_zeros() as usize);
}
let (c, d) = simd_unpack(second);
$store(dst.add(SIMD_STRIDE_SIZE), c);
@@ -832,47 +1055,59 @@ macro_rules! ascii_to_basic_latin_simd_d
$store(dst.add(SIMD_STRIDE_SIZE + (SIMD_STRIDE_SIZE / 2)), d);
None
}
};
}
#[allow(unused_macros)]
macro_rules! unpack_simd_stride {
+ // Safety: load/store must be valid for 16 bytes of read/write, which may be unaligned. (candidates: `(load|store)(16|8)_(unaligned|aligned)` functions)
($name:ident, $load:ident, $store:ident) => {
+ /// Safety: src and dst must be valid for 16 bytes of read/write according to
+ /// the $load/$store fn, which may allow for unaligned reads/writes or require
+ /// alignment to either 16x8 or u8x16.
#[inline(always)]
pub unsafe fn $name(src: *const u8, dst: *mut u16) {
let simd = $load(src);
let (first, second) = simd_unpack(simd);
$store(dst, first);
$store(dst.add(8), second);
}
};
}
#[allow(unused_macros)]
macro_rules! basic_latin_to_ascii_simd_stride {
+ // Safety: load/store must be valid for 16 bytes of read/write, which may be unaligned. (candidates: `(load|store)(16|8)_(unaligned|aligned)` functions)
($name:ident, $load:ident, $store:ident) => {
+ /// Safety: src and dst must be valid for 32/16 bytes of read/write according to
+ /// the $load/$store fn, which may allow for unaligned reads/writes or require
+ /// alignment to either 16x8 or u8x16.
#[inline(always)]
pub unsafe fn $name(src: *const u16, dst: *mut u8) -> bool {
let first = $load(src);
let second = $load(src.add(8));
if simd_is_basic_latin(first | second) {
$store(dst, simd_pack(first, second));
true
} else {
false
}
}
};
}
#[allow(unused_macros)]
macro_rules! pack_simd_stride {
+ // Safety: load/store must be valid for 16 bytes of read/write, which may be unaligned. (candidates: `(load|store)(16|8)_(unaligned|aligned)` functions)
($name:ident, $load:ident, $store:ident) => {
+ /// Safety: src and dst must be valid for 32/16 bytes of read/write according to
+ /// the $load/$store fn, which may allow for unaligned reads/writes or require
+ /// alignment to either 16x8 or u8x16.
#[inline(always)]
pub unsafe fn $name(src: *const u16, dst: *mut u8) {
let first = $load(src);
let second = $load(src.add(8));
$store(dst, simd_pack(first, second));
}
};
}
@@ -888,24 +1123,28 @@ cfg_if! {
// pub const ALIGNMENT: usize = 8;
pub const ALU_STRIDE_SIZE: usize = 16;
pub const ALU_ALIGNMENT: usize = 8;
pub const ALU_ALIGNMENT_MASK: usize = 7;
+ // Safety for stride macros: We stick to the load8_aligned/etc family of functions. We consistently produce
+ // neither_unaligned variants using only unaligned inputs.
ascii_to_ascii_simd_stride!(ascii_to_ascii_stride_neither_aligned, load16_unaligned, store16_unaligned);
ascii_to_basic_latin_simd_stride!(ascii_to_basic_latin_stride_neither_aligned, load16_unaligned, store8_unaligned);
unpack_simd_stride!(unpack_stride_neither_aligned, load16_unaligned, store8_unaligned);
basic_latin_to_ascii_simd_stride!(basic_latin_to_ascii_stride_neither_aligned, load8_unaligned, store16_unaligned);
pack_simd_stride!(pack_stride_neither_aligned, load8_unaligned, store16_unaligned);
+ // Safety for conversion macros: We use the unalign macro with unalign functions above. All stride functions were produced
+ // by stride macros that universally munch a single SIMD_STRIDE_SIZE worth of elements.
ascii_simd_unalign!(ascii_to_ascii, u8, u8, ascii_to_ascii_stride_neither_aligned);
ascii_simd_unalign!(ascii_to_basic_latin, u8, u16, ascii_to_basic_latin_stride_neither_aligned);
ascii_simd_unalign!(basic_latin_to_ascii, u16, u8, basic_latin_to_ascii_stride_neither_aligned);
latin1_simd_unalign!(unpack_latin1, u8, u16, unpack_stride_neither_aligned);
latin1_simd_unalign!(pack_latin1, u16, u8, pack_stride_neither_aligned);
} else if #[cfg(all(feature = "simd-accel", target_endian = "little", target_feature = "neon"))] {
// SIMD with different instructions for aligned and unaligned loads and stores.
//
@@ -914,16 +1153,19 @@ cfg_if! {
// but the benchmark results I see don't agree.
pub const SIMD_STRIDE_SIZE: usize = 16;
pub const MAX_STRIDE_SIZE: usize = 16;
pub const SIMD_ALIGNMENT_MASK: usize = 15;
+ // Safety for stride macros: We stick to the load8_aligned/etc family of functions. We consistently name
+ // aligned/unaligned functions according to src/dst being aligned/unaligned
+
ascii_to_ascii_simd_stride!(ascii_to_ascii_stride_both_aligned, load16_aligned, store16_aligned);
ascii_to_ascii_simd_stride!(ascii_to_ascii_stride_src_aligned, load16_aligned, store16_unaligned);
ascii_to_ascii_simd_stride!(ascii_to_ascii_stride_dst_aligned, load16_unaligned, store16_aligned);
ascii_to_ascii_simd_stride!(ascii_to_ascii_stride_neither_aligned, load16_unaligned, store16_unaligned);
ascii_to_basic_latin_simd_stride!(ascii_to_basic_latin_stride_both_aligned, load16_aligned, store8_aligned);
ascii_to_basic_latin_simd_stride!(ascii_to_basic_latin_stride_src_aligned, load16_aligned, store8_unaligned);
ascii_to_basic_latin_simd_stride!(ascii_to_basic_latin_stride_dst_aligned, load16_unaligned, store8_aligned);
@@ -939,36 +1181,43 @@ cfg_if! {
basic_latin_to_ascii_simd_stride!(basic_latin_to_ascii_stride_dst_aligned, load8_unaligned, store16_aligned);
basic_latin_to_ascii_simd_stride!(basic_latin_to_ascii_stride_neither_aligned, load8_unaligned, store16_unaligned);
pack_simd_stride!(pack_stride_both_aligned, load8_aligned, store16_aligned);
pack_simd_stride!(pack_stride_src_aligned, load8_aligned, store16_unaligned);
pack_simd_stride!(pack_stride_dst_aligned, load8_unaligned, store16_aligned);
pack_simd_stride!(pack_stride_neither_aligned, load8_unaligned, store16_unaligned);
+ // Safety for conversion macros: We use the correct pattern of both/src/dst/neither here. All stride functions were produced
+ // by stride macros that universally munch a single SIMD_STRIDE_SIZE worth of elements.
+
ascii_simd_check_align!(ascii_to_ascii, u8, u8, ascii_to_ascii_stride_both_aligned, ascii_to_ascii_stride_src_aligned, ascii_to_ascii_stride_dst_aligned, ascii_to_ascii_stride_neither_aligned);
ascii_simd_check_align!(ascii_to_basic_latin, u8, u16, ascii_to_basic_latin_stride_both_aligned, ascii_to_basic_latin_stride_src_aligned, ascii_to_basic_latin_stride_dst_aligned, ascii_to_basic_latin_stride_neither_aligned);
ascii_simd_check_align!(basic_latin_to_ascii, u16, u8, basic_latin_to_ascii_stride_both_aligned, basic_latin_to_ascii_stride_src_aligned, basic_latin_to_ascii_stride_dst_aligned, basic_latin_to_ascii_stride_neither_aligned);
latin1_simd_check_align!(unpack_latin1, u8, u16, unpack_stride_both_aligned, unpack_stride_src_aligned, unpack_stride_dst_aligned, unpack_stride_neither_aligned);
latin1_simd_check_align!(pack_latin1, u16, u8, pack_stride_both_aligned, pack_stride_src_aligned, pack_stride_dst_aligned, pack_stride_neither_aligned);
} else if #[cfg(all(feature = "simd-accel", target_feature = "sse2"))] {
// SIMD with different instructions for aligned and unaligned loads and stores.
//
// Newer microarchitectures are not supposed to have a performance difference between
// aligned and unaligned SSE2 loads and stores when the address is actually aligned,
// but the benchmark results I see don't agree.
pub const SIMD_STRIDE_SIZE: usize = 16;
+ /// Safety-usable invariant: This should be identical to SIMD_STRIDE_SIZE (used by ascii_simd_check_align_unrolled)
pub const SIMD_ALIGNMENT: usize = 16;
pub const MAX_STRIDE_SIZE: usize = 16;
pub const SIMD_ALIGNMENT_MASK: usize = 15;
+ // Safety for stride macros: We stick to the load8_aligned/etc family of functions. We consistently name
+ // aligned/unaligned functions according to src/dst being aligned/unaligned
+
ascii_to_ascii_simd_double_stride!(ascii_to_ascii_simd_double_stride_both_aligned, store16_aligned);
ascii_to_ascii_simd_double_stride!(ascii_to_ascii_simd_double_stride_src_aligned, store16_unaligned);
ascii_to_basic_latin_simd_double_stride!(ascii_to_basic_latin_simd_double_stride_both_aligned, store8_aligned);
ascii_to_basic_latin_simd_double_stride!(ascii_to_basic_latin_simd_double_stride_src_aligned, store8_unaligned);
ascii_to_ascii_simd_stride!(ascii_to_ascii_stride_both_aligned, load16_aligned, store16_aligned);
ascii_to_ascii_simd_stride!(ascii_to_ascii_stride_src_aligned, load16_aligned, store16_unaligned);
@@ -984,33 +1233,43 @@ cfg_if! {
basic_latin_to_ascii_simd_stride!(basic_latin_to_ascii_stride_both_aligned, load8_aligned, store16_aligned);
basic_latin_to_ascii_simd_stride!(basic_latin_to_ascii_stride_src_aligned, load8_aligned, store16_unaligned);
basic_latin_to_ascii_simd_stride!(basic_latin_to_ascii_stride_dst_aligned, load8_unaligned, store16_aligned);
basic_latin_to_ascii_simd_stride!(basic_latin_to_ascii_stride_neither_aligned, load8_unaligned, store16_unaligned);
pack_simd_stride!(pack_stride_both_aligned, load8_aligned, store16_aligned);
pack_simd_stride!(pack_stride_src_aligned, load8_aligned, store16_unaligned);
+ // Safety for conversion macros: We use the correct pattern of both/src/dst/neither/double_both/double_src here. All stride functions were produced
+ // by stride macros that universally munch a single SIMD_STRIDE_SIZE worth of elements.
+
ascii_simd_check_align_unrolled!(ascii_to_ascii, u8, u8, ascii_to_ascii_stride_both_aligned, ascii_to_ascii_stride_src_aligned, ascii_to_ascii_stride_neither_aligned, ascii_to_ascii_simd_double_stride_both_aligned, ascii_to_ascii_simd_double_stride_src_aligned);
ascii_simd_check_align_unrolled!(ascii_to_basic_latin, u8, u16, ascii_to_basic_latin_stride_both_aligned, ascii_to_basic_latin_stride_src_aligned, ascii_to_basic_latin_stride_neither_aligned, ascii_to_basic_latin_simd_double_stride_both_aligned, ascii_to_basic_latin_simd_double_stride_src_aligned);
ascii_simd_check_align!(basic_latin_to_ascii, u16, u8, basic_latin_to_ascii_stride_both_aligned, basic_latin_to_ascii_stride_src_aligned, basic_latin_to_ascii_stride_dst_aligned, basic_latin_to_ascii_stride_neither_aligned);
latin1_simd_check_align_unrolled!(unpack_latin1, u8, u16, unpack_stride_both_aligned, unpack_stride_src_aligned, unpack_stride_dst_aligned, unpack_stride_neither_aligned);
latin1_simd_check_align_unrolled!(pack_latin1, u16, u8, pack_stride_both_aligned, pack_stride_src_aligned, pack_stride_dst_aligned, pack_stride_neither_aligned);
} else if #[cfg(all(target_endian = "little", target_pointer_width = "64"))] {
// Aligned ALU word, little-endian, 64-bit
+ /// Safety invariant: this is the amount of bytes consumed by
+ /// unpack_alu. This will be twice the pointer width, as it consumes two usizes.
+ /// This is also the number of bytes produced by pack_alu.
+ /// This is also the number of u16 code units produced/consumed by unpack_alu/pack_alu respectively.
pub const ALU_STRIDE_SIZE: usize = 16;
pub const MAX_STRIDE_SIZE: usize = 16;
+ // Safety invariant: this is the pointer width in bytes
pub const ALU_ALIGNMENT: usize = 8;
+ // Safety invariant: this is a mask for getting the bits of a pointer not aligned to ALU_ALIGNMENT
pub const ALU_ALIGNMENT_MASK: usize = 7;
+ /// Safety: dst must point to valid space for writing four `usize`s
#[inline(always)]
unsafe fn unpack_alu(word: usize, second_word: usize, dst: *mut usize) {
let first = ((0x0000_0000_FF00_0000usize & word) << 24) |
((0x0000_0000_00FF_0000usize & word) << 16) |
((0x0000_0000_0000_FF00usize & word) << 8) |
(0x0000_0000_0000_00FFusize & word);
let second = ((0xFF00_0000_0000_0000usize & word) >> 8) |
((0x00FF_0000_0000_0000usize & word) >> 16) |
@@ -1019,22 +1278,24 @@ cfg_if! {
let third = ((0x0000_0000_FF00_0000usize & second_word) << 24) |
((0x0000_0000_00FF_0000usize & second_word) << 16) |
((0x0000_0000_0000_FF00usize & second_word) << 8) |
(0x0000_0000_0000_00FFusize & second_word);
let fourth = ((0xFF00_0000_0000_0000usize & second_word) >> 8) |
((0x00FF_0000_0000_0000usize & second_word) >> 16) |
((0x0000_FF00_0000_0000usize & second_word) >> 24) |
((0x0000_00FF_0000_0000usize & second_word) >> 32);
+ // Safety: fn invariant used here
*dst = first;
*(dst.add(1)) = second;
*(dst.add(2)) = third;
*(dst.add(3)) = fourth;
}
+ /// Safety: dst must point to valid space for writing two `usize`s
#[inline(always)]
unsafe fn pack_alu(first: usize, second: usize, third: usize, fourth: usize, dst: *mut usize) {
let word = ((0x00FF_0000_0000_0000usize & second) << 8) |
((0x0000_00FF_0000_0000usize & second) << 16) |
((0x0000_0000_00FF_0000usize & second) << 24) |
((0x0000_0000_0000_00FFusize & second) << 32) |
((0x00FF_0000_0000_0000usize & first) >> 24) |
((0x0000_00FF_0000_0000usize & first) >> 16) |
@@ -1043,70 +1304,88 @@ cfg_if! {
let second_word = ((0x00FF_0000_0000_0000usize & fourth) << 8) |
((0x0000_00FF_0000_0000usize & fourth) << 16) |
((0x0000_0000_00FF_0000usize & fourth) << 24) |
((0x0000_0000_0000_00FFusize & fourth) << 32) |
((0x00FF_0000_0000_0000usize & third) >> 24) |
((0x0000_00FF_0000_0000usize & third) >> 16) |
((0x0000_0000_00FF_0000usize & third) >> 8) |
(0x0000_0000_0000_00FFusize & third);
+ // Safety: fn invariant used here
*dst = word;
*(dst.add(1)) = second_word;
}
} else if #[cfg(all(target_endian = "little", target_pointer_width = "32"))] {
// Aligned ALU word, little-endian, 32-bit
+ /// Safety invariant: this is the amount of bytes consumed by
+ /// unpack_alu. This will be twice the pointer width, as it consumes two usizes.
+ /// This is also the number of bytes produced by pack_alu.
+ /// This is also the number of u16 code units produced/consumed by unpack_alu/pack_alu respectively.
pub const ALU_STRIDE_SIZE: usize = 8;
pub const MAX_STRIDE_SIZE: usize = 8;
+ // Safety invariant: this is the pointer width in bytes
pub const ALU_ALIGNMENT: usize = 4;
+ // Safety invariant: this is a mask for getting the bits of a pointer not aligned to ALU_ALIGNMENT
pub const ALU_ALIGNMENT_MASK: usize = 3;
+ /// Safety: dst must point to valid space for writing four `usize`s
#[inline(always)]
unsafe fn unpack_alu(word: usize, second_word: usize, dst: *mut usize) {
let first = ((0x0000_FF00usize & word) << 8) |
(0x0000_00FFusize & word);
let second = ((0xFF00_0000usize & word) >> 8) |
((0x00FF_0000usize & word) >> 16);
let third = ((0x0000_FF00usize & second_word) << 8) |
(0x0000_00FFusize & second_word);
let fourth = ((0xFF00_0000usize & second_word) >> 8) |
((0x00FF_0000usize & second_word) >> 16);
+ // Safety: fn invariant used here
*dst = first;
*(dst.add(1)) = second;
*(dst.add(2)) = third;
*(dst.add(3)) = fourth;
}
+ /// Safety: dst must point to valid space for writing two `usize`s
#[inline(always)]
unsafe fn pack_alu(first: usize, second: usize, third: usize, fourth: usize, dst: *mut usize) {
let word = ((0x00FF_0000usize & second) << 8) |
((0x0000_00FFusize & second) << 16) |
((0x00FF_0000usize & first) >> 8) |
(0x0000_00FFusize & first);
let second_word = ((0x00FF_0000usize & fourth) << 8) |
((0x0000_00FFusize & fourth) << 16) |
((0x00FF_0000usize & third) >> 8) |
(0x0000_00FFusize & third);
+ // Safety: fn invariant used here
*dst = word;
*(dst.add(1)) = second_word;
}
} else if #[cfg(all(target_endian = "big", target_pointer_width = "64"))] {
// Aligned ALU word, big-endian, 64-bit
+ /// Safety invariant: this is the amount of bytes consumed by
+ /// unpack_alu. This will be twice the pointer width, as it consumes two usizes.
+ /// This is also the number of bytes produced by pack_alu.
+ /// This is also the number of u16 code units produced/consumed by unpack_alu/pack_alu respectively.
pub const ALU_STRIDE_SIZE: usize = 16;
pub const MAX_STRIDE_SIZE: usize = 16;
+ // Safety invariant: this is the pointer width in bytes
pub const ALU_ALIGNMENT: usize = 8;
+ // Safety invariant: this is a mask for getting the bits of a pointer not aligned to ALU_ALIGNMENT
pub const ALU_ALIGNMENT_MASK: usize = 7;
+ /// Safety: dst must point to valid space for writing four `usize`s
#[inline(always)]
unsafe fn unpack_alu(word: usize, second_word: usize, dst: *mut usize) {
let first = ((0xFF00_0000_0000_0000usize & word) >> 8) |
((0x00FF_0000_0000_0000usize & word) >> 16) |
((0x0000_FF00_0000_0000usize & word) >> 24) |
((0x0000_00FF_0000_0000usize & word) >> 32);
let second = ((0x0000_0000_FF00_0000usize & word) << 24) |
((0x0000_0000_00FF_0000usize & word) << 16) |
@@ -1115,22 +1394,24 @@ cfg_if! {
let third = ((0xFF00_0000_0000_0000usize & second_word) >> 8) |
((0x00FF_0000_0000_0000usize & second_word) >> 16) |
((0x0000_FF00_0000_0000usize & second_word) >> 24) |
((0x0000_00FF_0000_0000usize & second_word) >> 32);
let fourth = ((0x0000_0000_FF00_0000usize & second_word) << 24) |
((0x0000_0000_00FF_0000usize & second_word) << 16) |
((0x0000_0000_0000_FF00usize & second_word) << 8) |
(0x0000_0000_0000_00FFusize & second_word);
+ // Safety: fn invariant used here
*dst = first;
*(dst.add(1)) = second;
*(dst.add(2)) = third;
*(dst.add(3)) = fourth;
}
+ /// Safety: dst must point to valid space for writing two `usize`s
#[inline(always)]
unsafe fn pack_alu(first: usize, second: usize, third: usize, fourth: usize, dst: *mut usize) {
let word = ((0x00FF0000_00000000usize & first) << 8) |
((0x000000FF_00000000usize & first) << 16) |
((0x00000000_00FF0000usize & first) << 24) |
((0x00000000_000000FFusize & first) << 32) |
((0x00FF0000_00000000usize & second) >> 24) |
((0x000000FF_00000000usize & second) >> 16) |
@@ -1139,67 +1420,80 @@ cfg_if! {
let second_word = ((0x00FF0000_00000000usize & third) << 8) |
((0x000000FF_00000000usize & third) << 16) |
((0x00000000_00FF0000usize & third) << 24) |
((0x00000000_000000FFusize & third) << 32) |
((0x00FF0000_00000000usize & fourth) >> 24) |
((0x000000FF_00000000usize & fourth) >> 16) |
((0x00000000_00FF0000usize & fourth) >> 8) |
(0x00000000_000000FFusize & fourth);
+ // Safety: fn invariant used here
*dst = word;
*(dst.add(1)) = second_word;
}
} else if #[cfg(all(target_endian = "big", target_pointer_width = "32"))] {
// Aligned ALU word, big-endian, 32-bit
+ /// Safety invariant: this is the amount of bytes consumed by
+ /// unpack_alu. This will be twice the pointer width, as it consumes two usizes.
+ /// This is also the number of bytes produced by pack_alu.
+ /// This is also the number of u16 code units produced/consumed by unpack_alu/pack_alu respectively.
pub const ALU_STRIDE_SIZE: usize = 8;
pub const MAX_STRIDE_SIZE: usize = 8;
+ // Safety invariant: this is the pointer width in bytes
pub const ALU_ALIGNMENT: usize = 4;
+ // Safety invariant: this is a mask for getting the bits of a pointer not aligned to ALU_ALIGNMENT
pub const ALU_ALIGNMENT_MASK: usize = 3;
+ /// Safety: dst must point to valid space for writing four `usize`s
#[inline(always)]
unsafe fn unpack_alu(word: usize, second_word: usize, dst: *mut usize) {
let first = ((0xFF00_0000usize & word) >> 8) |
((0x00FF_0000usize & word) >> 16);
let second = ((0x0000_FF00usize & word) << 8) |
(0x0000_00FFusize & word);
let third = ((0xFF00_0000usize & second_word) >> 8) |
((0x00FF_0000usize & second_word) >> 16);
let fourth = ((0x0000_FF00usize & second_word) << 8) |
(0x0000_00FFusize & second_word);
+ // Safety: fn invariant used here
*dst = first;
*(dst.add(1)) = second;
*(dst.add(2)) = third;
*(dst.add(3)) = fourth;
}
+ /// Safety: dst must point to valid space for writing two `usize`s
#[inline(always)]
unsafe fn pack_alu(first: usize, second: usize, third: usize, fourth: usize, dst: *mut usize) {
let word = ((0x00FF_0000usize & first) << 8) |
((0x0000_00FFusize & first) << 16) |
((0x00FF_0000usize & second) >> 8) |
(0x0000_00FFusize & second);
let second_word = ((0x00FF_0000usize & third) << 8) |
((0x0000_00FFusize & third) << 16) |
((0x00FF_0000usize & fourth) >> 8) |
(0x0000_00FFusize & fourth);
+ // Safety: fn invariant used here
*dst = word;
*(dst.add(1)) = second_word;
}
} else {
ascii_naive!(ascii_to_ascii, u8, u8);
ascii_naive!(ascii_to_basic_latin, u8, u16);
ascii_naive!(basic_latin_to_ascii, u16, u8);
}
}
cfg_if! {
+ // Safety-usable invariant: this counts the zeroes from the "first byte" of utf-8 data packed into a usize
+ // with the target endianness
if #[cfg(target_endian = "little")] {
#[allow(dead_code)]
#[inline(always)]
fn count_zeros(word: usize) -> u32 {
word.trailing_zeros()
}
} else {
#[allow(dead_code)]
@@ -1207,208 +1501,272 @@ cfg_if! {
fn count_zeros(word: usize) -> u32 {
word.leading_zeros()
}
}
}
cfg_if! {
if #[cfg(all(feature = "simd-accel", target_endian = "little", target_arch = "disabled"))] {
+ /// Safety-usable invariant: Will return the value and position of the first non-ASCII byte in the slice in a Some if found.
+ /// In other words, the first element of the Some is always `> 127`
#[inline(always)]
pub fn validate_ascii(slice: &[u8]) -> Option<(u8, usize)> {
let src = slice.as_ptr();
let len = slice.len();
let mut offset = 0usize;
+ // Safety: if this check succeeds we're valid for reading/writing at least `stride` elements.
if SIMD_STRIDE_SIZE <= len {
let len_minus_stride = len - SIMD_STRIDE_SIZE;
loop {
+ // Safety: src at offset is valid for a `SIMD_STRIDE_SIZE` read
let simd = unsafe { load16_unaligned(src.add(offset)) };
if !simd_is_ascii(simd) {
break;
}
offset += SIMD_STRIDE_SIZE;
+ // This is `offset > len - SIMD_STRIDE_SIZE` which means we always have at least `SIMD_STRIDE_SIZE` elements to munch next time.
if offset > len_minus_stride {
break;
}
}
}
while offset < len {
let code_unit = slice[offset];
if code_unit > 127 {
+ // Safety: Safety-usable invariant upheld here
return Some((code_unit, offset));
}
offset += 1;
}
None
}
} else if #[cfg(all(feature = "simd-accel", target_feature = "sse2"))] {
+ /// Safety-usable invariant: will return Some() when it encounters non-ASCII, with the first element in the Some being
+ /// guaranteed to be non-ASCII (> 127), and the second being the offset where it is found
#[inline(always)]
pub fn validate_ascii(slice: &[u8]) -> Option<(u8, usize)> {
let src = slice.as_ptr();
let len = slice.len();
let mut offset = 0usize;
+ // Safety: if this check succeeds we're valid for reading at least `stride` elements.
if SIMD_STRIDE_SIZE <= len {
// First, process one unaligned vector
+ // Safety: src is valid for a `SIMD_STRIDE_SIZE` read
let simd = unsafe { load16_unaligned(src) };
let mask = mask_ascii(simd);
if mask != 0 {
offset = mask.trailing_zeros() as usize;
let non_ascii = unsafe { *src.add(offset) };
return Some((non_ascii, offset));
}
offset = SIMD_STRIDE_SIZE;
+ // Safety: Now that offset has changed we don't yet know how much it is valid for
// We have now seen 16 ASCII bytes. Let's guess that
// there will be enough more to justify more expense
// in the case of non-ASCII.
// Use aligned reads for the sake of old microachitectures.
+ // Safety: this correctly calculates the number of src_units that need to be read before the remaining list is aligned.
+ // This is by definition less than SIMD_ALIGNMENT, which is defined to be equal to SIMD_STRIDE_SIZE.
let until_alignment = unsafe { (SIMD_ALIGNMENT - ((src.add(offset) as usize) & SIMD_ALIGNMENT_MASK)) & SIMD_ALIGNMENT_MASK };
// This addition won't overflow, because even in the 32-bit PAE case the
// address space holds enough code that the slice length can't be that
// close to address space size.
// offset now equals SIMD_STRIDE_SIZE, hence times 3 below.
+ //
+ // Safety: if this check succeeds we're valid for reading at least `2 * SIMD_STRIDE_SIZE` elements plus `until_alignment`.
+ // The extra SIMD_STRIDE_SIZE in the condition is because `offset` is already `SIMD_STRIDE_SIZE`.
if until_alignment + (SIMD_STRIDE_SIZE * 3) <= len {
if until_alignment != 0 {
+ // Safety: this is safe to call since we're valid for this read (and more), and don't care about alignment
+ // This will copy over bytes that get decoded twice since it's not incrementing `offset` by SIMD_STRIDE_SIZE. This is fine.
let simd = unsafe { load16_unaligned(src.add(offset)) };
let mask = mask_ascii(simd);
if mask != 0 {
offset += mask.trailing_zeros() as usize;
let non_ascii = unsafe { *src.add(offset) };
return Some((non_ascii, offset));
}
offset += until_alignment;
}
+ // Safety: At this point we're valid for reading 2*SIMD_STRIDE_SIZE elements
+ // Safety: Now `offset` is aligned for `src`
let len_minus_stride_times_two = len - (SIMD_STRIDE_SIZE * 2);
loop {
+ // Safety: We were valid for this read, and were aligned.
let first = unsafe { load16_aligned(src.add(offset)) };
let second = unsafe { load16_aligned(src.add(offset + SIMD_STRIDE_SIZE)) };
if !simd_is_ascii(first | second) {
+ // Safety: mask_ascii produces a mask of all the high bits.
let mask_first = mask_ascii(first);
if mask_first != 0 {
+ // Safety: on little endian systems this will be the number of ascii bytes
+ // before the first non-ascii, i.e. valid for indexing src
+ // TODO SAFETY: What about big-endian systems?
offset += mask_first.trailing_zeros() as usize;
} else {
let mask_second = mask_ascii(second);
+ // Safety: on little endian systems this will be the number of ascii bytes
+ // before the first non-ascii, i.e. valid for indexing src
offset += SIMD_STRIDE_SIZE + mask_second.trailing_zeros() as usize;
}
+ // Safety: We know this is non-ASCII, and can uphold the safety-usable invariant here
let non_ascii = unsafe { *src.add(offset) };
+
return Some((non_ascii, offset));
}
offset += SIMD_STRIDE_SIZE * 2;
+ // Safety: This is `offset > len - 2 * SIMD_STRIDE_SIZE` which means we always have at least `2 * SIMD_STRIDE_SIZE` elements to munch next time.
if offset > len_minus_stride_times_two {
break;
}
}
+ // Safety: if this check succeeds we're valid for reading at least `SIMD_STRIDE_SIZE`
if offset + SIMD_STRIDE_SIZE <= len {
- let simd = unsafe { load16_aligned(src.add(offset)) };
- let mask = mask_ascii(simd);
+ // Safety: We were valid for this read, and were aligned.
+ let simd = unsafe { load16_aligned(src.add(offset)) };
+ // Safety: mask_ascii produces a mask of all the high bits.
+ let mask = mask_ascii(simd);
if mask != 0 {
+ // Safety: on little endian systems this will be the number of ascii bytes
+ // before the first non-ascii, i.e. valid for indexing src
offset += mask.trailing_zeros() as usize;
let non_ascii = unsafe { *src.add(offset) };
+ // Safety: We know this is non-ASCII, and can uphold the safety-usable invariant here
return Some((non_ascii, offset));
}
offset += SIMD_STRIDE_SIZE;
}
} else {
+ // Safety: this is the unaligned branch
// At most two iterations, so unroll
+ // Safety: if this check succeeds we're valid for reading at least `SIMD_STRIDE_SIZE`
if offset + SIMD_STRIDE_SIZE <= len {
+ // Safety: We're valid for this read but must use an unaligned read
let simd = unsafe { load16_unaligned(src.add(offset)) };
let mask = mask_ascii(simd);
if mask != 0 {
offset += mask.trailing_zeros() as usize;
let non_ascii = unsafe { *src.add(offset) };
+ // Safety-usable invariant upheld here (same as above)
return Some((non_ascii, offset));
}
offset += SIMD_STRIDE_SIZE;
+ // Safety: if this check succeeds we're valid for reading at least `SIMD_STRIDE_SIZE`
if offset + SIMD_STRIDE_SIZE <= len {
+ // Safety: We're valid for this read but must use an unaligned read
let simd = unsafe { load16_unaligned(src.add(offset)) };
let mask = mask_ascii(simd);
if mask != 0 {
offset += mask.trailing_zeros() as usize;
let non_ascii = unsafe { *src.add(offset) };
+ // Safety-usable invariant upheld here (same as above)
return Some((non_ascii, offset));
}
offset += SIMD_STRIDE_SIZE;
}
}
}
}
while offset < len {
+ // Safety: relies straightforwardly on the `len` invariant
let code_unit = unsafe { *(src.add(offset)) };
if code_unit > 127 {
+ // Safety-usable invariant upheld here
return Some((code_unit, offset));
}
offset += 1;
}
None
}
} else {
+ // Safety-usable invariant: returns byte index of first non-ascii byte
#[inline(always)]
fn find_non_ascii(word: usize, second_word: usize) -> Option<usize> {
let word_masked = word & ASCII_MASK;
let second_masked = second_word & ASCII_MASK;
if (word_masked | second_masked) == 0 {
+ // Both are ascii, invariant upheld
return None;
}
if word_masked != 0 {
let zeros = count_zeros(word_masked);
- // `zeros` now contains 7 (for the seven bits of non-ASCII)
+ // `zeros` now contains 0 to 7 (for the seven bits of masked ASCII in little endian,
+ // or up to 7 bits of non-ASCII in big endian if the first byte is non-ASCII)
// plus 8 times the number of ASCII in text order before the
// non-ASCII byte in the little-endian case or 8 times the number of ASCII in
// text order before the non-ASCII byte in the big-endian case.
let num_ascii = (zeros >> 3) as usize;
+ // Safety-usable invariant upheld here
return Some(num_ascii);
}
let zeros = count_zeros(second_masked);
- // `zeros` now contains 7 (for the seven bits of non-ASCII)
+ // `zeros` now contains 0 to 7 (for the seven bits of masked ASCII in little endian,
+ // or up to 7 bits of non-ASCII in big endian if the first byte is non-ASCII)
// plus 8 times the number of ASCII in text order before the
// non-ASCII byte in the little-endian case or 8 times the number of ASCII in
// text order before the non-ASCII byte in the big-endian case.
let num_ascii = (zeros >> 3) as usize;
+ // Safety-usable invariant upheld here
Some(ALU_ALIGNMENT + num_ascii)
}
+ /// Safety: `src` must be valid for the reads of two `usize`s
+ ///
+ /// Safety-usable invariant: will return byte index of first non-ascii byte
#[inline(always)]
unsafe fn validate_ascii_stride(src: *const usize) -> Option<usize> {
let word = *src;
let second_word = *(src.add(1));
find_non_ascii(word, second_word)
}
+ /// Safety-usable invariant: will return Some() when it encounters non-ASCII, with the first element in the Some being
+ /// guaranteed to be non-ASCII (> 127), and the second being the offset where it is found
#[cfg_attr(feature = "cargo-clippy", allow(cast_ptr_alignment))]
#[inline(always)]
pub fn validate_ascii(slice: &[u8]) -> Option<(u8, usize)> {
let src = slice.as_ptr();
let len = slice.len();
let mut offset = 0usize;
let mut until_alignment = (ALU_ALIGNMENT - ((src as usize) & ALU_ALIGNMENT_MASK)) & ALU_ALIGNMENT_MASK;
+ // Safety: If this check fails we're valid to read `until_alignment + ALU_STRIDE_SIZE` elements
if until_alignment + ALU_STRIDE_SIZE <= len {
while until_alignment != 0 {
let code_unit = slice[offset];
if code_unit > 127 {
+ // Safety-usable invairant upheld here
return Some((code_unit, offset));
}
offset += 1;
until_alignment -= 1;
}
+ // Safety: At this point we have read until_alignment elements and
+ // are valid for `ALU_STRIDE_SIZE` more.
let len_minus_stride = len - ALU_STRIDE_SIZE;
loop {
+ // Safety: we were valid for this read
let ptr = unsafe { src.add(offset) as *const usize };
if let Some(num_ascii) = unsafe { validate_ascii_stride(ptr) } {
offset += num_ascii;
+ // Safety-usable invairant upheld here using the invariant from validate_ascii_stride()
return Some((unsafe { *(src.add(offset)) }, offset));
}
offset += ALU_STRIDE_SIZE;
+ // Safety: This is `offset > ALU_STRIDE_SIZE` which means we always have at least `2 * ALU_STRIDE_SIZE` elements to munch next time.
if offset > len_minus_stride {
break;
}
}
}
while offset < len {
let code_unit = slice[offset];
if code_unit > 127 {
+ // Safety-usable invairant upheld here
return Some((code_unit, offset));
}
offset += 1;
}
None
}
}
@@ -1423,70 +1781,88 @@ cfg_if! {
// vector reads without vector writes.
pub const ALU_STRIDE_SIZE: usize = 8;
pub const ALU_ALIGNMENT: usize = 4;
pub const ALU_ALIGNMENT_MASK: usize = 3;
} else {
+ // Safety: src points to two valid `usize`s, dst points to four valid `usize`s
#[inline(always)]
unsafe fn unpack_latin1_stride_alu(src: *const usize, dst: *mut usize) {
+ // Safety: src safety invariant used here
let word = *src;
let second_word = *(src.add(1));
+ // Safety: dst safety invariant passed down
unpack_alu(word, second_word, dst);
}
+ // Safety: src points to four valid `usize`s, dst points to two valid `usize`s
#[inline(always)]
unsafe fn pack_latin1_stride_alu(src: *const usize, dst: *mut usize) {
+ // Safety: src safety invariant used here
let first = *src;
let second = *(src.add(1));
let third = *(src.add(2));
let fourth = *(src.add(3));
+ // Safety: dst safety invariant passed down
pack_alu(first, second, third, fourth, dst);
}
+ // Safety: src points to two valid `usize`s, dst points to four valid `usize`s
#[inline(always)]
unsafe fn ascii_to_basic_latin_stride_alu(src: *const usize, dst: *mut usize) -> bool {
+ // Safety: src safety invariant used here
let word = *src;
let second_word = *(src.add(1));
// Check if the words contains non-ASCII
if (word & ASCII_MASK) | (second_word & ASCII_MASK) != 0 {
return false;
}
+ // Safety: dst safety invariant passed down
unpack_alu(word, second_word, dst);
true
}
+ // Safety: src points four valid `usize`s, dst points to two valid `usize`s
#[inline(always)]
unsafe fn basic_latin_to_ascii_stride_alu(src: *const usize, dst: *mut usize) -> bool {
+ // Safety: src safety invariant used here
let first = *src;
let second = *(src.add(1));
let third = *(src.add(2));
let fourth = *(src.add(3));
if (first & BASIC_LATIN_MASK) | (second & BASIC_LATIN_MASK) | (third & BASIC_LATIN_MASK) | (fourth & BASIC_LATIN_MASK) != 0 {
return false;
}
+ // Safety: dst safety invariant passed down
pack_alu(first, second, third, fourth, dst);
true
}
+ // Safety: src, dst both point to two valid `usize`s each
+ // Safety-usable invariant: Will return byte index of first non-ascii byte.
#[inline(always)]
unsafe fn ascii_to_ascii_stride(src: *const usize, dst: *mut usize) -> Option<usize> {
+ // Safety: src safety invariant used here
let word = *src;
let second_word = *(src.add(1));
+ // Safety: src safety invariant used here
*dst = word;
*(dst.add(1)) = second_word;
+ // Relies on safety-usable invariant here
find_non_ascii(word, second_word)
}
basic_latin_alu!(ascii_to_basic_latin, u8, u16, ascii_to_basic_latin_stride_alu);
basic_latin_alu!(basic_latin_to_ascii, u16, u8, basic_latin_to_ascii_stride_alu);
latin1_alu!(unpack_latin1, u8, u16, unpack_latin1_stride_alu);
latin1_alu!(pack_latin1, u16, u8, pack_latin1_stride_alu);
+ // Safety invariant upheld: ascii_to_ascii_stride will return byte index of first non-ascii if found
ascii_alu!(ascii_to_ascii, u8, u8, ascii_to_ascii_stride);
}
}
pub fn ascii_valid_up_to(bytes: &[u8]) -> usize {
match validate_ascii(bytes) {
None => bytes.len(),
Some((_, num_valid)) => num_valid,
diff --git a/third_party/rust/encoding_rs/src/handles.rs b/third_party/rust/encoding_rs/src/handles.rs
--- a/third_party/rust/encoding_rs/src/handles.rs
+++ b/third_party/rust/encoding_rs/src/handles.rs
@@ -29,17 +29,17 @@ use crate::simd_funcs::*;
#[cfg(all(
feature = "simd-accel",
any(
target_feature = "sse2",
all(target_endian = "little", target_arch = "aarch64"),
all(target_endian = "little", target_feature = "neon")
)
))]
-use packed_simd::u16x8;
+use core::simd::u16x8;
use super::DecoderResult;
use super::EncoderResult;
use crate::ascii::*;
use crate::utf_8::convert_utf8_to_utf16_up_to_invalid;
use crate::utf_8::utf8_valid_up_to;
pub enum Space<T> {
@@ -85,84 +85,100 @@ impl Endian for LittleEndian {
const OPPOSITE_ENDIAN: bool = false;
#[cfg(target_endian = "big")]
const OPPOSITE_ENDIAN: bool = true;
}
#[derive(Debug, Copy, Clone)]
struct UnalignedU16Slice {
+ // Safety invariant: ptr must be valid for reading 2*len bytes
ptr: *const u8,
len: usize,
}
impl UnalignedU16Slice {
+ /// Safety: ptr must be valid for reading 2*len bytes
#[inline(always)]
pub unsafe fn new(ptr: *const u8, len: usize) -> UnalignedU16Slice {
+ // Safety: field invariant passed up to caller here
UnalignedU16Slice { ptr, len }
}
#[inline(always)]
pub fn trim_last(&mut self) {
assert!(self.len > 0);
+ // Safety: invariant upheld here: a slice is still valid with a shorter len
self.len -= 1;
}
#[inline(always)]
pub fn at(&self, i: usize) -> u16 {
use core::mem::MaybeUninit;
assert!(i < self.len);
unsafe {
let mut u: MaybeUninit<u16> = MaybeUninit::uninit();
+ // Safety: i is at most len - 1, which works here
::core::ptr::copy_nonoverlapping(self.ptr.add(i * 2), u.as_mut_ptr() as *mut u8, 2);
+ // Safety: valid read above lets us do this
u.assume_init()
}
}
#[cfg(feature = "simd-accel")]
#[inline(always)]
pub fn simd_at(&self, i: usize) -> u16x8 {
+ // Safety: i/len are on the scale of u16s, each one corresponds to 2 u8s
assert!(i + SIMD_STRIDE_SIZE / 2 <= self.len);
let byte_index = i * 2;
+ // Safety: load16_unaligned needs SIMD_STRIDE_SIZE=16 u8 elements to read,
+ // or 16/2 = 8 u16 elements to read.
+ // We have checked that we have at least that many above.
+
unsafe { to_u16_lanes(load16_unaligned(self.ptr.add(byte_index))) }
}
#[inline(always)]
pub fn len(&self) -> usize {
self.len
}
#[inline(always)]
pub fn tail(&self, from: usize) -> UnalignedU16Slice {
// XXX the return value should be restricted not to
// outlive self.
assert!(from <= self.len);
+ // Safety: This upholds the same invariant: `from` is in bounds and we're returning a shorter slice
unsafe { UnalignedU16Slice::new(self.ptr.add(from * 2), self.len - from) }
}
#[cfg(feature = "simd-accel")]
#[inline(always)]
pub fn copy_bmp_to<E: Endian>(&self, other: &mut [u16]) -> Option<(u16, usize)> {
assert!(self.len <= other.len());
let mut offset = 0;
+ // Safety: SIMD_STRIDE_SIZE is measured in bytes, whereas len is in u16s. We check we can
+ // munch SIMD_STRIDE_SIZE / 2 u16s which means we can write SIMD_STRIDE_SIZE u8s
if SIMD_STRIDE_SIZE / 2 <= self.len {
let len_minus_stride = self.len - SIMD_STRIDE_SIZE / 2;
loop {
let mut simd = self.simd_at(offset);
if E::OPPOSITE_ENDIAN {
simd = simd_byte_swap(simd);
}
+ // Safety: we have enough space on the other side to write this
unsafe {
store8_unaligned(other.as_mut_ptr().add(offset), simd);
}
if contains_surrogates(simd) {
break;
}
offset += SIMD_STRIDE_SIZE / 2;
+ // Safety: This ensures we still have space for writing SIMD_STRIDE_SIZE u8s
if offset > len_minus_stride {
break;
}
}
}
while offset < self.len {
let unit = swap_if_opposite_endian::<E>(self.at(offset));
other[offset] = unit;
@@ -231,33 +247,37 @@ fn copy_unaligned_basic_latin_to_ascii<E
#[cfg(feature = "simd-accel")]
#[inline(always)]
fn copy_unaligned_basic_latin_to_ascii<E: Endian>(
src: UnalignedU16Slice,
dst: &mut [u8],
) -> CopyAsciiResult<usize, (u16, usize)> {
let len = ::core::cmp::min(src.len(), dst.len());
let mut offset = 0;
+ // Safety: This check ensures we are able to read/write at least SIMD_STRIDE_SIZE elements
if SIMD_STRIDE_SIZE <= len {
let len_minus_stride = len - SIMD_STRIDE_SIZE;
loop {
let mut first = src.simd_at(offset);
let mut second = src.simd_at(offset + (SIMD_STRIDE_SIZE / 2));
if E::OPPOSITE_ENDIAN {
first = simd_byte_swap(first);
second = simd_byte_swap(second);
}
if !simd_is_basic_latin(first | second) {
break;
}
let packed = simd_pack(first, second);
+ // Safety: We are able to write SIMD_STRIDE_SIZE elements in this iteration
unsafe {
store16_unaligned(dst.as_mut_ptr().add(offset), packed);
}
offset += SIMD_STRIDE_SIZE;
+ // Safety: This is `offset > len - SIMD_STRIDE_SIZE`, which ensures that we can write at least SIMD_STRIDE_SIZE elements
+ // in the next iteration
if offset > len_minus_stride {
break;
}
}
}
copy_unaligned_basic_latin_to_ascii_alu::<E>(src.tail(offset), &mut dst[offset..], offset)
}
@@ -632,94 +652,106 @@ impl<'a> Utf16Destination<'a> {
#[inline(always)]
fn write_astral(&mut self, astral: u32) {
debug_assert!(astral > 0xFFFF);
debug_assert!(astral <= 0x10_FFFF);
self.write_code_unit((0xD7C0 + (astral >> 10)) as u16);
self.write_code_unit((0xDC00 + (astral & 0x3FF)) as u16);
}
#[inline(always)]
- pub fn write_surrogate_pair(&mut self, high: u16, low: u16) {
+ fn write_surrogate_pair(&mut self, high: u16, low: u16) {
self.write_code_unit(high);
self.write_code_unit(low);
}
#[inline(always)]
fn write_big5_combination(&mut self, combined: u16, combining: u16) {
self.write_bmp_excl_ascii(combined);
self.write_bmp_excl_ascii(combining);
}
+ // Safety-usable invariant: CopyAsciiResult::GoOn will only contain bytes >=0x80
#[inline(always)]
pub fn copy_ascii_from_check_space_bmp<'b>(
&'b mut self,
source: &mut ByteSource,
) -> CopyAsciiResult<(DecoderResult, usize, usize), (u8, Utf16BmpHandle<'b, 'a>)> {
let non_ascii_ret = {
let src_remaining = &source.slice[source.pos..];
let dst_remaining = &mut self.slice[self.pos..];
let (pending, length) = if dst_remaining.len() < src_remaining.len() {
(DecoderResult::OutputFull, dst_remaining.len())
} else {
(DecoderResult::InputEmpty, src_remaining.len())
};
+ // Safety: This function is documented as needing valid pointers for src/dest and len, which
+ // is true since we've passed the minumum length of the two
match unsafe {
ascii_to_basic_latin(src_remaining.as_ptr(), dst_remaining.as_mut_ptr(), length)
} {
None => {
source.pos += length;
self.pos += length;
return CopyAsciiResult::Stop((pending, source.pos, self.pos));
}
+ // Safety: the function is documented as returning bytes >=0x80 in the Some
Some((non_ascii, consumed)) => {
source.pos += consumed;
self.pos += consumed;
source.pos += 1; // +1 for non_ascii
+ // Safety: non-ascii bubbled out here
non_ascii
}
}
};
+ // Safety: non-ascii returned here
CopyAsciiResult::GoOn((non_ascii_ret, Utf16BmpHandle::new(self)))
}
+ // Safety-usable invariant: CopyAsciiResult::GoOn will only contain bytes >=0x80
#[inline(always)]
pub fn copy_ascii_from_check_space_astral<'b>(
&'b mut self,
source: &mut ByteSource,
) -> CopyAsciiResult<(DecoderResult, usize, usize), (u8, Utf16AstralHandle<'b, 'a>)> {
let non_ascii_ret = {
let dst_len = self.slice.len();
let src_remaining = &source.slice[source.pos..];
let dst_remaining = &mut self.slice[self.pos..];
let (pending, length) = if dst_remaining.len() < src_remaining.len() {
(DecoderResult::OutputFull, dst_remaining.len())
} else {
(DecoderResult::InputEmpty, src_remaining.len())
};
+ // Safety: This function is documented as needing valid pointers for src/dest and len, which
+ // is true since we've passed the minumum length of the two
match unsafe {
ascii_to_basic_latin(src_remaining.as_ptr(), dst_remaining.as_mut_ptr(), length)
} {
None => {
source.pos += length;
self.pos += length;
return CopyAsciiResult::Stop((pending, source.pos, self.pos));
}
+ // Safety: the function is documented as returning bytes >=0x80 in the Some
Some((non_ascii, consumed)) => {
source.pos += consumed;
self.pos += consumed;
if self.pos + 1 < dst_len {
source.pos += 1; // +1 for non_ascii
+ // Safety: non-ascii bubbled out here
non_ascii
} else {
return CopyAsciiResult::Stop((
DecoderResult::OutputFull,
source.pos,
self.pos,
));
}
}
}
};
+ // Safety: non-ascii returned here
CopyAsciiResult::GoOn((non_ascii_ret, Utf16AstralHandle::new(self)))
}
#[inline(always)]
pub fn copy_utf8_up_to_invalid_from(&mut self, source: &mut ByteSource) {
let src_remaining = &source.slice[source.pos..];
let dst_remaining = &mut self.slice[self.pos..];
let (read, written) = convert_utf8_to_utf16_up_to_invalid(src_remaining, dst_remaining);
source.pos += read;
diff --git a/third_party/rust/encoding_rs/src/lib.rs b/third_party/rust/encoding_rs/src/lib.rs
--- a/third_party/rust/encoding_rs/src/lib.rs
+++ b/third_party/rust/encoding_rs/src/lib.rs
@@ -684,37 +684,26 @@
//! <tr><td>TIS-620</td><td>windows-874</td></tr>
//! </tbody>
//! </table>
//!
//! See the section [_UTF-16LE, UTF-16BE and Unicode Encoding Schemes_](#utf-16le-utf-16be-and-unicode-encoding-schemes)
//! for discussion about the UTF-16 family.
#![no_std]
-#![cfg_attr(feature = "simd-accel", feature(core_intrinsics))]
+#![cfg_attr(feature = "simd-accel", feature(core_intrinsics, portable_simd))]
#[cfg(feature = "alloc")]
#[cfg_attr(test, macro_use)]
extern crate alloc;
extern crate core;
#[macro_use]
extern crate cfg_if;
-#[cfg(all(
- feature = "simd-accel",
- any(
- target_feature = "sse2",
- all(target_endian = "little", target_arch = "aarch64"),
- all(target_endian = "little", target_feature = "neon")
- )
-))]
-#[macro_use(shuffle)]
-extern crate packed_simd;
-
#[cfg(feature = "serde")]
extern crate serde;
#[cfg(all(test, feature = "serde"))]
extern crate bincode;
#[cfg(all(test, feature = "serde"))]
#[macro_use]
extern crate serde_derive;
diff --git a/third_party/rust/encoding_rs/src/mem.rs b/third_party/rust/encoding_rs/src/mem.rs
--- a/third_party/rust/encoding_rs/src/mem.rs
+++ b/third_party/rust/encoding_rs/src/mem.rs
@@ -111,16 +111,21 @@ macro_rules! by_unit_check_alu {
until_alignment -= 1;
}
if accu >= $bound {
return false;
}
}
let len_minus_stride = len - ALU_ALIGNMENT / unit_size;
if offset + (4 * (ALU_ALIGNMENT / unit_size)) <= len {
+ // Safety: the above check lets us perform 4 consecutive reads of
+ // length ALU_ALIGNMENT / unit_size. ALU_ALIGNMENT is the size of usize, and unit_size
+ // is the size of the `src` pointer, so this is equal to performing four usize reads.
+ //
+ // This invariant is upheld on all loop iterations
let len_minus_unroll = len - (4 * (ALU_ALIGNMENT / unit_size));
loop {
let unroll_accu = unsafe { *(src.add(offset) as *const usize) }
| unsafe {
*(src.add(offset + (ALU_ALIGNMENT / unit_size)) as *const usize)
}
| unsafe {
*(src.add(offset + (2 * (ALU_ALIGNMENT / unit_size)))
@@ -129,22 +134,24 @@ macro_rules! by_unit_check_alu {
| unsafe {
*(src.add(offset + (3 * (ALU_ALIGNMENT / unit_size)))
as *const usize)
};
if unroll_accu & $mask != 0 {
return false;
}
offset += 4 * (ALU_ALIGNMENT / unit_size);
+ // Safety: this check lets us continue to perform the 4 reads earlier
if offset > len_minus_unroll {
break;
}
}
}
while offset <= len_minus_stride {
+ // Safety: the above check lets us perform one usize read.
accu |= unsafe { *(src.add(offset) as *const usize) };
offset += ALU_ALIGNMENT / unit_size;
}
}
}
for &unit in &buffer[offset..] {
accu |= unit as usize;
}
@@ -184,16 +191,21 @@ macro_rules! by_unit_check_simd {
until_alignment -= 1;
}
if accu >= $bound {
return false;
}
}
let len_minus_stride = len - SIMD_STRIDE_SIZE / unit_size;
if offset + (4 * (SIMD_STRIDE_SIZE / unit_size)) <= len {
+ // Safety: the above check lets us perform 4 consecutive reads of
+ // length SIMD_STRIDE_SIZE / unit_size. SIMD_STRIDE_SIZE is the size of $simd_ty, and unit_size
+ // is the size of the `src` pointer, so this is equal to performing four $simd_ty reads.
+ //
+ // This invariant is upheld on all loop iterations
let len_minus_unroll = len - (4 * (SIMD_STRIDE_SIZE / unit_size));
loop {
let unroll_accu = unsafe { *(src.add(offset) as *const $simd_ty) }
| unsafe {
*(src.add(offset + (SIMD_STRIDE_SIZE / unit_size))
as *const $simd_ty)
}
| unsafe {
@@ -203,23 +215,25 @@ macro_rules! by_unit_check_simd {
| unsafe {
*(src.add(offset + (3 * (SIMD_STRIDE_SIZE / unit_size)))
as *const $simd_ty)
};
if !$func(unroll_accu) {
return false;
}
offset += 4 * (SIMD_STRIDE_SIZE / unit_size);
+ // Safety: this check lets us continue to perform the 4 reads earlier
if offset > len_minus_unroll {
break;
}
}
}
let mut simd_accu = $splat;
while offset <= len_minus_stride {
+ // Safety: the above check lets us perform one $simd_ty read.
simd_accu = simd_accu | unsafe { *(src.add(offset) as *const $simd_ty) };
offset += SIMD_STRIDE_SIZE / unit_size;
}
if !$func(simd_accu) {
return false;
}
}
}
@@ -229,18 +243,18 @@ macro_rules! by_unit_check_simd {
accu < $bound
}
};
}
cfg_if! {
if #[cfg(all(feature = "simd-accel", any(target_feature = "sse2", all(target_endian = "little", target_arch = "aarch64"), all(target_endian = "little", target_feature = "neon"))))] {
use crate::simd_funcs::*;
- use packed_simd::u8x16;
- use packed_simd::u16x8;
+ use core::simd::u8x16;
+ use core::simd::u16x8;
const SIMD_ALIGNMENT: usize = 16;
const SIMD_ALIGNMENT_MASK: usize = 15;
by_unit_check_simd!(is_ascii_impl, u8, u8x16::splat(0), u8x16, 0x80, simd_is_ascii);
by_unit_check_simd!(is_basic_latin_impl, u16, u16x8::splat(0), u16x8, 0x80, simd_is_basic_latin);
by_unit_check_simd!(is_utf16_latin1_impl, u16, u16x8::splat(0), u16x8, 0x100, simd_is_latin1);
diff --git a/third_party/rust/encoding_rs/src/simd_funcs.rs b/third_party/rust/encoding_rs/src/simd_funcs.rs
--- a/third_party/rust/encoding_rs/src/simd_funcs.rs
+++ b/third_party/rust/encoding_rs/src/simd_funcs.rs
@@ -2,65 +2,84 @@
// file at the top-level directory of this distribution.
//
// Licensed under the Apache License, Version 2.0 <LICENSE-APACHE or
// https://www.apache.org/licenses/LICENSE-2.0> or the MIT license
// <LICENSE-MIT or https://opensource.org/licenses/MIT>, at your
// option. This file may not be copied, modified, or distributed
// except according to those terms.
-use packed_simd::u16x8;
-use packed_simd::u8x16;
-use packed_simd::IntoBits;
+use any_all_workaround::all_mask16x8;
+use any_all_workaround::all_mask8x16;
+use any_all_workaround::any_mask16x8;
+use any_all_workaround::any_mask8x16;
+use core::simd::cmp::SimdPartialEq;
+use core::simd::cmp::SimdPartialOrd;
+use core::simd::mask16x8;
+use core::simd::mask8x16;
+use core::simd::simd_swizzle;
+use core::simd::u16x8;
+use core::simd::u8x16;
+use core::simd::ToBytes;
// TODO: Migrate unaligned access to stdlib code if/when the RFC
// https://github.com/rust-lang/rfcs/pull/1725 is implemented.
+/// Safety invariant: ptr must be valid for an unaligned read of 16 bytes
#[inline(always)]
pub unsafe fn load16_unaligned(ptr: *const u8) -> u8x16 {
- let mut simd = ::core::mem::uninitialized();
- ::core::ptr::copy_nonoverlapping(ptr, &mut simd as *mut u8x16 as *mut u8, 16);
- simd
+ let mut simd = ::core::mem::MaybeUninit::<u8x16>::uninit();
+ ::core::ptr::copy_nonoverlapping(ptr, simd.as_mut_ptr() as *mut u8, 16);
+ // Safety: copied 16 bytes of initialized memory into this, it is now initialized
+ simd.assume_init()
}
+/// Safety invariant: ptr must be valid for an aligned-for-u8x16 read of 16 bytes
#[allow(dead_code)]
#[inline(always)]
pub unsafe fn load16_aligned(ptr: *const u8) -> u8x16 {
*(ptr as *const u8x16)
}
+/// Safety invariant: ptr must be valid for an unaligned store of 16 bytes
#[inline(always)]
pub unsafe fn store16_unaligned(ptr: *mut u8, s: u8x16) {
::core::ptr::copy_nonoverlapping(&s as *const u8x16 as *const u8, ptr, 16);
}
+/// Safety invariant: ptr must be valid for an aligned-for-u8x16 store of 16 bytes
#[allow(dead_code)]
#[inline(always)]
pub unsafe fn store16_aligned(ptr: *mut u8, s: u8x16) {
*(ptr as *mut u8x16) = s;
}
+/// Safety invariant: ptr must be valid for an unaligned read of 16 bytes
#[inline(always)]
pub unsafe fn load8_unaligned(ptr: *const u16) -> u16x8 {
- let mut simd = ::core::mem::uninitialized();
- ::core::ptr::copy_nonoverlapping(ptr as *const u8, &mut simd as *mut u16x8 as *mut u8, 16);
- simd
+ let mut simd = ::core::mem::MaybeUninit::<u16x8>::uninit();
+ ::core::ptr::copy_nonoverlapping(ptr as *const u8, simd.as_mut_ptr() as *mut u8, 16);
+ // Safety: copied 16 bytes of initialized memory into this, it is now initialized
+ simd.assume_init()
}
+/// Safety invariant: ptr must be valid for an aligned-for-u16x8 read of 16 bytes
#[allow(dead_code)]
#[inline(always)]
pub unsafe fn load8_aligned(ptr: *const u16) -> u16x8 {
*(ptr as *const u16x8)
}
+/// Safety invariant: ptr must be valid for an unaligned store of 16 bytes
#[inline(always)]
pub unsafe fn store8_unaligned(ptr: *mut u16, s: u16x8) {
::core::ptr::copy_nonoverlapping(&s as *const u16x8 as *const u8, ptr as *mut u8, 16);
}
+/// Safety invariant: ptr must be valid for an aligned-for-u16x8 store of 16 bytes
#[allow(dead_code)]
#[inline(always)]
pub unsafe fn store8_aligned(ptr: *mut u16, s: u16x8) {
*(ptr as *mut u16x8) = s;
}
cfg_if! {
if #[cfg(all(target_feature = "sse2", target_arch = "x86_64"))] {
@@ -95,234 +114,241 @@ cfg_if! {
pub fn simd_byte_swap(s: u16x8) -> u16x8 {
let left = s << 8;
let right = s >> 8;
left | right
}
#[inline(always)]
pub fn to_u16_lanes(s: u8x16) -> u16x8 {
- s.into_bits()
+ u16x8::from_ne_bytes(s)
}
cfg_if! {
if #[cfg(target_feature = "sse2")] {
// Expose low-level mask instead of higher-level conclusion,
// because the non-ASCII case would perform less well otherwise.
+ // Safety-usable invariant: This returned value is whether each high bit is set
#[inline(always)]
pub fn mask_ascii(s: u8x16) -> i32 {
unsafe {
- _mm_movemask_epi8(s.into_bits())
+ _mm_movemask_epi8(s.into())
}
}
} else {
}
}
cfg_if! {
if #[cfg(target_feature = "sse2")] {
#[inline(always)]
pub fn simd_is_ascii(s: u8x16) -> bool {
unsafe {
- _mm_movemask_epi8(s.into_bits()) == 0
+ // Safety: We have cfg()d the correct platform
+ _mm_movemask_epi8(s.into()) == 0
}
}
} else if #[cfg(target_arch = "aarch64")]{
#[inline(always)]
pub fn simd_is_ascii(s: u8x16) -> bool {
unsafe {
- vmaxvq_u8(s.into_bits()) < 0x80
+ // Safety: We have cfg()d the correct platform
+ vmaxvq_u8(s.into()) < 0x80
}
}
} else {
#[inline(always)]
pub fn simd_is_ascii(s: u8x16) -> bool {
// This optimizes better on ARM than
// the lt formulation.
let highest_ascii = u8x16::splat(0x7F);
- !s.gt(highest_ascii).any()
+ !any_mask8x16(s.simd_gt(highest_ascii))
}
}
}
cfg_if! {
if #[cfg(target_feature = "sse2")] {
#[inline(always)]
pub fn simd_is_str_latin1(s: u8x16) -> bool {
if simd_is_ascii(s) {
return true;
}
let above_str_latin1 = u8x16::splat(0xC4);
- s.lt(above_str_latin1).all()
+ s.simd_lt(above_str_latin1).all()
}
} else if #[cfg(target_arch = "aarch64")]{
#[inline(always)]
pub fn simd_is_str_latin1(s: u8x16) -> bool {
unsafe {
- vmaxvq_u8(s.into_bits()) < 0xC4
+ // Safety: We have cfg()d the correct platform
+ vmaxvq_u8(s.into()) < 0xC4
}
}
} else {
#[inline(always)]
pub fn simd_is_str_latin1(s: u8x16) -> bool {
let above_str_latin1 = u8x16::splat(0xC4);
- s.lt(above_str_latin1).all()
+ all_mask8x16(s.simd_lt(above_str_latin1))
}
}
}
cfg_if! {
if #[cfg(target_arch = "aarch64")]{
#[inline(always)]
pub fn simd_is_basic_latin(s: u16x8) -> bool {
unsafe {
- vmaxvq_u16(s.into_bits()) < 0x80
+ // Safety: We have cfg()d the correct platform
+ vmaxvq_u16(s.into()) < 0x80
}
}
#[inline(always)]
pub fn simd_is_latin1(s: u16x8) -> bool {
unsafe {
- vmaxvq_u16(s.into_bits()) < 0x100
+ // Safety: We have cfg()d the correct platform
+ vmaxvq_u16(s.into()) < 0x100
}
}
} else {
#[inline(always)]
pub fn simd_is_basic_latin(s: u16x8) -> bool {
let above_ascii = u16x8::splat(0x80);
- s.lt(above_ascii).all()
+ all_mask16x8(s.simd_lt(above_ascii))
}
#[inline(always)]
pub fn simd_is_latin1(s: u16x8) -> bool {
// For some reason, on SSE2 this formulation
// seems faster in this case while the above
// function is better the other way round...
let highest_latin1 = u16x8::splat(0xFF);
- !s.gt(highest_latin1).any()
+ !any_mask16x8(s.simd_gt(highest_latin1))
}
}
}
#[inline(always)]
pub fn contains_surrogates(s: u16x8) -> bool {
let mask = u16x8::splat(0xF800);
let surrogate_bits = u16x8::splat(0xD800);
- (s & mask).eq(surrogate_bits).any()
+ any_mask16x8((s & mask).simd_eq(surrogate_bits))
}
cfg_if! {
if #[cfg(target_arch = "aarch64")]{
macro_rules! aarch64_return_false_if_below_hebrew {
($s:ident) => ({
unsafe {
- if vmaxvq_u16($s.into_bits()) < 0x0590 {
+ // Safety: We have cfg()d the correct platform
+ if vmaxvq_u16($s.into()) < 0x0590 {
return false;
}
}
})
}
macro_rules! non_aarch64_return_false_if_all {
($s:ident) => ()
}
} else {
macro_rules! aarch64_return_false_if_below_hebrew {
($s:ident) => ()
}
macro_rules! non_aarch64_return_false_if_all {
($s:ident) => ({
- if $s.all() {
+ if all_mask16x8($s) {
return false;
}
})
}
}
}
macro_rules! in_range16x8 {
($s:ident, $start:expr, $end:expr) => {{
// SIMD sub is wrapping
- ($s - u16x8::splat($start)).lt(u16x8::splat($end - $start))
+ ($s - u16x8::splat($start)).simd_lt(u16x8::splat($end - $start))
}};
}
#[inline(always)]
pub fn is_u16x8_bidi(s: u16x8) -> bool {
// We try to first quickly refute the RTLness of the vector. If that
// fails, we do the real RTL check, so in that case we end up wasting
// the work for the up-front quick checks. Even the quick-check is
// two-fold in order to return `false` ASAP if everything is below
// Hebrew.
aarch64_return_false_if_below_hebrew!(s);
- let below_hebrew = s.lt(u16x8::splat(0x0590));
+ let below_hebrew = s.simd_lt(u16x8::splat(0x0590));
non_aarch64_return_false_if_all!(below_hebrew);
- if (below_hebrew | in_range16x8!(s, 0x0900, 0x200F) | in_range16x8!(s, 0x2068, 0xD802)).all() {
+ if all_mask16x8(
+ below_hebrew | in_range16x8!(s, 0x0900, 0x200F) | in_range16x8!(s, 0x2068, 0xD802),
+ ) {
return false;
}
// Quick refutation failed. Let's do the full check.
- (in_range16x8!(s, 0x0590, 0x0900)
- | in_range16x8!(s, 0xFB1D, 0xFE00)
- | in_range16x8!(s, 0xFE70, 0xFEFF)
- | in_range16x8!(s, 0xD802, 0xD804)
- | in_range16x8!(s, 0xD83A, 0xD83C)
- | s.eq(u16x8::splat(0x200F))
- | s.eq(u16x8::splat(0x202B))
- | s.eq(u16x8::splat(0x202E))
- | s.eq(u16x8::splat(0x2067)))
- .any()
+ any_mask16x8(
+ (in_range16x8!(s, 0x0590, 0x0900)
+ | in_range16x8!(s, 0xFB1D, 0xFE00)
+ | in_range16x8!(s, 0xFE70, 0xFEFF)
+ | in_range16x8!(s, 0xD802, 0xD804)
+ | in_range16x8!(s, 0xD83A, 0xD83C)
+ | s.simd_eq(u16x8::splat(0x200F))
+ | s.simd_eq(u16x8::splat(0x202B))
+ | s.simd_eq(u16x8::splat(0x202E))
+ | s.simd_eq(u16x8::splat(0x2067))),
+ )
}
#[inline(always)]
pub fn simd_unpack(s: u8x16) -> (u16x8, u16x8) {
- unsafe {
- let first: u8x16 = shuffle!(
- s,
- u8x16::splat(0),
- [0, 16, 1, 17, 2, 18, 3, 19, 4, 20, 5, 21, 6, 22, 7, 23]
- );
- let second: u8x16 = shuffle!(
- s,
- u8x16::splat(0),
- [8, 24, 9, 25, 10, 26, 11, 27, 12, 28, 13, 29, 14, 30, 15, 31]
- );
- (first.into_bits(), second.into_bits())
- }
+ let first: u8x16 = simd_swizzle!(
+ s,
+ u8x16::splat(0),
+ [0, 16, 1, 17, 2, 18, 3, 19, 4, 20, 5, 21, 6, 22, 7, 23]
+ );
+ let second: u8x16 = simd_swizzle!(
+ s,
+ u8x16::splat(0),
+ [8, 24, 9, 25, 10, 26, 11, 27, 12, 28, 13, 29, 14, 30, 15, 31]
+ );
+ (u16x8::from_ne_bytes(first), u16x8::from_ne_bytes(second))
}
cfg_if! {
if #[cfg(target_feature = "sse2")] {
#[inline(always)]
pub fn simd_pack(a: u16x8, b: u16x8) -> u8x16 {
unsafe {
- _mm_packus_epi16(a.into_bits(), b.into_bits()).into_bits()
+ // Safety: We have cfg()d the correct platform
+ _mm_packus_epi16(a.into(), b.into()).into()
}
}
} else {
#[inline(always)]
pub fn simd_pack(a: u16x8, b: u16x8) -> u8x16 {
- unsafe {
- let first: u8x16 = a.into_bits();
- let second: u8x16 = b.into_bits();
- shuffle!(
- first,
- second,
- [0, 2, 4, 6, 8, 10, 12, 14, 16, 18, 20, 22, 24, 26, 28, 30]
- )
- }
+ let first: u8x16 = a.to_ne_bytes();
+ let second: u8x16 = b.to_ne_bytes();
+ simd_swizzle!(
+ first,
+ second,
+ [0, 2, 4, 6, 8, 10, 12, 14, 16, 18, 20, 22, 24, 26, 28, 30]
+ )
}
}
}
#[cfg(test)]
mod tests {
use super::*;
use alloc::vec::Vec;
diff --git a/third_party/rust/encoding_rs/src/single_byte.rs b/third_party/rust/encoding_rs/src/single_byte.rs
--- a/third_party/rust/encoding_rs/src/single_byte.rs
+++ b/third_party/rust/encoding_rs/src/single_byte.rs
@@ -48,16 +48,19 @@ impl SingleByteDecoder {
CopyAsciiResult::GoOn((mut non_ascii, mut handle)) => 'middle: loop {
// Start non-boilerplate
//
// Since the non-ASCIIness of `non_ascii` is hidden from
// the optimizer, it can't figure out that it's OK to
// statically omit the bound check when accessing
// `[u16; 128]` with an index
// `non_ascii as usize - 0x80usize`.
+ //
+ // Safety: `non_ascii` is a u8 byte >=0x80, from the invariants
+ // on Utf8Destination::copy_ascii_from_check_space_bmp()
let mapped =
unsafe { *(self.table.get_unchecked(non_ascii as usize - 0x80usize)) };
// let mapped = self.table[non_ascii as usize - 0x80usize];
if mapped == 0u16 {
return (
DecoderResult::Malformed(1, 0),
source.consumed(),
handle.written(),
@@ -146,82 +149,103 @@ impl SingleByteDecoder {
dst: &mut [u16],
_last: bool,
) -> (DecoderResult, usize, usize) {
let (pending, length) = if dst.len() < src.len() {
(DecoderResult::OutputFull, dst.len())
} else {
(DecoderResult::InputEmpty, src.len())
};
+ // Safety invariant: converted <= length. Quite often we have `converted < length`
+ // which will be separately marked.
let mut converted = 0usize;
'outermost: loop {
match unsafe {
+ // Safety: length is the minimum length, `src/dst + x` will always be valid for reads/writes of `len - x`
ascii_to_basic_latin(
src.as_ptr().add(converted),
dst.as_mut_ptr().add(converted),
length - converted,
)
} {
None => {
return (pending, length, length);
}
Some((mut non_ascii, consumed)) => {
+ // Safety invariant: `converted <= length` upheld, since this can only consume
+ // up to `length - converted` bytes.
+ //
+ // Furthermore, in this context,
+ // we can assume `converted < length` since this branch is only ever hit when
+ // ascii_to_basic_latin fails to consume the entire slice
converted += consumed;
'middle: loop {
// `converted` doesn't count the reading of `non_ascii` yet.
// Since the non-ASCIIness of `non_ascii` is hidden from
// the optimizer, it can't figure out that it's OK to
// statically omit the bound check when accessing
// `[u16; 128]` with an index
// `non_ascii as usize - 0x80usize`.
+ //
+ // Safety: We can rely on `non_ascii` being between `0x80` and `0xFF` due to
+ // the invariants of `ascii_to_basic_latin()`, and our table has enough space for that.
let mapped =
unsafe { *(self.table.get_unchecked(non_ascii as usize - 0x80usize)) };
// let mapped = self.table[non_ascii as usize - 0x80usize];
if mapped == 0u16 {
return (
DecoderResult::Malformed(1, 0),
converted + 1, // +1 `for non_ascii`
converted,
);
}
unsafe {
- // The bound check has already been performed
+ // Safety: As mentioned above, `converted < length`
*(dst.get_unchecked_mut(converted)) = mapped;
}
+ // Safety: `converted <= length` upheld, since `converted < length` before this
converted += 1;
// Next, handle ASCII punctuation and non-ASCII without
// going back to ASCII acceleration. Non-ASCII scripts
// use ASCII punctuation, so this avoid going to
// acceleration just for punctuation/space and then
// failing. This is a significant boost to non-ASCII
// scripts.
// TODO: Split out Latin converters without this part
// this stuff makes Latin script-conversion slower.
if converted == length {
return (pending, length, length);
}
+ // Safety: We are back to `converted < length` because of the == above
+ // and can perform this check.
let mut b = unsafe { *(src.get_unchecked(converted)) };
+ // Safety: `converted < length` is upheld for this loop
'innermost: loop {
if b > 127 {
non_ascii = b;
continue 'middle;
}
// Testing on Haswell says that we should write the
// byte unconditionally instead of trying to unread it
// to make it part of the next SIMD stride.
unsafe {
+ // Safety: `converted < length` is true for this loop
*(dst.get_unchecked_mut(converted)) = u16::from(b);
}
+ // Safety: We are now at `converted <= length`. We should *not* `continue`
+ // the loop without reverifying
converted += 1;
if b < 60 {
// We've got punctuation
if converted == length {
return (pending, length, length);
}
+ // Safety: we're back to `converted <= length` because of the == above
b = unsafe { *(src.get_unchecked(converted)) };
+ // Safety: The loop continues as `converted < length`
continue 'innermost;
}
// We've got markup or ASCII text
continue 'outermost;
}
}
}
}
@@ -229,16 +253,18 @@ impl SingleByteDecoder {
}
pub fn latin1_byte_compatible_up_to(&self, buffer: &[u8]) -> usize {
let mut bytes = buffer;
let mut total = 0;
loop {
if let Some((non_ascii, offset)) = validate_ascii(bytes) {
total += offset;
+ // Safety: We can rely on `non_ascii` being between `0x80` and `0xFF` due to
+ // the invariants of `ascii_to_basic_latin()`, and our table has enough space for that.
let mapped = unsafe { *(self.table.get_unchecked(non_ascii as usize - 0x80usize)) };
if mapped != u16::from(non_ascii) {
return total;
}
total += 1;
bytes = &bytes[offset + 1..];
} else {
return total;
@@ -379,64 +405,89 @@ impl SingleByteEncoder {
dst: &mut [u8],
_last: bool,
) -> (EncoderResult, usize, usize) {
let (pending, length) = if dst.len() < src.len() {
(EncoderResult::OutputFull, dst.len())
} else {
(EncoderResult::InputEmpty, src.len())
};
+ // Safety invariant: converted <= length. Quite often we have `converted < length`
+ // which will be separately marked.
let mut converted = 0usize;
'outermost: loop {
match unsafe {
+ // Safety: length is the minimum length, `src/dst + x` will always be valid for reads/writes of `len - x`
basic_latin_to_ascii(
src.as_ptr().add(converted),
dst.as_mut_ptr().add(converted),
length - converted,
)
} {
None => {
return (pending, length, length);
}
Some((mut non_ascii, consumed)) => {
+ // Safety invariant: `converted <= length` upheld, since this can only consume
+ // up to `length - converted` bytes.
+ //
+ // Furthermore, in this context,
+ // we can assume `converted < length` since this branch is only ever hit when
+ // ascii_to_basic_latin fails to consume the entire slice
converted += consumed;
'middle: loop {
// `converted` doesn't count the reading of `non_ascii` yet.
match self.encode_u16(non_ascii) {
Some(byte) => {
unsafe {
+ // Safety: we're allowed this access since `converted < length`
*(dst.get_unchecked_mut(converted)) = byte;
}
converted += 1;
+ // `converted <= length` now
}
None => {
// At this point, we need to know if we
// have a surrogate.
let high_bits = non_ascii & 0xFC00u16;
if high_bits == 0xD800u16 {
// high surrogate
if converted + 1 == length {
// End of buffer. This surrogate is unpaired.
return (
EncoderResult::Unmappable('\u{FFFD}'),
converted + 1, // +1 `for non_ascii`
converted,
);
}
+ // Safety: convered < length from outside the match, and `converted + 1 != length`,
+ // So `converted + 1 < length` as well. We're in bounds
let second =
u32::from(unsafe { *src.get_unchecked(converted + 1) });
if second & 0xFC00u32 != 0xDC00u32 {
return (
EncoderResult::Unmappable('\u{FFFD}'),
converted + 1, // +1 `for non_ascii`
converted,
);
}
// The next code unit is a low surrogate.
let astral: char = unsafe {
+ // Safety: We can rely on non_ascii being 0xD800-0xDBFF since the high bits are 0xD800
+ // Then, (non_ascii << 10 - 0xD800 << 10) becomes between (0 to 0x3FF) << 10, which is between
+ // 0x400 to 0xffc00. Adding the 0x10000 gives a range of 0x10400 to 0x10fc00. Subtracting the 0xDC00
+ // gives 0x2800 to 0x102000
+ // The second term is between 0xDC00 and 0xDFFF from the check above. This gives a maximum
+ // possible range of (0x10400 + 0xDC00) to (0x102000 + 0xDFFF) which is 0x1E000 to 0x10ffff.
+ // This is in range.
+ //
+ // From a Unicode principles perspective this can also be verified as we have checked that `non_ascii` is a high surrogate
+ // (0xD800..=0xDBFF), and that `second` is a low surrogate (`0xDC00..=0xDFFF`), and we are applying reverse of the UTC16 transformation
+ // algorithm <https://en.wikipedia.org/wiki/UTF-16#Code_points_from_U+010000_to_U+10FFFF>, by applying the high surrogate - 0xD800 to the
+ // high ten bits, and the low surrogate - 0xDc00 to the low ten bits, and then adding 0x10000
::core::char::from_u32_unchecked(
(u32::from(non_ascii) << 10) + second
- (((0xD800u32 << 10) - 0x1_0000u32) + 0xDC00u32),
)
};
return (
EncoderResult::Unmappable(astral),
converted + 2, // +2 `for non_ascii` and `second`
@@ -451,52 +502,63 @@ impl SingleByteEncoder {
converted,
);
}
return (
EncoderResult::unmappable_from_bmp(non_ascii),
converted + 1, // +1 `for non_ascii`
converted,
);
+ // Safety: This branch diverges, so no need to uphold invariants on `converted`
}
}
// Next, handle ASCII punctuation and non-ASCII without
// going back to ASCII acceleration. Non-ASCII scripts
// use ASCII punctuation, so this avoid going to
// acceleration just for punctuation/space and then
// failing. This is a significant boost to non-ASCII
// scripts.
// TODO: Split out Latin converters without this part
// this stuff makes Latin script-conversion slower.
if converted == length {
return (pending, length, length);
}
+ // Safety: we're back to `converted < length` due to the == above and can perform
+ // the unchecked read
let mut unit = unsafe { *(src.get_unchecked(converted)) };
'innermost: loop {
+ // Safety: This loop always begins with `converted < length`, see
+ // the invariant outside and the comment on the continue below
if unit > 127 {
non_ascii = unit;
continue 'middle;
}
// Testing on Haswell says that we should write the
// byte unconditionally instead of trying to unread it
// to make it part of the next SIMD stride.
unsafe {
+ // Safety: Can rely on converted < length
*(dst.get_unchecked_mut(converted)) = unit as u8;
}
converted += 1;
+ // `converted <= length` here
if unit < 60 {
// We've got punctuation
if converted == length {
return (pending, length, length);
}
+ // Safety: `converted < length` due to the == above. The read is safe.
unit = unsafe { *(src.get_unchecked(converted)) };
+ // Safety: This only happens if `converted < length`, maintaining it
continue 'innermost;
}
// We've got markup or ASCII text
continue 'outermost;
+ // Safety: All other routes to here diverge so the continue is the only
+ // way to run the innermost loop.
}
}
}
}
}
}
}
diff --git a/third_party/rust/encoding_rs/src/x_user_defined.rs b/third_party/rust/encoding_rs/src/x_user_defined.rs
--- a/third_party/rust/encoding_rs/src/x_user_defined.rs
+++ b/third_party/rust/encoding_rs/src/x_user_defined.rs
@@ -9,22 +9,23 @@
use super::*;
use crate::handles::*;
use crate::variant::*;
cfg_if! {
if #[cfg(feature = "simd-accel")] {
use simd_funcs::*;
- use packed_simd::u16x8;
+ use core::simd::u16x8;
+ use core::simd::cmp::SimdPartialOrd;
#[inline(always)]
fn shift_upper(unpacked: u16x8) -> u16x8 {
let highest_ascii = u16x8::splat(0x7F);
- unpacked + unpacked.gt(highest_ascii).select(u16x8::splat(0xF700), u16x8::splat(0)) }
+ unpacked + unpacked.simd_gt(highest_ascii).select(u16x8::splat(0xF700), u16x8::splat(0)) }
} else {
}
}
pub struct UserDefinedDecoder;
impl UserDefinedDecoder {
pub fn new() -> VariantDecoder {
@@ -111,20 +112,25 @@ impl UserDefinedDecoder {
} else {
(DecoderResult::InputEmpty, src.len())
};
// Not bothering with alignment
let tail_start = length & !0xF;
let simd_iterations = length >> 4;
let src_ptr = src.as_ptr();
let dst_ptr = dst.as_mut_ptr();
+ // Safety: This is `for i in 0..length / 16`
for i in 0..simd_iterations {
+ // Safety: This is in bounds: length is the minumum valid length for both src/dst
+ // and i ranges to length/16, so multiplying by 16 will always be `< length` and can do
+ // a 16 byte read
let input = unsafe { load16_unaligned(src_ptr.add(i * 16)) };
let (first, second) = simd_unpack(input);
unsafe {
+ // Safety: same as above, but this is two consecutive 8-byte reads
store8_unaligned(dst_ptr.add(i * 16), shift_upper(first));
store8_unaligned(dst_ptr.add((i * 16) + 8), shift_upper(second));
}
}
let src_tail = &src[tail_start..length];
let dst_tail = &mut dst[tail_start..length];
src_tail
.iter()
diff --git a/third_party/rust/encoding_rs/.cargo-checksum.json b/third_party/rust/encoding_rs/.cargo-checksum.json
--- a/third_party/rust/encoding_rs/.cargo-checksum.json
+++ b/third_party/rust/encoding_rs/.cargo-checksum.json
@@ -1 +1 @@
-{"files":{"CONTRIBUTING.md":"ca1901f3e8532fb4cec894fd3664f0eaa898c0c4b961d1b992d1ed54eacf362a","COPYRIGHT":"11789f45bb180841cd362a5eee6789c68ddb573a11105e30768c308a6add0190","Cargo.toml":"42fa83322aa9fd6723b77d35d0cacb92cbb6e7f573ce11c55f5225292866f8f4","Ideas.md":"b7452893f500163868d8de52c09addaf91e1632454ed02e892c467ed7ec39dbd","LICENSE-APACHE":"cfc7749b96f63bd31c3c42b5c471bf756814053e847c10f3eb003417bc523d30","LICENSE-MIT":"3fa4ca83dcc9237839b1bdeb2e6d16bdfb5ec0c5ce42b24694d8bbf0dcbef72c","LICENSE-WHATWG":"838118388fe5c2e7f1dbbaeed13e1c7f3ebf88be91319c7c1d77c18e987d1a50","README.md":"d938e8ab0b9ab67e74a1a4f48f23fdce956d0ad3a3f6147ae7612a92763c88d5","ci/miri.sh":"43cb8d82f49e3bfe2d2274b6ccd6f0714a4188ccef0cecc040829883cfdbee25","doc/Big5.txt":"f73a2edc5cb6c2d140ba6e07f4542e1c4a234950378acde1df93480f0ca0be0b","doc/EUC-JP.txt":"ee2818b907d0137f40a9ab9fd525fc700a44dbdddb6cf0c157a656566bae4bf1","doc/EUC-KR.txt":"71d9e2ccf3b124e8bdfb433c8cf2773fd878077038d0cec3c7237a50f4a78a30","doc/GBK.txt":"c1b522b5a799884e5001da661f42c5a8f4d0acb9ef1d74b206f22b5f65365606","doc/IBM866.txt":"a5a433e804d0f83af785015179fbc1d9b0eaf1f7960efcd04093e136b51fbd0e","doc/ISO-2022-JP.txt":"af86684f5a8f0e2868d7b2c292860140c3d2e5527530ca091f1b28198e8e2fe6","doc/ISO-8859-10.txt":"6d3949ad7c81ca176895101ed81a1db7df1060d64e262880b94bd31bb344ab4d","doc/ISO-8859-13.txt":"3951dd89cf93f7729148091683cf8511f4529388b7dc8dcd0d62eaed55be93fa","doc/ISO-8859-14.txt":"3d330784a0374fd255a38b47949675cc7168c800530534b0a01cac6edc623adc","doc/ISO-8859-15.txt":"24b1084aab5127a85aab99153f86e24694d0a3615f53b5ce23683f97cf66c47a","doc/ISO-8859-16.txt":"ce0272559b92ba76d7a7e476f6424ae4a5cc72e75b183611b08392e44add4d25","doc/ISO-8859-2.txt":"18ceff88c13d1b5ba455a3919b1e3de489045c4c3d2dd7e8527c125c75d54aad","doc/ISO-8859-3.txt":"21798404c68f4f5db59223362f24999da96968c0628427321fccce7d2849a130","doc/ISO-8859-4.txt":"d27f6520c6c5bfbcc19176b71d081cdb3bccde1622bb3e420d5680e812632d53","doc/ISO-8859-5.txt":"a10ec8d6ea7a78ad15da7275f6cb1a3365118527e28f9af6d0d5830501303f3a","doc/ISO-8859-6.txt":"ccda8a2efc96115336bdd77776637b9712425e44fbcf745353b9057fbef144e7","doc/ISO-8859-7.txt":"17900fa1f27a445958f0a77d7d9056be375a6bd7ee4492aa680c7c1500bab85e","doc/ISO-8859-8-I.txt":"8357555646d54265a9b9ffa3e68b08d132312f1561c60108ff9b8b1167b6ecf2","doc/ISO-8859-8.txt":"72cd6f3afb7b4a9c16a66a362473315770b7755d72c86c870e52fc3eba86c8af","doc/KOI8-R.txt":"839cf19a38da994488004ed7814b1f6151640156a9a2af02bf2efca745fb5966","doc/KOI8-U.txt":"0cc76624ed1f024183e2298b7e019957da2c70c8ca06e0fc4e6f353f50a5054f","doc/Shift_JIS.txt":"34c49141818cb9ddbcf59cc858f78a79be8ad148d563f26415108ae1f148443f","doc/UTF-16BE.txt":"e2e280d8acbaa6d2a6b3569d60e17500a285f2baa0df3363dd85537cd5a1ef8f","doc/UTF-16LE.txt":"70bdc170e3fc5298ba68f10125fb5eeb8b077036cc96bb4416c4de396f6d76c1","doc/UTF-8.txt":"ea7bae742e613010ced002cf4b601a737d2203fad65e115611451bc4428f548a","doc/gb18030.txt":"dc71378a8f07a2d8659f69ee81fb8791fef56ba86f124b429978285237bb4a7b","doc/macintosh.txt":"57491e53866711b4672d9b9ff35380b9dac9e0d8e3d6c20bdd6140603687c023","doc/replacement.txt":"4b6c3bbd7999d9d4108a281594bd02d13607e334a95465afff8c2c08d395f0e4","doc/windows-1250.txt":"61296bb6a21cdab602300d32ecfba434cb82de5ac3bc88d58710d2f125e28d39","doc/windows-1251.txt":"7deea1c61dea1485c8ff02db2c7d578db7a9aab63ab1cfd02ec04b515864689e","doc/windows-1252.txt":"933ef3bdddfce5ee132b9f1a1aa8b47423d2587bbe475b19028d0a6d38e180b6","doc/windows-1253.txt":"1a38748b88e99071a5c7b3d5456ead4caedeabab50d50d658be105bc113714de","doc/windows-1254.txt":"f8372f86c6f8d642563cd6ddc025260553292a39423df1683a98670bd7bf2b47","doc/windows-1255.txt":"4e5852494730054e2da258a74e1b9d780abbcdd8ce22ebc218ca2efe9e90493d","doc/windows-1256.txt":"c0879c5172abedead302a406e8f60d9cd9598694a0ffa4fd288ffe4fef7b8ea1","doc/windows-1257.txt":"c28a0c9f964fcb2b46d21f537c402446501a2800670481d6abf9fd9e9018d523","doc/windows-1258.txt":"5019ae4d61805c79aacbf17c93793342dbb098d65a1837783bc3e2c6d6a23602","doc/windows-874.txt":"4ef0e4501c5feba8b17aee1818602ed44b36ca8475db771ce2fc16d392cabecc","doc/x-mac-cyrillic.txt":"58be154d8a888ca3d484b83b44f749823ef339ab27f14d90ca9a856f5050a8bd","doc/x-user-defined.txt":"f9cd07c4321bf5cfb0be4bdddd251072999b04a6cf7a6f5bc63709a84e2c1ffc","generate-encoding-data.py":"be989dd25c6b946e3e8745fdc8e8a80fcf24b3be99ad0b4b78153ba3f6ab6310","rustfmt.toml":"85c1a3b4382fd89e991cbb81b70fb52780472edc064c963943cdaaa56e0a2030","src/ascii.rs":"c44c002641adb5ebc4368707a8cc0a076d2f33e6a5c27b1b69988eb515f5653d","src/big5.rs":"ec6e2913011a38e9a3e825a1731f139a7ca1d5b264fefae51a3cc1a68a57cef9","src/data.rs":"8a617cc57032092d65850eb27e00de687c80aea3299e839a1f58b42d0b35abf3","src/euc_jp.rs":"32047f5b540188c4cb19c07165f846b9786a09f18e315ed3e9bda1293dae52aa","src/euc_kr.rs":"9b25afc72d9378700eecfac58d55ad1c5946d6cd0ccde2c29c08200ef2de6bb9","src/gb18030.rs":"808587168d73f0c80f8520f0ca9b161866ed2efeb17a05e85fdf3b8efe7ba28a","src/handles.rs":"cc83dc0754751d67f5688a65c5e0191cba02f6bacce81a0813a243cba55eef7a","src/iso_2022_jp.rs":"9bb485e82574f4b7d4b2364f0ff276acb6a0bc111758420a3b0ec5e04c196652","src/lib.rs":"1dc07b818e45846b16ddcaf0de46c8862dd7df8099123ec38b95c3f8ad9c91ec","src/macros.rs":"200997f8870de8bfd8cdc475e92115df42108c0df661e49d3d1cbc32056e1d99","src/mem.rs":"0bf34103e0ad1b842a13a082dee2b920b05cf4fb0f145c9ee7f608f4cb4a544f","src/replacement.rs":"7660b34a53f8c1ca2bdfa0e51e843ec28326950952ad8bc96569feb93ac62308","src/shift_jis.rs":"6951ae67e36b1a12fa3a30734957f444d8b1b4ae0e2bde52060b29bd0f16d9d9","src/simd_funcs.rs":"2612aba86e1d201096d7e47a859bc3444f85934cc82d8adc6d39a4304d9eecfc","src/single_byte.rs":"3c9e9c1f946ae622c725ba9421240c1faa9a05e95fa10dd4642a25cb276a1edc","src/test_data/big5_in.txt":"4c5a8691f8dc717311889c63894026d2fb62725a86c4208ca274a9cc8d42a503","src/test_data/big5_in_ref.txt":"99d399e17750cf9c7cf30bb253dbfe35b81c4fcbdead93cfa48b1429213473c7","src/test_data/big5_out.txt":"6193ca97c297aa20e09396038d18e938bb7ea331c26f0f2454097296723a0b13","src/test_data/big5_out_ref.txt":"36567691f557df144f6cc520015a87038dfa156f296fcf103b56ae9a718be1fc","src/test_data/euc_kr_in.txt":"c86a7224f3215fa0d04e685622a752fdc72763e8ae076230c7fd62de57ec4074","src/test_data/euc_kr_in_ref.txt":"1f419f4ca47d708b54c73c461545a022ae2e20498fdbf8005a483d752a204883","src/test_data/euc_kr_out.txt":"e7f32e026f70be1e1b58e0047baf7d3d2c520269c4f9b9992e158b4decb0a1a3","src/test_data/euc_kr_out_ref.txt":"c9907857980b20b8e9e3b584482ed6567a2be6185d72237b6322f0404944924e","src/test_data/gb18030_in.txt":"ab7231b2d3e9afacdbd7d7f3b9e5361a7ff9f7e1cfdb4f3bd905b9362b309e53","src/test_data/gb18030_in_ref.txt":"dc5069421adca2043c55f5012b55a76fdff651d22e6e699fd0978f8d5706815c","src/test_data/gb18030_out.txt":"f0208d527f5ca63de7d9a0323be8d5cf12d8a104b2943d92c2701f0c3364dac1","src/test_data/gb18030_out_ref.txt":"6819fe47627e4ea01027003fc514b9f21a1322e732d7f1fb92cc6c5455bc6c07","src/test_data/iso_2022_jp_in.txt":"cd24bbdcb1834e25db54646fbf4c41560a13dc7540f6be3dba4f5d97d44513af","src/test_data/iso_2022_jp_in_ref.txt":"3dc4e6a5e06471942d086b16c9440945e78415f6f3f47e43717e4bc2eac2cdf5","src/test_data/iso_2022_jp_out.txt":"9b6f015329dda6c3f9ee5ce6dbd6fa9c89acc21283e886836c78b8d833480c21","src/test_data/iso_2022_jp_out_ref.txt":"78cb260093a20116ad9a42f43b05d1848c5ab100b6b9a850749809e943884b35","src/test_data/jis0208_in.txt":"6df3030553ffb0a6615bb33dc8ea9dca6d9623a9028e2ffec754ce3c3da824cc","src/test_data/jis0208_in_ref.txt":"3dc4e6a5e06471942d086b16c9440945e78415f6f3f47e43717e4bc2eac2cdf5","src/test_data/jis0208_out.txt":"4ec24477e1675ce750733bdc3c5add1cd27b6bd4ce1f09289564646e9654e857","src/test_data/jis0208_out_ref.txt":"c3e1cef5032b2b1d93a406f31ff940c4e2dfe8859b8b17ca2761fee7a75a0e48","src/test_data/jis0212_in.txt":"c011f0dd72bd7c8cd922df9374ef8d2769a77190514c77f6c62b415852eeb9fe","src/test_data/jis0212_in_ref.txt":"7d9458b3d2f73e7092a7f505c08ce1d233dde18aa679fbcf9889256239cc9e06","src/test_data/shift_jis_in.txt":"02e389ccef0dd2122e63f503899402cb7f797912c2444cc80ab93131116c5524","src/test_data/shift_jis_in_ref.txt":"512f985950ca902e643c88682dba9708b7c38d3c5ec2925168ab00ac94ab19f9","src/test_data/shift_jis_out.txt":"5fbc44da7bf639bf6cfe0fa1fd3eba7102b88f81919c9ea991302712f69426fb","src/test_data/shift_jis_out_ref.txt":"466322c6fed8286c64582731755290c2296508efdd258826e6279686649b481f","src/test_labels_names.rs":"23a2e11b02b3b8d15fb5613a625e3edb2c61e70e3c581abfd638719a4088200d","src/testing.rs":"f59e671e95a98a56f6b573e8c6be4d71e670bf52f7e20eb1605d990aafa1894e","src/utf_16.rs":"c071a147fad38d750c2c247e141b76b929a48007b99f26b2922b9caecdaf2f25","src/utf_8.rs":"7b7d887b347f1aefa03246b028a36a72758a4ce76c28f3b45c19467851aa7839","src/variant.rs":"1fab5363588a1554a7169de8731ea9cded7ac63ea35caabdd1c27a8dde68c27b","src/x_user_defined.rs":"c9c010730dfb9f141d4fed19350c08a21af240913a54bb64f5ca89ff93b6b7d1"},"package":"7268b386296a025e474d5140678f75d6de9493ae55a5d709eeb9dd08149945e1"}
\ No newline at end of file
+{"files":{"CONTRIBUTING.md":"ca1901f3e8532fb4cec894fd3664f0eaa898c0c4b961d1b992d1ed54eacf362a","COPYRIGHT":"11789f45bb180841cd362a5eee6789c68ddb573a11105e30768c308a6add0190","Cargo.toml":"22a4d210c92dae9f32c6944ef340ee8fdd027f99c081577e8907123e2a93383e","Ideas.md":"b7452893f500163868d8de52c09addaf91e1632454ed02e892c467ed7ec39dbd","LICENSE-APACHE":"cfc7749b96f63bd31c3c42b5c471bf756814053e847c10f3eb003417bc523d30","LICENSE-MIT":"3fa4ca83dcc9237839b1bdeb2e6d16bdfb5ec0c5ce42b24694d8bbf0dcbef72c","LICENSE-WHATWG":"838118388fe5c2e7f1dbbaeed13e1c7f3ebf88be91319c7c1d77c18e987d1a50","README.md":"1d08aefcb92afa81b18154049c9abbcad4540a23f7172e9f9bbed5af33f1a087","ci/miri.sh":"43cb8d82f49e3bfe2d2274b6ccd6f0714a4188ccef0cecc040829883cfdbee25","doc/Big5.txt":"f73a2edc5cb6c2d140ba6e07f4542e1c4a234950378acde1df93480f0ca0be0b","doc/EUC-JP.txt":"ee2818b907d0137f40a9ab9fd525fc700a44dbdddb6cf0c157a656566bae4bf1","doc/EUC-KR.txt":"71d9e2ccf3b124e8bdfb433c8cf2773fd878077038d0cec3c7237a50f4a78a30","doc/GBK.txt":"c1b522b5a799884e5001da661f42c5a8f4d0acb9ef1d74b206f22b5f65365606","doc/IBM866.txt":"a5a433e804d0f83af785015179fbc1d9b0eaf1f7960efcd04093e136b51fbd0e","doc/ISO-2022-JP.txt":"af86684f5a8f0e2868d7b2c292860140c3d2e5527530ca091f1b28198e8e2fe6","doc/ISO-8859-10.txt":"6d3949ad7c81ca176895101ed81a1db7df1060d64e262880b94bd31bb344ab4d","doc/ISO-8859-13.txt":"3951dd89cf93f7729148091683cf8511f4529388b7dc8dcd0d62eaed55be93fa","doc/ISO-8859-14.txt":"3d330784a0374fd255a38b47949675cc7168c800530534b0a01cac6edc623adc","doc/ISO-8859-15.txt":"24b1084aab5127a85aab99153f86e24694d0a3615f53b5ce23683f97cf66c47a","doc/ISO-8859-16.txt":"ce0272559b92ba76d7a7e476f6424ae4a5cc72e75b183611b08392e44add4d25","doc/ISO-8859-2.txt":"18ceff88c13d1b5ba455a3919b1e3de489045c4c3d2dd7e8527c125c75d54aad","doc/ISO-8859-3.txt":"21798404c68f4f5db59223362f24999da96968c0628427321fccce7d2849a130","doc/ISO-8859-4.txt":"d27f6520c6c5bfbcc19176b71d081cdb3bccde1622bb3e420d5680e812632d53","doc/ISO-8859-5.txt":"a10ec8d6ea7a78ad15da7275f6cb1a3365118527e28f9af6d0d5830501303f3a","doc/ISO-8859-6.txt":"ccda8a2efc96115336bdd77776637b9712425e44fbcf745353b9057fbef144e7","doc/ISO-8859-7.txt":"17900fa1f27a445958f0a77d7d9056be375a6bd7ee4492aa680c7c1500bab85e","doc/ISO-8859-8-I.txt":"8357555646d54265a9b9ffa3e68b08d132312f1561c60108ff9b8b1167b6ecf2","doc/ISO-8859-8.txt":"72cd6f3afb7b4a9c16a66a362473315770b7755d72c86c870e52fc3eba86c8af","doc/KOI8-R.txt":"839cf19a38da994488004ed7814b1f6151640156a9a2af02bf2efca745fb5966","doc/KOI8-U.txt":"0cc76624ed1f024183e2298b7e019957da2c70c8ca06e0fc4e6f353f50a5054f","doc/Shift_JIS.txt":"34c49141818cb9ddbcf59cc858f78a79be8ad148d563f26415108ae1f148443f","doc/UTF-16BE.txt":"e2e280d8acbaa6d2a6b3569d60e17500a285f2baa0df3363dd85537cd5a1ef8f","doc/UTF-16LE.txt":"70bdc170e3fc5298ba68f10125fb5eeb8b077036cc96bb4416c4de396f6d76c1","doc/UTF-8.txt":"ea7bae742e613010ced002cf4b601a737d2203fad65e115611451bc4428f548a","doc/gb18030.txt":"dc71378a8f07a2d8659f69ee81fb8791fef56ba86f124b429978285237bb4a7b","doc/macintosh.txt":"57491e53866711b4672d9b9ff35380b9dac9e0d8e3d6c20bdd6140603687c023","doc/replacement.txt":"4b6c3bbd7999d9d4108a281594bd02d13607e334a95465afff8c2c08d395f0e4","doc/windows-1250.txt":"61296bb6a21cdab602300d32ecfba434cb82de5ac3bc88d58710d2f125e28d39","doc/windows-1251.txt":"7deea1c61dea1485c8ff02db2c7d578db7a9aab63ab1cfd02ec04b515864689e","doc/windows-1252.txt":"933ef3bdddfce5ee132b9f1a1aa8b47423d2587bbe475b19028d0a6d38e180b6","doc/windows-1253.txt":"1a38748b88e99071a5c7b3d5456ead4caedeabab50d50d658be105bc113714de","doc/windows-1254.txt":"f8372f86c6f8d642563cd6ddc025260553292a39423df1683a98670bd7bf2b47","doc/windows-1255.txt":"4e5852494730054e2da258a74e1b9d780abbcdd8ce22ebc218ca2efe9e90493d","doc/windows-1256.txt":"c0879c5172abedead302a406e8f60d9cd9598694a0ffa4fd288ffe4fef7b8ea1","doc/windows-1257.txt":"c28a0c9f964fcb2b46d21f537c402446501a2800670481d6abf9fd9e9018d523","doc/windows-1258.txt":"5019ae4d61805c79aacbf17c93793342dbb098d65a1837783bc3e2c6d6a23602","doc/windows-874.txt":"4ef0e4501c5feba8b17aee1818602ed44b36ca8475db771ce2fc16d392cabecc","doc/x-mac-cyrillic.txt":"58be154d8a888ca3d484b83b44f749823ef339ab27f14d90ca9a856f5050a8bd","doc/x-user-defined.txt":"f9cd07c4321bf5cfb0be4bdddd251072999b04a6cf7a6f5bc63709a84e2c1ffc","generate-encoding-data.py":"be989dd25c6b946e3e8745fdc8e8a80fcf24b3be99ad0b4b78153ba3f6ab6310","rustfmt.toml":"85c1a3b4382fd89e991cbb81b70fb52780472edc064c963943cdaaa56e0a2030","src/ascii.rs":"588e38b01e666d5e7462617ea7e90a108d608dec9e016f3d273ac0744af2e05d","src/big5.rs":"ec6e2913011a38e9a3e825a1731f139a7ca1d5b264fefae51a3cc1a68a57cef9","src/data.rs":"8a617cc57032092d65850eb27e00de687c80aea3299e839a1f58b42d0b35abf3","src/euc_jp.rs":"32047f5b540188c4cb19c07165f846b9786a09f18e315ed3e9bda1293dae52aa","src/euc_kr.rs":"9b25afc72d9378700eecfac58d55ad1c5946d6cd0ccde2c29c08200ef2de6bb9","src/gb18030.rs":"808587168d73f0c80f8520f0ca9b161866ed2efeb17a05e85fdf3b8efe7ba28a","src/handles.rs":"b08cef1f5785bb6a4822f2e844c6df1b046b737b7a075e4593eaa8c4208e9fe2","src/iso_2022_jp.rs":"9bb485e82574f4b7d4b2364f0ff276acb6a0bc111758420a3b0ec5e04c196652","src/lib.rs":"834f44b670ec48ee82c0e12223d1567313fdd9f88bca5f4b117c82c1828f559f","src/macros.rs":"200997f8870de8bfd8cdc475e92115df42108c0df661e49d3d1cbc32056e1d99","src/mem.rs":"948571137d3b151df8db4fb2c733e74ae595d055cdf0ad83abcab9341d6adabe","src/replacement.rs":"7660b34a53f8c1ca2bdfa0e51e843ec28326950952ad8bc96569feb93ac62308","src/shift_jis.rs":"6951ae67e36b1a12fa3a30734957f444d8b1b4ae0e2bde52060b29bd0f16d9d9","src/simd_funcs.rs":"05c6e77af74bfe73cd39a752067c11425d6b46e5da419910f54bf75a5c02a984","src/single_byte.rs":"3ad87116fb339434a4b58e8f2b15485f2b66b9f7814d708f16194ed08f6d6ccf","src/test_data/big5_in.txt":"4c5a8691f8dc717311889c63894026d2fb62725a86c4208ca274a9cc8d42a503","src/test_data/big5_in_ref.txt":"99d399e17750cf9c7cf30bb253dbfe35b81c4fcbdead93cfa48b1429213473c7","src/test_data/big5_out.txt":"6193ca97c297aa20e09396038d18e938bb7ea331c26f0f2454097296723a0b13","src/test_data/big5_out_ref.txt":"36567691f557df144f6cc520015a87038dfa156f296fcf103b56ae9a718be1fc","src/test_data/euc_kr_in.txt":"c86a7224f3215fa0d04e685622a752fdc72763e8ae076230c7fd62de57ec4074","src/test_data/euc_kr_in_ref.txt":"1f419f4ca47d708b54c73c461545a022ae2e20498fdbf8005a483d752a204883","src/test_data/euc_kr_out.txt":"e7f32e026f70be1e1b58e0047baf7d3d2c520269c4f9b9992e158b4decb0a1a3","src/test_data/euc_kr_out_ref.txt":"c9907857980b20b8e9e3b584482ed6567a2be6185d72237b6322f0404944924e","src/test_data/gb18030_in.txt":"ab7231b2d3e9afacdbd7d7f3b9e5361a7ff9f7e1cfdb4f3bd905b9362b309e53","src/test_data/gb18030_in_ref.txt":"dc5069421adca2043c55f5012b55a76fdff651d22e6e699fd0978f8d5706815c","src/test_data/gb18030_out.txt":"f0208d527f5ca63de7d9a0323be8d5cf12d8a104b2943d92c2701f0c3364dac1","src/test_data/gb18030_out_ref.txt":"6819fe47627e4ea01027003fc514b9f21a1322e732d7f1fb92cc6c5455bc6c07","src/test_data/iso_2022_jp_in.txt":"cd24bbdcb1834e25db54646fbf4c41560a13dc7540f6be3dba4f5d97d44513af","src/test_data/iso_2022_jp_in_ref.txt":"3dc4e6a5e06471942d086b16c9440945e78415f6f3f47e43717e4bc2eac2cdf5","src/test_data/iso_2022_jp_out.txt":"9b6f015329dda6c3f9ee5ce6dbd6fa9c89acc21283e886836c78b8d833480c21","src/test_data/iso_2022_jp_out_ref.txt":"78cb260093a20116ad9a42f43b05d1848c5ab100b6b9a850749809e943884b35","src/test_data/jis0208_in.txt":"6df3030553ffb0a6615bb33dc8ea9dca6d9623a9028e2ffec754ce3c3da824cc","src/test_data/jis0208_in_ref.txt":"3dc4e6a5e06471942d086b16c9440945e78415f6f3f47e43717e4bc2eac2cdf5","src/test_data/jis0208_out.txt":"4ec24477e1675ce750733bdc3c5add1cd27b6bd4ce1f09289564646e9654e857","src/test_data/jis0208_out_ref.txt":"c3e1cef5032b2b1d93a406f31ff940c4e2dfe8859b8b17ca2761fee7a75a0e48","src/test_data/jis0212_in.txt":"c011f0dd72bd7c8cd922df9374ef8d2769a77190514c77f6c62b415852eeb9fe","src/test_data/jis0212_in_ref.txt":"7d9458b3d2f73e7092a7f505c08ce1d233dde18aa679fbcf9889256239cc9e06","src/test_data/shift_jis_in.txt":"02e389ccef0dd2122e63f503899402cb7f797912c2444cc80ab93131116c5524","src/test_data/shift_jis_in_ref.txt":"512f985950ca902e643c88682dba9708b7c38d3c5ec2925168ab00ac94ab19f9","src/test_data/shift_jis_out.txt":"5fbc44da7bf639bf6cfe0fa1fd3eba7102b88f81919c9ea991302712f69426fb","src/test_data/shift_jis_out_ref.txt":"466322c6fed8286c64582731755290c2296508efdd258826e6279686649b481f","src/test_labels_names.rs":"23a2e11b02b3b8d15fb5613a625e3edb2c61e70e3c581abfd638719a4088200d","src/testing.rs":"f59e671e95a98a56f6b573e8c6be4d71e670bf52f7e20eb1605d990aafa1894e","src/utf_16.rs":"c071a147fad38d750c2c247e141b76b929a48007b99f26b2922b9caecdaf2f25","src/utf_8.rs":"7b7d887b347f1aefa03246b028a36a72758a4ce76c28f3b45c19467851aa7839","src/variant.rs":"1fab5363588a1554a7169de8731ea9cded7ac63ea35caabdd1c27a8dde68c27b","src/x_user_defined.rs":"9456ca46168ef86c98399a2536f577ef7be3cdde90c0c51392d8ac48519d3fae"},"package":"b45de904aa0b010bce2ab45264d0631681847fa7b6f2eaa7dab7619943bc4f59"}