mirror of
https://github.com/archlinuxarm/PKGBUILDs.git
synced 2024-11-28 22:57:37 +00:00
6008 lines
180 KiB
Diff
6008 lines
180 KiB
Diff
From 3747f129106ce58fbad1b8f05cc836a6addd8588 Mon Sep 17 00:00:00 2001
|
|
From: Paolo Valente <paolo.valente@unimore.it>
|
|
Date: Thu, 9 May 2013 19:10:02 +0200
|
|
Subject: [PATCH 2/3] block: introduce the BFQ-v7 I/O sched for 3.13
|
|
|
|
Add the BFQ-v7 I/O scheduler to 3.13.
|
|
The general structure is borrowed from CFQ, as much of the code for
|
|
handling I/O contexts Over time, several useful features have been
|
|
ported from CFQ as well (details in the changelog in README.BFQ). A
|
|
(bfq_)queue is associated to each task doing I/O on a device, and each
|
|
time a scheduling decision has to be made a queue is selected and served
|
|
until it expires.
|
|
|
|
- Slices are given in the service domain: tasks are assigned
|
|
budgets, measured in number of sectors. Once got the disk, a task
|
|
must however consume its assigned budget within a configurable
|
|
maximum time (by default, the maximum possible value of the
|
|
budgets is automatically computed to comply with this timeout).
|
|
This allows the desired latency vs "throughput boosting" tradeoff
|
|
to be set.
|
|
|
|
- Budgets are scheduled according to a variant of WF2Q+, implemented
|
|
using an augmented rb-tree to take eligibility into account while
|
|
preserving an O(log N) overall complexity.
|
|
|
|
- A low-latency tunable is provided; if enabled, both interactive
|
|
and soft real-time applications are guaranteed a very low latency.
|
|
|
|
- Latency guarantees are preserved also in the presence of NCQ.
|
|
|
|
- Also with flash-based devices, a high throughput is achieved
|
|
while still preserving latency guarantees.
|
|
|
|
- BFQ features Early Queue Merge (EQM), a sort of fusion of the
|
|
cooperating-queue-merging and the preemption mechanisms present
|
|
in CFQ. EQM is in fact a unified mechanism that tries to get a
|
|
sequential read pattern, and hence a high throughput, with any
|
|
set of processes performing interleaved I/O over a contiguous
|
|
sequence of sectors.
|
|
|
|
- BFQ supports full hierarchical scheduling, exporting a cgroups
|
|
interface. Since each node has a full scheduler, each group can
|
|
be assigned its own weight.
|
|
|
|
- If the cgroups interface is not used, only I/O priorities can be
|
|
assigned to processes, with ioprio values mapped to weights
|
|
with the relation weight = IOPRIO_BE_NR - ioprio.
|
|
|
|
- ioprio classes are served in strict priority order, i.e., lower
|
|
priority queues are not served as long as there are higher
|
|
priority queues. Among queues in the same class the bandwidth is
|
|
distributed in proportion to the weight of each queue. A very
|
|
thin extra bandwidth is however guaranteed to the Idle class, to
|
|
prevent it from starving.
|
|
|
|
Signed-off-by: Paolo Valente <paolo.valente@unimore.it>
|
|
Signed-off-by: Arianna Avanzini <avanzini.arianna@gmail.com>
|
|
---
|
|
block/bfq-cgroup.c | 910 ++++++++++++++
|
|
block/bfq-ioc.c | 36 +
|
|
block/bfq-iosched.c | 3268 +++++++++++++++++++++++++++++++++++++++++++++++++++
|
|
block/bfq-sched.c | 1077 +++++++++++++++++
|
|
block/bfq.h | 614 ++++++++++
|
|
5 files changed, 5905 insertions(+)
|
|
create mode 100644 block/bfq-cgroup.c
|
|
create mode 100644 block/bfq-ioc.c
|
|
create mode 100644 block/bfq-iosched.c
|
|
create mode 100644 block/bfq-sched.c
|
|
create mode 100644 block/bfq.h
|
|
|
|
diff --git a/block/bfq-cgroup.c b/block/bfq-cgroup.c
|
|
new file mode 100644
|
|
index 0000000..b889acf
|
|
--- /dev/null
|
|
+++ b/block/bfq-cgroup.c
|
|
@@ -0,0 +1,910 @@
|
|
+/*
|
|
+ * BFQ: CGROUPS support.
|
|
+ *
|
|
+ * Based on ideas and code from CFQ:
|
|
+ * Copyright (C) 2003 Jens Axboe <axboe@kernel.dk>
|
|
+ *
|
|
+ * Copyright (C) 2008 Fabio Checconi <fabio@gandalf.sssup.it>
|
|
+ * Paolo Valente <paolo.valente@unimore.it>
|
|
+ *
|
|
+ * Copyright (C) 2010 Paolo Valente <paolo.valente@unimore.it>
|
|
+ *
|
|
+ * Licensed under the GPL-2 as detailed in the accompanying COPYING.BFQ file.
|
|
+ */
|
|
+
|
|
+#ifdef CONFIG_CGROUP_BFQIO
|
|
+
|
|
+static DEFINE_MUTEX(bfqio_mutex);
|
|
+
|
|
+static bool bfqio_is_removed(struct bfqio_cgroup *bgrp)
|
|
+{
|
|
+ return bgrp ? !bgrp->online : false;
|
|
+}
|
|
+
|
|
+static struct bfqio_cgroup bfqio_root_cgroup = {
|
|
+ .weight = BFQ_DEFAULT_GRP_WEIGHT,
|
|
+ .ioprio = BFQ_DEFAULT_GRP_IOPRIO,
|
|
+ .ioprio_class = BFQ_DEFAULT_GRP_CLASS,
|
|
+};
|
|
+
|
|
+static inline void bfq_init_entity(struct bfq_entity *entity,
|
|
+ struct bfq_group *bfqg)
|
|
+{
|
|
+ entity->weight = entity->new_weight;
|
|
+ entity->orig_weight = entity->new_weight;
|
|
+ entity->ioprio = entity->new_ioprio;
|
|
+ entity->ioprio_class = entity->new_ioprio_class;
|
|
+ entity->parent = bfqg->my_entity;
|
|
+ entity->sched_data = &bfqg->sched_data;
|
|
+}
|
|
+
|
|
+static struct bfqio_cgroup *css_to_bfqio(struct cgroup_subsys_state *css)
|
|
+{
|
|
+ return css ? container_of(css, struct bfqio_cgroup, css) : NULL;
|
|
+}
|
|
+
|
|
+/*
|
|
+ * Search the bfq_group for bfqd into the hash table (by now only a list)
|
|
+ * of bgrp. Must be called under rcu_read_lock().
|
|
+ */
|
|
+static struct bfq_group *bfqio_lookup_group(struct bfqio_cgroup *bgrp,
|
|
+ struct bfq_data *bfqd)
|
|
+{
|
|
+ struct bfq_group *bfqg;
|
|
+ void *key;
|
|
+
|
|
+ hlist_for_each_entry_rcu(bfqg, &bgrp->group_data, group_node) {
|
|
+ key = rcu_dereference(bfqg->bfqd);
|
|
+ if (key == bfqd)
|
|
+ return bfqg;
|
|
+ }
|
|
+
|
|
+ return NULL;
|
|
+}
|
|
+
|
|
+static inline void bfq_group_init_entity(struct bfqio_cgroup *bgrp,
|
|
+ struct bfq_group *bfqg)
|
|
+{
|
|
+ struct bfq_entity *entity = &bfqg->entity;
|
|
+
|
|
+ /*
|
|
+ * If the weight of the entity has never been set via the sysfs
|
|
+ * interface, then bgrp->weight == 0. In this case we initialize
|
|
+ * the weight from the current ioprio value. Otherwise, the group
|
|
+ * weight, if set, has priority over the ioprio value.
|
|
+ */
|
|
+ if (bgrp->weight == 0) {
|
|
+ entity->new_weight = bfq_ioprio_to_weight(bgrp->ioprio);
|
|
+ entity->new_ioprio = bgrp->ioprio;
|
|
+ } else {
|
|
+ entity->new_weight = bgrp->weight;
|
|
+ entity->new_ioprio = bfq_weight_to_ioprio(bgrp->weight);
|
|
+ }
|
|
+ entity->orig_weight = entity->weight = entity->new_weight;
|
|
+ entity->ioprio = entity->new_ioprio;
|
|
+ entity->ioprio_class = entity->new_ioprio_class = bgrp->ioprio_class;
|
|
+ entity->my_sched_data = &bfqg->sched_data;
|
|
+}
|
|
+
|
|
+static inline void bfq_group_set_parent(struct bfq_group *bfqg,
|
|
+ struct bfq_group *parent)
|
|
+{
|
|
+ struct bfq_entity *entity;
|
|
+
|
|
+ BUG_ON(parent == NULL);
|
|
+ BUG_ON(bfqg == NULL);
|
|
+
|
|
+ entity = &bfqg->entity;
|
|
+ entity->parent = parent->my_entity;
|
|
+ entity->sched_data = &parent->sched_data;
|
|
+}
|
|
+
|
|
+/**
|
|
+ * bfq_group_chain_alloc - allocate a chain of groups.
|
|
+ * @bfqd: queue descriptor.
|
|
+ * @css: the leaf cgroup_subsys_state this chain starts from.
|
|
+ *
|
|
+ * Allocate a chain of groups starting from the one belonging to
|
|
+ * @cgroup up to the root cgroup. Stop if a cgroup on the chain
|
|
+ * to the root has already an allocated group on @bfqd.
|
|
+ */
|
|
+static struct bfq_group *bfq_group_chain_alloc(struct bfq_data *bfqd,
|
|
+ struct cgroup_subsys_state *css)
|
|
+{
|
|
+ struct bfqio_cgroup *bgrp;
|
|
+ struct bfq_group *bfqg, *prev = NULL, *leaf = NULL;
|
|
+
|
|
+ for (; css != NULL; css = css->parent) {
|
|
+ bgrp = css_to_bfqio(css);
|
|
+
|
|
+ bfqg = bfqio_lookup_group(bgrp, bfqd);
|
|
+ if (bfqg != NULL) {
|
|
+ /*
|
|
+ * All the cgroups in the path from there to the
|
|
+ * root must have a bfq_group for bfqd, so we don't
|
|
+ * need any more allocations.
|
|
+ */
|
|
+ break;
|
|
+ }
|
|
+
|
|
+ bfqg = kzalloc(sizeof(*bfqg), GFP_ATOMIC);
|
|
+ if (bfqg == NULL)
|
|
+ goto cleanup;
|
|
+
|
|
+ bfq_group_init_entity(bgrp, bfqg);
|
|
+ bfqg->my_entity = &bfqg->entity;
|
|
+
|
|
+ if (leaf == NULL) {
|
|
+ leaf = bfqg;
|
|
+ prev = leaf;
|
|
+ } else {
|
|
+ bfq_group_set_parent(prev, bfqg);
|
|
+ /*
|
|
+ * Build a list of allocated nodes using the bfqd
|
|
+ * filed, that is still unused and will be initialized
|
|
+ * only after the node will be connected.
|
|
+ */
|
|
+ prev->bfqd = bfqg;
|
|
+ prev = bfqg;
|
|
+ }
|
|
+ }
|
|
+
|
|
+ return leaf;
|
|
+
|
|
+cleanup:
|
|
+ while (leaf != NULL) {
|
|
+ prev = leaf;
|
|
+ leaf = leaf->bfqd;
|
|
+ kfree(prev);
|
|
+ }
|
|
+
|
|
+ return NULL;
|
|
+}
|
|
+
|
|
+/**
|
|
+ * bfq_group_chain_link - link an allocatd group chain to a cgroup hierarchy.
|
|
+ * @bfqd: the queue descriptor.
|
|
+ * @css: the leaf cgroup_subsys_state to start from.
|
|
+ * @leaf: the leaf group (to be associated to @cgroup).
|
|
+ *
|
|
+ * Try to link a chain of groups to a cgroup hierarchy, connecting the
|
|
+ * nodes bottom-up, so we can be sure that when we find a cgroup in the
|
|
+ * hierarchy that already as a group associated to @bfqd all the nodes
|
|
+ * in the path to the root cgroup have one too.
|
|
+ *
|
|
+ * On locking: the queue lock protects the hierarchy (there is a hierarchy
|
|
+ * per device) while the bfqio_cgroup lock protects the list of groups
|
|
+ * belonging to the same cgroup.
|
|
+ */
|
|
+static void bfq_group_chain_link(struct bfq_data *bfqd,
|
|
+ struct cgroup_subsys_state *css,
|
|
+ struct bfq_group *leaf)
|
|
+{
|
|
+ struct bfqio_cgroup *bgrp;
|
|
+ struct bfq_group *bfqg, *next, *prev = NULL;
|
|
+ unsigned long flags;
|
|
+
|
|
+ assert_spin_locked(bfqd->queue->queue_lock);
|
|
+
|
|
+ for (; css != NULL && leaf != NULL; css = css->parent) {
|
|
+ bgrp = css_to_bfqio(css);
|
|
+ next = leaf->bfqd;
|
|
+
|
|
+ bfqg = bfqio_lookup_group(bgrp, bfqd);
|
|
+ BUG_ON(bfqg != NULL);
|
|
+
|
|
+ spin_lock_irqsave(&bgrp->lock, flags);
|
|
+
|
|
+ rcu_assign_pointer(leaf->bfqd, bfqd);
|
|
+ hlist_add_head_rcu(&leaf->group_node, &bgrp->group_data);
|
|
+ hlist_add_head(&leaf->bfqd_node, &bfqd->group_list);
|
|
+
|
|
+ spin_unlock_irqrestore(&bgrp->lock, flags);
|
|
+
|
|
+ prev = leaf;
|
|
+ leaf = next;
|
|
+ }
|
|
+
|
|
+ BUG_ON(css == NULL && leaf != NULL);
|
|
+ if (css != NULL && prev != NULL) {
|
|
+ bgrp = css_to_bfqio(css);
|
|
+ bfqg = bfqio_lookup_group(bgrp, bfqd);
|
|
+ bfq_group_set_parent(prev, bfqg);
|
|
+ }
|
|
+}
|
|
+
|
|
+/**
|
|
+ * bfq_find_alloc_group - return the group associated to @bfqd in @cgroup.
|
|
+ * @bfqd: queue descriptor.
|
|
+ * @cgroup: cgroup being searched for.
|
|
+ *
|
|
+ * Return a group associated to @bfqd in @cgroup, allocating one if
|
|
+ * necessary. When a group is returned all the cgroups in the path
|
|
+ * to the root have a group associated to @bfqd.
|
|
+ *
|
|
+ * If the allocation fails, return the root group: this breaks guarantees
|
|
+ * but is a safe fallbak. If this loss becames a problem it can be
|
|
+ * mitigated using the equivalent weight (given by the product of the
|
|
+ * weights of the groups in the path from @group to the root) in the
|
|
+ * root scheduler.
|
|
+ *
|
|
+ * We allocate all the missing nodes in the path from the leaf cgroup
|
|
+ * to the root and we connect the nodes only after all the allocations
|
|
+ * have been successful.
|
|
+ */
|
|
+static struct bfq_group *bfq_find_alloc_group(struct bfq_data *bfqd,
|
|
+ struct cgroup_subsys_state *css)
|
|
+{
|
|
+ struct bfqio_cgroup *bgrp = css_to_bfqio(css);
|
|
+ struct bfq_group *bfqg;
|
|
+
|
|
+ bfqg = bfqio_lookup_group(bgrp, bfqd);
|
|
+ if (bfqg != NULL)
|
|
+ return bfqg;
|
|
+
|
|
+ bfqg = bfq_group_chain_alloc(bfqd, css);
|
|
+ if (bfqg != NULL)
|
|
+ bfq_group_chain_link(bfqd, css, bfqg);
|
|
+ else
|
|
+ bfqg = bfqd->root_group;
|
|
+
|
|
+ return bfqg;
|
|
+}
|
|
+
|
|
+/**
|
|
+ * bfq_bfqq_move - migrate @bfqq to @bfqg.
|
|
+ * @bfqd: queue descriptor.
|
|
+ * @bfqq: the queue to move.
|
|
+ * @entity: @bfqq's entity.
|
|
+ * @bfqg: the group to move to.
|
|
+ *
|
|
+ * Move @bfqq to @bfqg, deactivating it from its old group and reactivating
|
|
+ * it on the new one. Avoid putting the entity on the old group idle tree.
|
|
+ *
|
|
+ * Must be called under the queue lock; the cgroup owning @bfqg must
|
|
+ * not disappear (by now this just means that we are called under
|
|
+ * rcu_read_lock()).
|
|
+ */
|
|
+static void bfq_bfqq_move(struct bfq_data *bfqd, struct bfq_queue *bfqq,
|
|
+ struct bfq_entity *entity, struct bfq_group *bfqg)
|
|
+{
|
|
+ int busy, resume;
|
|
+
|
|
+ busy = bfq_bfqq_busy(bfqq);
|
|
+ resume = !RB_EMPTY_ROOT(&bfqq->sort_list);
|
|
+
|
|
+ BUG_ON(resume && !entity->on_st);
|
|
+ BUG_ON(busy && !resume && entity->on_st &&
|
|
+ bfqq != bfqd->in_service_queue);
|
|
+
|
|
+ if (busy) {
|
|
+ BUG_ON(atomic_read(&bfqq->ref) < 2);
|
|
+
|
|
+ if (!resume)
|
|
+ bfq_del_bfqq_busy(bfqd, bfqq, 0);
|
|
+ else
|
|
+ bfq_deactivate_bfqq(bfqd, bfqq, 0);
|
|
+ } else if (entity->on_st)
|
|
+ bfq_put_idle_entity(bfq_entity_service_tree(entity), entity);
|
|
+
|
|
+ /*
|
|
+ * Here we use a reference to bfqg. We don't need a refcounter
|
|
+ * as the cgroup reference will not be dropped, so that its
|
|
+ * destroy() callback will not be invoked.
|
|
+ */
|
|
+ entity->parent = bfqg->my_entity;
|
|
+ entity->sched_data = &bfqg->sched_data;
|
|
+
|
|
+ if (busy && resume)
|
|
+ bfq_activate_bfqq(bfqd, bfqq);
|
|
+
|
|
+ if (bfqd->in_service_queue == NULL && !bfqd->rq_in_driver)
|
|
+ bfq_schedule_dispatch(bfqd);
|
|
+}
|
|
+
|
|
+/**
|
|
+ * __bfq_bic_change_cgroup - move @bic to @cgroup.
|
|
+ * @bfqd: the queue descriptor.
|
|
+ * @bic: the bic to move.
|
|
+ * @cgroup: the cgroup to move to.
|
|
+ *
|
|
+ * Move bic to cgroup, assuming that bfqd->queue is locked; the caller
|
|
+ * has to make sure that the reference to cgroup is valid across the call.
|
|
+ *
|
|
+ * NOTE: an alternative approach might have been to store the current
|
|
+ * cgroup in bfqq and getting a reference to it, reducing the lookup
|
|
+ * time here, at the price of slightly more complex code.
|
|
+ */
|
|
+static struct bfq_group *__bfq_bic_change_cgroup(struct bfq_data *bfqd,
|
|
+ struct bfq_io_cq *bic,
|
|
+ struct cgroup_subsys_state *css)
|
|
+{
|
|
+ struct bfq_queue *async_bfqq = bic_to_bfqq(bic, 0);
|
|
+ struct bfq_queue *sync_bfqq = bic_to_bfqq(bic, 1);
|
|
+ struct bfq_entity *entity;
|
|
+ struct bfq_group *bfqg;
|
|
+ struct bfqio_cgroup *bgrp;
|
|
+
|
|
+ bgrp = css_to_bfqio(css);
|
|
+
|
|
+ bfqg = bfq_find_alloc_group(bfqd, css);
|
|
+ if (async_bfqq != NULL) {
|
|
+ entity = &async_bfqq->entity;
|
|
+
|
|
+ if (entity->sched_data != &bfqg->sched_data) {
|
|
+ bic_set_bfqq(bic, NULL, 0);
|
|
+ bfq_log_bfqq(bfqd, async_bfqq,
|
|
+ "bic_change_group: %p %d",
|
|
+ async_bfqq, atomic_read(&async_bfqq->ref));
|
|
+ bfq_put_queue(async_bfqq);
|
|
+ }
|
|
+ }
|
|
+
|
|
+ if (sync_bfqq != NULL) {
|
|
+ entity = &sync_bfqq->entity;
|
|
+ if (entity->sched_data != &bfqg->sched_data)
|
|
+ bfq_bfqq_move(bfqd, sync_bfqq, entity, bfqg);
|
|
+ }
|
|
+
|
|
+ return bfqg;
|
|
+}
|
|
+
|
|
+/**
|
|
+ * bfq_bic_change_cgroup - move @bic to @cgroup.
|
|
+ * @bic: the bic being migrated.
|
|
+ * @cgroup: the destination cgroup.
|
|
+ *
|
|
+ * When the task owning @bic is moved to @cgroup, @bic is immediately
|
|
+ * moved into its new parent group.
|
|
+ */
|
|
+static void bfq_bic_change_cgroup(struct bfq_io_cq *bic,
|
|
+ struct cgroup_subsys_state *css)
|
|
+{
|
|
+ struct bfq_data *bfqd;
|
|
+ unsigned long uninitialized_var(flags);
|
|
+
|
|
+ bfqd = bfq_get_bfqd_locked(&(bic->icq.q->elevator->elevator_data),
|
|
+ &flags);
|
|
+ if (bfqd != NULL) {
|
|
+ __bfq_bic_change_cgroup(bfqd, bic, css);
|
|
+ bfq_put_bfqd_unlock(bfqd, &flags);
|
|
+ }
|
|
+}
|
|
+
|
|
+/**
|
|
+ * bfq_bic_update_cgroup - update the cgroup of @bic.
|
|
+ * @bic: the @bic to update.
|
|
+ *
|
|
+ * Make sure that @bic is enqueued in the cgroup of the current task.
|
|
+ * We need this in addition to moving bics during the cgroup attach
|
|
+ * phase because the task owning @bic could be at its first disk
|
|
+ * access or we may end up in the root cgroup as the result of a
|
|
+ * memory allocation failure and here we try to move to the right
|
|
+ * group.
|
|
+ *
|
|
+ * Must be called under the queue lock. It is safe to use the returned
|
|
+ * value even after the rcu_read_unlock() as the migration/destruction
|
|
+ * paths act under the queue lock too. IOW it is impossible to race with
|
|
+ * group migration/destruction and end up with an invalid group as:
|
|
+ * a) here cgroup has not yet been destroyed, nor its destroy callback
|
|
+ * has started execution, as current holds a reference to it,
|
|
+ * b) if it is destroyed after rcu_read_unlock() [after current is
|
|
+ * migrated to a different cgroup] its attach() callback will have
|
|
+ * taken care of remove all the references to the old cgroup data.
|
|
+ */
|
|
+static struct bfq_group *bfq_bic_update_cgroup(struct bfq_io_cq *bic)
|
|
+{
|
|
+ struct bfq_data *bfqd = bic_to_bfqd(bic);
|
|
+ struct bfq_group *bfqg;
|
|
+ struct cgroup_subsys_state *css;
|
|
+
|
|
+ BUG_ON(bfqd == NULL);
|
|
+
|
|
+ rcu_read_lock();
|
|
+ css = task_css(current, bfqio_subsys_id);
|
|
+ bfqg = __bfq_bic_change_cgroup(bfqd, bic, css);
|
|
+ rcu_read_unlock();
|
|
+
|
|
+ return bfqg;
|
|
+}
|
|
+
|
|
+/**
|
|
+ * bfq_flush_idle_tree - deactivate any entity on the idle tree of @st.
|
|
+ * @st: the service tree being flushed.
|
|
+ */
|
|
+static inline void bfq_flush_idle_tree(struct bfq_service_tree *st)
|
|
+{
|
|
+ struct bfq_entity *entity = st->first_idle;
|
|
+
|
|
+ for (; entity != NULL; entity = st->first_idle)
|
|
+ __bfq_deactivate_entity(entity, 0);
|
|
+}
|
|
+
|
|
+/**
|
|
+ * bfq_reparent_leaf_entity - move leaf entity to the root_group.
|
|
+ * @bfqd: the device data structure with the root group.
|
|
+ * @entity: the entity to move.
|
|
+ */
|
|
+static inline void bfq_reparent_leaf_entity(struct bfq_data *bfqd,
|
|
+ struct bfq_entity *entity)
|
|
+{
|
|
+ struct bfq_queue *bfqq = bfq_entity_to_bfqq(entity);
|
|
+
|
|
+ BUG_ON(bfqq == NULL);
|
|
+ bfq_bfqq_move(bfqd, bfqq, entity, bfqd->root_group);
|
|
+ return;
|
|
+}
|
|
+
|
|
+/**
|
|
+ * bfq_reparent_active_entities - move to the root group all active entities.
|
|
+ * @bfqd: the device data structure with the root group.
|
|
+ * @bfqg: the group to move from.
|
|
+ * @st: the service tree with the entities.
|
|
+ *
|
|
+ * Needs queue_lock to be taken and reference to be valid over the call.
|
|
+ */
|
|
+static inline void bfq_reparent_active_entities(struct bfq_data *bfqd,
|
|
+ struct bfq_group *bfqg,
|
|
+ struct bfq_service_tree *st)
|
|
+{
|
|
+ struct rb_root *active = &st->active;
|
|
+ struct bfq_entity *entity = NULL;
|
|
+
|
|
+ if (!RB_EMPTY_ROOT(&st->active))
|
|
+ entity = bfq_entity_of(rb_first(active));
|
|
+
|
|
+ for (; entity != NULL; entity = bfq_entity_of(rb_first(active)))
|
|
+ bfq_reparent_leaf_entity(bfqd, entity);
|
|
+
|
|
+ if (bfqg->sched_data.active_entity != NULL)
|
|
+ bfq_reparent_leaf_entity(bfqd, bfqg->sched_data.active_entity);
|
|
+
|
|
+ return;
|
|
+}
|
|
+
|
|
+/**
|
|
+ * bfq_destroy_group - destroy @bfqg.
|
|
+ * @bgrp: the bfqio_cgroup containing @bfqg.
|
|
+ * @bfqg: the group being destroyed.
|
|
+ *
|
|
+ * Destroy @bfqg, making sure that it is not referenced from its parent.
|
|
+ */
|
|
+static void bfq_destroy_group(struct bfqio_cgroup *bgrp, struct bfq_group *bfqg)
|
|
+{
|
|
+ struct bfq_data *bfqd;
|
|
+ struct bfq_service_tree *st;
|
|
+ struct bfq_entity *entity = bfqg->my_entity;
|
|
+ unsigned long uninitialized_var(flags);
|
|
+ int i;
|
|
+
|
|
+ hlist_del(&bfqg->group_node);
|
|
+
|
|
+ /*
|
|
+ * Empty all service_trees belonging to this group before deactivating
|
|
+ * the group itself.
|
|
+ */
|
|
+ for (i = 0; i < BFQ_IOPRIO_CLASSES; i++) {
|
|
+ st = bfqg->sched_data.service_tree + i;
|
|
+
|
|
+ /*
|
|
+ * The idle tree may still contain bfq_queues belonging
|
|
+ * to exited task because they never migrated to a different
|
|
+ * cgroup from the one being destroyed now. Noone else
|
|
+ * can access them so it's safe to act without any lock.
|
|
+ */
|
|
+ bfq_flush_idle_tree(st);
|
|
+
|
|
+ /*
|
|
+ * It may happen that some queues are still active
|
|
+ * (busy) upon group destruction (if the corresponding
|
|
+ * processes have been forced to terminate). We move
|
|
+ * all the leaf entities corresponding to these queues
|
|
+ * to the root_group.
|
|
+ * Also, it may happen that the group has an entity
|
|
+ * under service, which is disconnected from the active
|
|
+ * tree: it must be moved, too.
|
|
+ * There is no need to put the sync queues, as the
|
|
+ * scheduler has taken no reference.
|
|
+ */
|
|
+ bfqd = bfq_get_bfqd_locked(&bfqg->bfqd, &flags);
|
|
+ if (bfqd != NULL) {
|
|
+ bfq_reparent_active_entities(bfqd, bfqg, st);
|
|
+ bfq_put_bfqd_unlock(bfqd, &flags);
|
|
+ }
|
|
+ BUG_ON(!RB_EMPTY_ROOT(&st->active));
|
|
+ BUG_ON(!RB_EMPTY_ROOT(&st->idle));
|
|
+ }
|
|
+ BUG_ON(bfqg->sched_data.next_active != NULL);
|
|
+ BUG_ON(bfqg->sched_data.active_entity != NULL);
|
|
+
|
|
+ /*
|
|
+ * We may race with device destruction, take extra care when
|
|
+ * dereferencing bfqg->bfqd.
|
|
+ */
|
|
+ bfqd = bfq_get_bfqd_locked(&bfqg->bfqd, &flags);
|
|
+ if (bfqd != NULL) {
|
|
+ hlist_del(&bfqg->bfqd_node);
|
|
+ __bfq_deactivate_entity(entity, 0);
|
|
+ bfq_put_async_queues(bfqd, bfqg);
|
|
+ bfq_put_bfqd_unlock(bfqd, &flags);
|
|
+ }
|
|
+ BUG_ON(entity->tree != NULL);
|
|
+
|
|
+ /*
|
|
+ * No need to defer the kfree() to the end of the RCU grace
|
|
+ * period: we are called from the destroy() callback of our
|
|
+ * cgroup, so we can be sure that noone is a) still using
|
|
+ * this cgroup or b) doing lookups in it.
|
|
+ */
|
|
+ kfree(bfqg);
|
|
+}
|
|
+
|
|
+static void bfq_end_raising_async(struct bfq_data *bfqd)
|
|
+{
|
|
+ struct hlist_node *tmp;
|
|
+ struct bfq_group *bfqg;
|
|
+
|
|
+ hlist_for_each_entry_safe(bfqg, tmp, &bfqd->group_list, bfqd_node)
|
|
+ bfq_end_raising_async_queues(bfqd, bfqg);
|
|
+ bfq_end_raising_async_queues(bfqd, bfqd->root_group);
|
|
+}
|
|
+
|
|
+/**
|
|
+ * bfq_disconnect_groups - diconnect @bfqd from all its groups.
|
|
+ * @bfqd: the device descriptor being exited.
|
|
+ *
|
|
+ * When the device exits we just make sure that no lookup can return
|
|
+ * the now unused group structures. They will be deallocated on cgroup
|
|
+ * destruction.
|
|
+ */
|
|
+static void bfq_disconnect_groups(struct bfq_data *bfqd)
|
|
+{
|
|
+ struct hlist_node *tmp;
|
|
+ struct bfq_group *bfqg;
|
|
+
|
|
+ bfq_log(bfqd, "disconnect_groups beginning");
|
|
+ hlist_for_each_entry_safe(bfqg, tmp, &bfqd->group_list, bfqd_node) {
|
|
+ hlist_del(&bfqg->bfqd_node);
|
|
+
|
|
+ __bfq_deactivate_entity(bfqg->my_entity, 0);
|
|
+
|
|
+ /*
|
|
+ * Don't remove from the group hash, just set an
|
|
+ * invalid key. No lookups can race with the
|
|
+ * assignment as bfqd is being destroyed; this
|
|
+ * implies also that new elements cannot be added
|
|
+ * to the list.
|
|
+ */
|
|
+ rcu_assign_pointer(bfqg->bfqd, NULL);
|
|
+
|
|
+ bfq_log(bfqd, "disconnect_groups: put async for group %p",
|
|
+ bfqg);
|
|
+ bfq_put_async_queues(bfqd, bfqg);
|
|
+ }
|
|
+}
|
|
+
|
|
+static inline void bfq_free_root_group(struct bfq_data *bfqd)
|
|
+{
|
|
+ struct bfqio_cgroup *bgrp = &bfqio_root_cgroup;
|
|
+ struct bfq_group *bfqg = bfqd->root_group;
|
|
+
|
|
+ bfq_put_async_queues(bfqd, bfqg);
|
|
+
|
|
+ spin_lock_irq(&bgrp->lock);
|
|
+ hlist_del_rcu(&bfqg->group_node);
|
|
+ spin_unlock_irq(&bgrp->lock);
|
|
+
|
|
+ /*
|
|
+ * No need to synchronize_rcu() here: since the device is gone
|
|
+ * there cannot be any read-side access to its root_group.
|
|
+ */
|
|
+ kfree(bfqg);
|
|
+}
|
|
+
|
|
+static struct bfq_group *bfq_alloc_root_group(struct bfq_data *bfqd, int node)
|
|
+{
|
|
+ struct bfq_group *bfqg;
|
|
+ struct bfqio_cgroup *bgrp;
|
|
+ int i;
|
|
+
|
|
+ bfqg = kzalloc_node(sizeof(*bfqg), GFP_KERNEL, node);
|
|
+ if (bfqg == NULL)
|
|
+ return NULL;
|
|
+
|
|
+ bfqg->entity.parent = NULL;
|
|
+ for (i = 0; i < BFQ_IOPRIO_CLASSES; i++)
|
|
+ bfqg->sched_data.service_tree[i] = BFQ_SERVICE_TREE_INIT;
|
|
+
|
|
+ bgrp = &bfqio_root_cgroup;
|
|
+ spin_lock_irq(&bgrp->lock);
|
|
+ rcu_assign_pointer(bfqg->bfqd, bfqd);
|
|
+ hlist_add_head_rcu(&bfqg->group_node, &bgrp->group_data);
|
|
+ spin_unlock_irq(&bgrp->lock);
|
|
+
|
|
+ return bfqg;
|
|
+}
|
|
+
|
|
+#define SHOW_FUNCTION(__VAR) \
|
|
+static u64 bfqio_cgroup_##__VAR##_read(struct cgroup_subsys_state *css, \
|
|
+ struct cftype *cftype) \
|
|
+{ \
|
|
+ struct bfqio_cgroup *bgrp = css_to_bfqio(css); \
|
|
+ u64 ret = -ENODEV; \
|
|
+ \
|
|
+ mutex_lock(&bfqio_mutex); \
|
|
+ if (bfqio_is_removed(bgrp)) \
|
|
+ goto out_unlock; \
|
|
+ \
|
|
+ spin_lock_irq(&bgrp->lock); \
|
|
+ ret = bgrp->__VAR; \
|
|
+ spin_unlock_irq(&bgrp->lock); \
|
|
+ \
|
|
+out_unlock: \
|
|
+ mutex_unlock(&bfqio_mutex); \
|
|
+ return ret; \
|
|
+}
|
|
+
|
|
+SHOW_FUNCTION(weight);
|
|
+SHOW_FUNCTION(ioprio);
|
|
+SHOW_FUNCTION(ioprio_class);
|
|
+#undef SHOW_FUNCTION
|
|
+
|
|
+#define STORE_FUNCTION(__VAR, __MIN, __MAX) \
|
|
+static int bfqio_cgroup_##__VAR##_write(struct cgroup_subsys_state *css,\
|
|
+ struct cftype *cftype, \
|
|
+ u64 val) \
|
|
+{ \
|
|
+ struct bfqio_cgroup *bgrp = css_to_bfqio(css); \
|
|
+ struct bfq_group *bfqg; \
|
|
+ int ret = -EINVAL; \
|
|
+ \
|
|
+ if (val < (__MIN) || val > (__MAX)) \
|
|
+ return ret; \
|
|
+ \
|
|
+ ret = -ENODEV; \
|
|
+ mutex_lock(&bfqio_mutex); \
|
|
+ if (bfqio_is_removed(bgrp)) \
|
|
+ goto out_unlock; \
|
|
+ ret = 0; \
|
|
+ \
|
|
+ spin_lock_irq(&bgrp->lock); \
|
|
+ bgrp->__VAR = (unsigned short)val; \
|
|
+ hlist_for_each_entry(bfqg, &bgrp->group_data, group_node) { \
|
|
+ /* \
|
|
+ * Setting the ioprio_changed flag of the entity \
|
|
+ * to 1 with new_##__VAR == ##__VAR would re-set \
|
|
+ * the value of the weight to its ioprio mapping. \
|
|
+ * Set the flag only if necessary. \
|
|
+ */ \
|
|
+ if ((unsigned short)val != bfqg->entity.new_##__VAR) { \
|
|
+ bfqg->entity.new_##__VAR = (unsigned short)val; \
|
|
+ smp_wmb(); \
|
|
+ bfqg->entity.ioprio_changed = 1; \
|
|
+ } \
|
|
+ } \
|
|
+ spin_unlock_irq(&bgrp->lock); \
|
|
+ \
|
|
+out_unlock: \
|
|
+ mutex_unlock(&bfqio_mutex); \
|
|
+ return ret; \
|
|
+}
|
|
+
|
|
+STORE_FUNCTION(weight, BFQ_MIN_WEIGHT, BFQ_MAX_WEIGHT);
|
|
+STORE_FUNCTION(ioprio, 0, IOPRIO_BE_NR - 1);
|
|
+STORE_FUNCTION(ioprio_class, IOPRIO_CLASS_RT, IOPRIO_CLASS_IDLE);
|
|
+#undef STORE_FUNCTION
|
|
+
|
|
+static struct cftype bfqio_files[] = {
|
|
+ {
|
|
+ .name = "weight",
|
|
+ .read_u64 = bfqio_cgroup_weight_read,
|
|
+ .write_u64 = bfqio_cgroup_weight_write,
|
|
+ },
|
|
+ {
|
|
+ .name = "ioprio",
|
|
+ .read_u64 = bfqio_cgroup_ioprio_read,
|
|
+ .write_u64 = bfqio_cgroup_ioprio_write,
|
|
+ },
|
|
+ {
|
|
+ .name = "ioprio_class",
|
|
+ .read_u64 = bfqio_cgroup_ioprio_class_read,
|
|
+ .write_u64 = bfqio_cgroup_ioprio_class_write,
|
|
+ },
|
|
+ { }, /* terminate */
|
|
+};
|
|
+
|
|
+static struct cgroup_subsys_state *bfqio_create(struct cgroup_subsys_state
|
|
+ *parent_css)
|
|
+{
|
|
+ struct bfqio_cgroup *bgrp;
|
|
+
|
|
+ if (parent_css != NULL) {
|
|
+ bgrp = kzalloc(sizeof(*bgrp), GFP_KERNEL);
|
|
+ if (bgrp == NULL)
|
|
+ return ERR_PTR(-ENOMEM);
|
|
+ } else
|
|
+ bgrp = &bfqio_root_cgroup;
|
|
+
|
|
+ spin_lock_init(&bgrp->lock);
|
|
+ INIT_HLIST_HEAD(&bgrp->group_data);
|
|
+ bgrp->ioprio = BFQ_DEFAULT_GRP_IOPRIO;
|
|
+ bgrp->ioprio_class = BFQ_DEFAULT_GRP_CLASS;
|
|
+
|
|
+ return &bgrp->css;
|
|
+}
|
|
+
|
|
+/*
|
|
+ * We cannot support shared io contexts, as we have no means to support
|
|
+ * two tasks with the same ioc in two different groups without major rework
|
|
+ * of the main bic/bfqq data structures. By now we allow a task to change
|
|
+ * its cgroup only if it's the only owner of its ioc; the drawback of this
|
|
+ * behavior is that a group containing a task that forked using CLONE_IO
|
|
+ * will not be destroyed until the tasks sharing the ioc die.
|
|
+ */
|
|
+static int bfqio_can_attach(struct cgroup_subsys_state *css,
|
|
+ struct cgroup_taskset *tset)
|
|
+{
|
|
+ struct task_struct *task;
|
|
+ struct io_context *ioc;
|
|
+ int ret = 0;
|
|
+
|
|
+ cgroup_taskset_for_each(task, css, tset) {
|
|
+ /*
|
|
+ * task_lock() is needed to avoid races with
|
|
+ * exit_io_context()
|
|
+ */
|
|
+ task_lock(task);
|
|
+ ioc = task->io_context;
|
|
+ if (ioc != NULL && atomic_read(&ioc->nr_tasks) > 1)
|
|
+ /*
|
|
+ * ioc == NULL means that the task is either too young
|
|
+ * or exiting: if it has still no ioc the ioc can't be
|
|
+ * shared, if the task is exiting the attach will fail
|
|
+ * anyway, no matter what we return here.
|
|
+ */
|
|
+ ret = -EINVAL;
|
|
+ task_unlock(task);
|
|
+ if (ret)
|
|
+ break;
|
|
+ }
|
|
+
|
|
+ return ret;
|
|
+}
|
|
+
|
|
+static void bfqio_attach(struct cgroup_subsys_state *css,
|
|
+ struct cgroup_taskset *tset)
|
|
+{
|
|
+ struct task_struct *task;
|
|
+ struct io_context *ioc;
|
|
+ struct io_cq *icq;
|
|
+
|
|
+ /*
|
|
+ * IMPORTANT NOTE: The move of more than one process at a time to a
|
|
+ * new group has not yet been tested.
|
|
+ */
|
|
+ cgroup_taskset_for_each(task, css, tset) {
|
|
+ ioc = get_task_io_context(task, GFP_ATOMIC, NUMA_NO_NODE);
|
|
+ if (ioc) {
|
|
+ /*
|
|
+ * Handle cgroup change here.
|
|
+ */
|
|
+ rcu_read_lock();
|
|
+ hlist_for_each_entry_rcu(icq, &ioc->icq_list, ioc_node)
|
|
+ if (!strncmp(
|
|
+ icq->q->elevator->type->elevator_name,
|
|
+ "bfq", ELV_NAME_MAX))
|
|
+ bfq_bic_change_cgroup(icq_to_bic(icq),
|
|
+ css);
|
|
+ rcu_read_unlock();
|
|
+ put_io_context(ioc);
|
|
+ }
|
|
+ }
|
|
+}
|
|
+
|
|
+static void bfqio_destroy(struct cgroup_subsys_state *css)
|
|
+{
|
|
+ struct bfqio_cgroup *bgrp = css_to_bfqio(css);
|
|
+ struct hlist_node *tmp;
|
|
+ struct bfq_group *bfqg;
|
|
+
|
|
+ /*
|
|
+ * Since we are destroying the cgroup, there are no more tasks
|
|
+ * referencing it, and all the RCU grace periods that may have
|
|
+ * referenced it are ended (as the destruction of the parent
|
|
+ * cgroup is RCU-safe); bgrp->group_data will not be accessed by
|
|
+ * anything else and we don't need any synchronization.
|
|
+ */
|
|
+ hlist_for_each_entry_safe(bfqg, tmp, &bgrp->group_data, group_node)
|
|
+ bfq_destroy_group(bgrp, bfqg);
|
|
+
|
|
+ BUG_ON(!hlist_empty(&bgrp->group_data));
|
|
+
|
|
+ kfree(bgrp);
|
|
+}
|
|
+
|
|
+static int bfqio_css_online(struct cgroup_subsys_state *css)
|
|
+{
|
|
+ struct bfqio_cgroup *bgrp = css_to_bfqio(css);
|
|
+
|
|
+ mutex_lock(&bfqio_mutex);
|
|
+ bgrp->online = true;
|
|
+ mutex_unlock(&bfqio_mutex);
|
|
+
|
|
+ return 0;
|
|
+}
|
|
+
|
|
+static void bfqio_css_offline(struct cgroup_subsys_state *css)
|
|
+{
|
|
+ struct bfqio_cgroup *bgrp = css_to_bfqio(css);
|
|
+
|
|
+ mutex_lock(&bfqio_mutex);
|
|
+ bgrp->online = false;
|
|
+ mutex_unlock(&bfqio_mutex);
|
|
+}
|
|
+
|
|
+struct cgroup_subsys bfqio_subsys = {
|
|
+ .name = "bfqio",
|
|
+ .css_alloc = bfqio_create,
|
|
+ .css_online = bfqio_css_online,
|
|
+ .css_offline = bfqio_css_offline,
|
|
+ .can_attach = bfqio_can_attach,
|
|
+ .attach = bfqio_attach,
|
|
+ .css_free = bfqio_destroy,
|
|
+ .subsys_id = bfqio_subsys_id,
|
|
+ .base_cftypes = bfqio_files,
|
|
+};
|
|
+#else
|
|
+static inline void bfq_init_entity(struct bfq_entity *entity,
|
|
+ struct bfq_group *bfqg)
|
|
+{
|
|
+ entity->weight = entity->new_weight;
|
|
+ entity->orig_weight = entity->new_weight;
|
|
+ entity->ioprio = entity->new_ioprio;
|
|
+ entity->ioprio_class = entity->new_ioprio_class;
|
|
+ entity->sched_data = &bfqg->sched_data;
|
|
+}
|
|
+
|
|
+static inline struct bfq_group *
|
|
+bfq_bic_update_cgroup(struct bfq_io_cq *bic)
|
|
+{
|
|
+ struct bfq_data *bfqd = bic_to_bfqd(bic);
|
|
+ return bfqd->root_group;
|
|
+}
|
|
+
|
|
+static inline void bfq_bfqq_move(struct bfq_data *bfqd,
|
|
+ struct bfq_queue *bfqq,
|
|
+ struct bfq_entity *entity,
|
|
+ struct bfq_group *bfqg)
|
|
+{
|
|
+}
|
|
+
|
|
+static void bfq_end_raising_async(struct bfq_data *bfqd)
|
|
+{
|
|
+ bfq_end_raising_async_queues(bfqd, bfqd->root_group);
|
|
+}
|
|
+
|
|
+static inline void bfq_disconnect_groups(struct bfq_data *bfqd)
|
|
+{
|
|
+ bfq_put_async_queues(bfqd, bfqd->root_group);
|
|
+}
|
|
+
|
|
+static inline void bfq_free_root_group(struct bfq_data *bfqd)
|
|
+{
|
|
+ kfree(bfqd->root_group);
|
|
+}
|
|
+
|
|
+static struct bfq_group *bfq_alloc_root_group(struct bfq_data *bfqd, int node)
|
|
+{
|
|
+ struct bfq_group *bfqg;
|
|
+ int i;
|
|
+
|
|
+ bfqg = kmalloc_node(sizeof(*bfqg), GFP_KERNEL | __GFP_ZERO, node);
|
|
+ if (bfqg == NULL)
|
|
+ return NULL;
|
|
+
|
|
+ for (i = 0; i < BFQ_IOPRIO_CLASSES; i++)
|
|
+ bfqg->sched_data.service_tree[i] = BFQ_SERVICE_TREE_INIT;
|
|
+
|
|
+ return bfqg;
|
|
+}
|
|
+#endif
|
|
diff --git a/block/bfq-ioc.c b/block/bfq-ioc.c
|
|
new file mode 100644
|
|
index 0000000..7f6b000
|
|
--- /dev/null
|
|
+++ b/block/bfq-ioc.c
|
|
@@ -0,0 +1,36 @@
|
|
+/*
|
|
+ * BFQ: I/O context handling.
|
|
+ *
|
|
+ * Based on ideas and code from CFQ:
|
|
+ * Copyright (C) 2003 Jens Axboe <axboe@kernel.dk>
|
|
+ *
|
|
+ * Copyright (C) 2008 Fabio Checconi <fabio@gandalf.sssup.it>
|
|
+ * Paolo Valente <paolo.valente@unimore.it>
|
|
+ *
|
|
+ * Copyright (C) 2010 Paolo Valente <paolo.valente@unimore.it>
|
|
+ */
|
|
+
|
|
+/**
|
|
+ * icq_to_bic - convert iocontext queue structure to bfq_io_cq.
|
|
+ * @icq: the iocontext queue.
|
|
+ */
|
|
+static inline struct bfq_io_cq *icq_to_bic(struct io_cq *icq)
|
|
+{
|
|
+ /* bic->icq is the first member, %NULL will convert to %NULL */
|
|
+ return container_of(icq, struct bfq_io_cq, icq);
|
|
+}
|
|
+
|
|
+/**
|
|
+ * bfq_bic_lookup - search into @ioc a bic associated to @bfqd.
|
|
+ * @bfqd: the lookup key.
|
|
+ * @ioc: the io_context of the process doing I/O.
|
|
+ *
|
|
+ * Queue lock must be held.
|
|
+ */
|
|
+static inline struct bfq_io_cq *bfq_bic_lookup(struct bfq_data *bfqd,
|
|
+ struct io_context *ioc)
|
|
+{
|
|
+ if (ioc)
|
|
+ return icq_to_bic(ioc_lookup_icq(ioc, bfqd->queue));
|
|
+ return NULL;
|
|
+}
|
|
diff --git a/block/bfq-iosched.c b/block/bfq-iosched.c
|
|
new file mode 100644
|
|
index 0000000..7670400
|
|
--- /dev/null
|
|
+++ b/block/bfq-iosched.c
|
|
@@ -0,0 +1,3268 @@
|
|
+/*
|
|
+ * BFQ, or Budget Fair Queueing, disk scheduler.
|
|
+ *
|
|
+ * Based on ideas and code from CFQ:
|
|
+ * Copyright (C) 2003 Jens Axboe <axboe@kernel.dk>
|
|
+ *
|
|
+ * Copyright (C) 2008 Fabio Checconi <fabio@gandalf.sssup.it>
|
|
+ * Paolo Valente <paolo.valente@unimore.it>
|
|
+ *
|
|
+ * Copyright (C) 2010 Paolo Valente <paolo.valente@unimore.it>
|
|
+ *
|
|
+ * Licensed under the GPL-2 as detailed in the accompanying COPYING.BFQ file.
|
|
+ *
|
|
+ * BFQ is a proportional share disk scheduling algorithm based on the
|
|
+ * slice-by-slice service scheme of CFQ. But BFQ assigns budgets, measured in
|
|
+ * number of sectors, to tasks instead of time slices. The disk is not granted
|
|
+ * to the in-service task for a given time slice, but until it has exahusted
|
|
+ * its assigned budget. This change from the time to the service domain allows
|
|
+ * BFQ to distribute the disk bandwidth among tasks as desired, without any
|
|
+ * distortion due to ZBR, workload fluctuations or other factors. BFQ uses an
|
|
+ * ad hoc internal scheduler, called B-WF2Q+, to schedule tasks according to
|
|
+ * their budgets (more precisely BFQ schedules queues associated to tasks).
|
|
+ * Thanks to this accurate scheduler, BFQ can afford to assign high budgets to
|
|
+ * disk-bound non-seeky tasks (to boost the throughput), and yet guarantee low
|
|
+ * latencies to interactive and soft real-time applications.
|
|
+ *
|
|
+ * BFQ is described in [1], where also a reference to the initial, more
|
|
+ * theoretical paper on BFQ can be found. The interested reader can find in
|
|
+ * the latter paper full details on the main algorithm as well as formulas of
|
|
+ * the guarantees, plus formal proofs of all the properties. With respect to
|
|
+ * the version of BFQ presented in these papers, this implementation adds a
|
|
+ * few more heuristics, such as the one that guarantees a low latency to soft
|
|
+ * real-time applications, and a hierarchical extension based on H-WF2Q+.
|
|
+ *
|
|
+ * B-WF2Q+ is based on WF2Q+, that is described in [2], together with
|
|
+ * H-WF2Q+, while the augmented tree used to implement B-WF2Q+ with O(log N)
|
|
+ * complexity derives from the one introduced with EEVDF in [3].
|
|
+ *
|
|
+ * [1] P. Valente and M. Andreolini, ``Improving Application Responsiveness
|
|
+ * with the BFQ Disk I/O Scheduler'',
|
|
+ * Proceedings of the 5th Annual International Systems and Storage
|
|
+ * Conference (SYSTOR '12), June 2012.
|
|
+ *
|
|
+ * http://algogroup.unimo.it/people/paolo/disk_sched/bf1-v1-suite-results.pdf
|
|
+ *
|
|
+ * [2] Jon C.R. Bennett and H. Zhang, ``Hierarchical Packet Fair Queueing
|
|
+ * Algorithms,'' IEEE/ACM Transactions on Networking, 5(5):675-689,
|
|
+ * Oct 1997.
|
|
+ *
|
|
+ * http://www.cs.cmu.edu/~hzhang/papers/TON-97-Oct.ps.gz
|
|
+ *
|
|
+ * [3] I. Stoica and H. Abdel-Wahab, ``Earliest Eligible Virtual Deadline
|
|
+ * First: A Flexible and Accurate Mechanism for Proportional Share
|
|
+ * Resource Allocation,'' technical report.
|
|
+ *
|
|
+ * http://www.cs.berkeley.edu/~istoica/papers/eevdf-tr-95.pdf
|
|
+ */
|
|
+#include <linux/module.h>
|
|
+#include <linux/slab.h>
|
|
+#include <linux/blkdev.h>
|
|
+#include <linux/cgroup.h>
|
|
+#include <linux/elevator.h>
|
|
+#include <linux/jiffies.h>
|
|
+#include <linux/rbtree.h>
|
|
+#include <linux/ioprio.h>
|
|
+#include "bfq.h"
|
|
+#include "blk.h"
|
|
+
|
|
+/* Max number of dispatches in one round of service. */
|
|
+static const int bfq_quantum = 4;
|
|
+
|
|
+/* Expiration time of sync (0) and async (1) requests, in jiffies. */
|
|
+static const int bfq_fifo_expire[2] = { HZ / 4, HZ / 8 };
|
|
+
|
|
+/* Maximum backwards seek, in KiB. */
|
|
+static const int bfq_back_max = 16 * 1024;
|
|
+
|
|
+/* Penalty of a backwards seek, in number of sectors. */
|
|
+static const int bfq_back_penalty = 2;
|
|
+
|
|
+/* Idling period duration, in jiffies. */
|
|
+static int bfq_slice_idle = HZ / 125;
|
|
+
|
|
+/* Default maximum budget values, in sectors and number of requests. */
|
|
+static const int bfq_default_max_budget = 16 * 1024;
|
|
+static const int bfq_max_budget_async_rq = 4;
|
|
+
|
|
+/*
|
|
+ * Async to sync throughput distribution is controlled as follows:
|
|
+ * when an async request is served, the entity is charged the number
|
|
+ * of sectors of the request, multipled by the factor below
|
|
+ */
|
|
+static const int bfq_async_charge_factor = 10;
|
|
+
|
|
+/* Default timeout values, in jiffies, approximating CFQ defaults. */
|
|
+static const int bfq_timeout_sync = HZ / 8;
|
|
+static int bfq_timeout_async = HZ / 25;
|
|
+
|
|
+struct kmem_cache *bfq_pool;
|
|
+
|
|
+/* Below this threshold (in ms), we consider thinktime immediate. */
|
|
+#define BFQ_MIN_TT 2
|
|
+
|
|
+/* hw_tag detection: parallel requests threshold and min samples needed. */
|
|
+#define BFQ_HW_QUEUE_THRESHOLD 4
|
|
+#define BFQ_HW_QUEUE_SAMPLES 32
|
|
+
|
|
+#define BFQQ_SEEK_THR (sector_t)(8 * 1024)
|
|
+#define BFQQ_SEEKY(bfqq) ((bfqq)->seek_mean > BFQQ_SEEK_THR)
|
|
+
|
|
+/* Min samples used for peak rate estimation (for autotuning). */
|
|
+#define BFQ_PEAK_RATE_SAMPLES 32
|
|
+
|
|
+/* Shift used for peak rate fixed precision calculations. */
|
|
+#define BFQ_RATE_SHIFT 16
|
|
+
|
|
+/*
|
|
+ * The duration of the weight raising for interactive applications is
|
|
+ * computed automatically (as default behaviour), using the following
|
|
+ * formula: duration = (R / r) * T, where r is the peak rate of the
|
|
+ * disk, and R and T are two reference parameters. In particular, R is
|
|
+ * the peak rate of a reference disk, and T is about the maximum time
|
|
+ * for starting popular large applications on that disk, under BFQ and
|
|
+ * while reading two files in parallel. Finally, BFQ uses two
|
|
+ * different pairs (R, T) depending on whether the disk is rotational
|
|
+ * or non-rotational.
|
|
+ */
|
|
+#define T_rot (msecs_to_jiffies(5500))
|
|
+#define T_nonrot (msecs_to_jiffies(2000))
|
|
+/* Next two quantities are in sectors/usec, left-shifted by BFQ_RATE_SHIFT */
|
|
+#define R_rot 17415
|
|
+#define R_nonrot 34791
|
|
+
|
|
+#define BFQ_SERVICE_TREE_INIT ((struct bfq_service_tree) \
|
|
+ { RB_ROOT, RB_ROOT, NULL, NULL, 0, 0 })
|
|
+
|
|
+#define RQ_BIC(rq) ((struct bfq_io_cq *) (rq)->elv.priv[0])
|
|
+#define RQ_BFQQ(rq) ((rq)->elv.priv[1])
|
|
+
|
|
+static inline void bfq_schedule_dispatch(struct bfq_data *bfqd);
|
|
+
|
|
+#include "bfq-ioc.c"
|
|
+#include "bfq-sched.c"
|
|
+#include "bfq-cgroup.c"
|
|
+
|
|
+#define bfq_class_idle(bfqq) ((bfqq)->entity.ioprio_class ==\
|
|
+ IOPRIO_CLASS_IDLE)
|
|
+#define bfq_class_rt(bfqq) ((bfqq)->entity.ioprio_class ==\
|
|
+ IOPRIO_CLASS_RT)
|
|
+
|
|
+#define bfq_sample_valid(samples) ((samples) > 80)
|
|
+
|
|
+/*
|
|
+ * We regard a request as SYNC, if either it's a read or has the SYNC bit
|
|
+ * set (in which case it could also be a direct WRITE).
|
|
+ */
|
|
+static inline int bfq_bio_sync(struct bio *bio)
|
|
+{
|
|
+ if (bio_data_dir(bio) == READ || (bio->bi_rw & REQ_SYNC))
|
|
+ return 1;
|
|
+
|
|
+ return 0;
|
|
+}
|
|
+
|
|
+/*
|
|
+ * Scheduler run of queue, if there are requests pending and no one in the
|
|
+ * driver that will restart queueing.
|
|
+ */
|
|
+static inline void bfq_schedule_dispatch(struct bfq_data *bfqd)
|
|
+{
|
|
+ if (bfqd->queued != 0) {
|
|
+ bfq_log(bfqd, "schedule dispatch");
|
|
+ kblockd_schedule_work(bfqd->queue, &bfqd->unplug_work);
|
|
+ }
|
|
+}
|
|
+
|
|
+/*
|
|
+ * Lifted from AS - choose which of rq1 and rq2 that is best served now.
|
|
+ * We choose the request that is closesr to the head right now. Distance
|
|
+ * behind the head is penalized and only allowed to a certain extent.
|
|
+ */
|
|
+static struct request *bfq_choose_req(struct bfq_data *bfqd,
|
|
+ struct request *rq1,
|
|
+ struct request *rq2,
|
|
+ sector_t last)
|
|
+{
|
|
+ sector_t s1, s2, d1 = 0, d2 = 0;
|
|
+ unsigned long back_max;
|
|
+#define BFQ_RQ1_WRAP 0x01 /* request 1 wraps */
|
|
+#define BFQ_RQ2_WRAP 0x02 /* request 2 wraps */
|
|
+ unsigned wrap = 0; /* bit mask: requests behind the disk head? */
|
|
+
|
|
+ if (rq1 == NULL || rq1 == rq2)
|
|
+ return rq2;
|
|
+ if (rq2 == NULL)
|
|
+ return rq1;
|
|
+
|
|
+ if (rq_is_sync(rq1) && !rq_is_sync(rq2))
|
|
+ return rq1;
|
|
+ else if (rq_is_sync(rq2) && !rq_is_sync(rq1))
|
|
+ return rq2;
|
|
+ if ((rq1->cmd_flags & REQ_META) && !(rq2->cmd_flags & REQ_META))
|
|
+ return rq1;
|
|
+ else if ((rq2->cmd_flags & REQ_META) && !(rq1->cmd_flags & REQ_META))
|
|
+ return rq2;
|
|
+
|
|
+ s1 = blk_rq_pos(rq1);
|
|
+ s2 = blk_rq_pos(rq2);
|
|
+
|
|
+ /*
|
|
+ * By definition, 1KiB is 2 sectors.
|
|
+ */
|
|
+ back_max = bfqd->bfq_back_max * 2;
|
|
+
|
|
+ /*
|
|
+ * Strict one way elevator _except_ in the case where we allow
|
|
+ * short backward seeks which are biased as twice the cost of a
|
|
+ * similar forward seek.
|
|
+ */
|
|
+ if (s1 >= last)
|
|
+ d1 = s1 - last;
|
|
+ else if (s1 + back_max >= last)
|
|
+ d1 = (last - s1) * bfqd->bfq_back_penalty;
|
|
+ else
|
|
+ wrap |= BFQ_RQ1_WRAP;
|
|
+
|
|
+ if (s2 >= last)
|
|
+ d2 = s2 - last;
|
|
+ else if (s2 + back_max >= last)
|
|
+ d2 = (last - s2) * bfqd->bfq_back_penalty;
|
|
+ else
|
|
+ wrap |= BFQ_RQ2_WRAP;
|
|
+
|
|
+ /* Found required data */
|
|
+
|
|
+ /*
|
|
+ * By doing switch() on the bit mask "wrap" we avoid having to
|
|
+ * check two variables for all permutations: --> faster!
|
|
+ */
|
|
+ switch (wrap) {
|
|
+ case 0: /* common case for CFQ: rq1 and rq2 not wrapped */
|
|
+ if (d1 < d2)
|
|
+ return rq1;
|
|
+ else if (d2 < d1)
|
|
+ return rq2;
|
|
+ else {
|
|
+ if (s1 >= s2)
|
|
+ return rq1;
|
|
+ else
|
|
+ return rq2;
|
|
+ }
|
|
+
|
|
+ case BFQ_RQ2_WRAP:
|
|
+ return rq1;
|
|
+ case BFQ_RQ1_WRAP:
|
|
+ return rq2;
|
|
+ case (BFQ_RQ1_WRAP|BFQ_RQ2_WRAP): /* both rqs wrapped */
|
|
+ default:
|
|
+ /*
|
|
+ * Since both rqs are wrapped,
|
|
+ * start with the one that's further behind head
|
|
+ * (--> only *one* back seek required),
|
|
+ * since back seek takes more time than forward.
|
|
+ */
|
|
+ if (s1 <= s2)
|
|
+ return rq1;
|
|
+ else
|
|
+ return rq2;
|
|
+ }
|
|
+}
|
|
+
|
|
+static struct bfq_queue *
|
|
+bfq_rq_pos_tree_lookup(struct bfq_data *bfqd, struct rb_root *root,
|
|
+ sector_t sector, struct rb_node **ret_parent,
|
|
+ struct rb_node ***rb_link)
|
|
+{
|
|
+ struct rb_node **p, *parent;
|
|
+ struct bfq_queue *bfqq = NULL;
|
|
+
|
|
+ parent = NULL;
|
|
+ p = &root->rb_node;
|
|
+ while (*p) {
|
|
+ struct rb_node **n;
|
|
+
|
|
+ parent = *p;
|
|
+ bfqq = rb_entry(parent, struct bfq_queue, pos_node);
|
|
+
|
|
+ /*
|
|
+ * Sort strictly based on sector. Smallest to the left,
|
|
+ * largest to the right.
|
|
+ */
|
|
+ if (sector > blk_rq_pos(bfqq->next_rq))
|
|
+ n = &(*p)->rb_right;
|
|
+ else if (sector < blk_rq_pos(bfqq->next_rq))
|
|
+ n = &(*p)->rb_left;
|
|
+ else
|
|
+ break;
|
|
+ p = n;
|
|
+ bfqq = NULL;
|
|
+ }
|
|
+
|
|
+ *ret_parent = parent;
|
|
+ if (rb_link)
|
|
+ *rb_link = p;
|
|
+
|
|
+ bfq_log(bfqd, "rq_pos_tree_lookup %llu: returning %d",
|
|
+ (long long unsigned)sector,
|
|
+ bfqq != NULL ? bfqq->pid : 0);
|
|
+
|
|
+ return bfqq;
|
|
+}
|
|
+
|
|
+static void bfq_rq_pos_tree_add(struct bfq_data *bfqd, struct bfq_queue *bfqq)
|
|
+{
|
|
+ struct rb_node **p, *parent;
|
|
+ struct bfq_queue *__bfqq;
|
|
+
|
|
+ if (bfqq->pos_root != NULL) {
|
|
+ rb_erase(&bfqq->pos_node, bfqq->pos_root);
|
|
+ bfqq->pos_root = NULL;
|
|
+ }
|
|
+
|
|
+ if (bfq_class_idle(bfqq))
|
|
+ return;
|
|
+ if (!bfqq->next_rq)
|
|
+ return;
|
|
+
|
|
+ bfqq->pos_root = &bfqd->rq_pos_tree;
|
|
+ __bfqq = bfq_rq_pos_tree_lookup(bfqd, bfqq->pos_root,
|
|
+ blk_rq_pos(bfqq->next_rq), &parent, &p);
|
|
+ if (__bfqq == NULL) {
|
|
+ rb_link_node(&bfqq->pos_node, parent, p);
|
|
+ rb_insert_color(&bfqq->pos_node, bfqq->pos_root);
|
|
+ } else
|
|
+ bfqq->pos_root = NULL;
|
|
+}
|
|
+
|
|
+static struct request *bfq_find_next_rq(struct bfq_data *bfqd,
|
|
+ struct bfq_queue *bfqq,
|
|
+ struct request *last)
|
|
+{
|
|
+ struct rb_node *rbnext = rb_next(&last->rb_node);
|
|
+ struct rb_node *rbprev = rb_prev(&last->rb_node);
|
|
+ struct request *next = NULL, *prev = NULL;
|
|
+
|
|
+ BUG_ON(RB_EMPTY_NODE(&last->rb_node));
|
|
+
|
|
+ if (rbprev != NULL)
|
|
+ prev = rb_entry_rq(rbprev);
|
|
+
|
|
+ if (rbnext != NULL)
|
|
+ next = rb_entry_rq(rbnext);
|
|
+ else {
|
|
+ rbnext = rb_first(&bfqq->sort_list);
|
|
+ if (rbnext && rbnext != &last->rb_node)
|
|
+ next = rb_entry_rq(rbnext);
|
|
+ }
|
|
+
|
|
+ return bfq_choose_req(bfqd, next, prev, blk_rq_pos(last));
|
|
+}
|
|
+
|
|
+static void bfq_del_rq_rb(struct request *rq)
|
|
+{
|
|
+ struct bfq_queue *bfqq = RQ_BFQQ(rq);
|
|
+ struct bfq_data *bfqd = bfqq->bfqd;
|
|
+ const int sync = rq_is_sync(rq);
|
|
+
|
|
+ BUG_ON(bfqq->queued[sync] == 0);
|
|
+ bfqq->queued[sync]--;
|
|
+ bfqd->queued--;
|
|
+
|
|
+ elv_rb_del(&bfqq->sort_list, rq);
|
|
+
|
|
+ if (RB_EMPTY_ROOT(&bfqq->sort_list)) {
|
|
+ if (bfq_bfqq_busy(bfqq) && bfqq != bfqd->in_service_queue)
|
|
+ bfq_del_bfqq_busy(bfqd, bfqq, 1);
|
|
+ /*
|
|
+ * Remove queue from request-position tree as it is empty.
|
|
+ */
|
|
+ if (bfqq->pos_root != NULL) {
|
|
+ rb_erase(&bfqq->pos_node, bfqq->pos_root);
|
|
+ bfqq->pos_root = NULL;
|
|
+ }
|
|
+ }
|
|
+}
|
|
+
|
|
+/* see the definition of bfq_async_charge_factor for details */
|
|
+static inline unsigned long bfq_serv_to_charge(struct request *rq,
|
|
+ struct bfq_queue *bfqq)
|
|
+{
|
|
+ return blk_rq_sectors(rq) *
|
|
+ (1 + ((!bfq_bfqq_sync(bfqq)) * (bfqq->raising_coeff == 1) *
|
|
+ bfq_async_charge_factor));
|
|
+}
|
|
+
|
|
+/**
|
|
+ * bfq_updated_next_req - update the queue after a new next_rq selection.
|
|
+ * @bfqd: the device data the queue belongs to.
|
|
+ * @bfqq: the queue to update.
|
|
+ *
|
|
+ * If the first request of a queue changes we make sure that the queue
|
|
+ * has enough budget to serve at least its first request (if the
|
|
+ * request has grown). We do this because if the queue has not enough
|
|
+ * budget for its first request, it has to go through two dispatch
|
|
+ * rounds to actually get it dispatched.
|
|
+ */
|
|
+static void bfq_updated_next_req(struct bfq_data *bfqd,
|
|
+ struct bfq_queue *bfqq)
|
|
+{
|
|
+ struct bfq_entity *entity = &bfqq->entity;
|
|
+ struct bfq_service_tree *st = bfq_entity_service_tree(entity);
|
|
+ struct request *next_rq = bfqq->next_rq;
|
|
+ unsigned long new_budget;
|
|
+
|
|
+ if (next_rq == NULL)
|
|
+ return;
|
|
+
|
|
+ if (bfqq == bfqd->in_service_queue)
|
|
+ /*
|
|
+ * In order not to break guarantees, budgets cannot be
|
|
+ * changed after an entity has been selected.
|
|
+ */
|
|
+ return;
|
|
+
|
|
+ BUG_ON(entity->tree != &st->active);
|
|
+ BUG_ON(entity == entity->sched_data->active_entity);
|
|
+
|
|
+ new_budget = max_t(unsigned long, bfqq->max_budget,
|
|
+ bfq_serv_to_charge(next_rq, bfqq));
|
|
+ entity->budget = new_budget;
|
|
+ bfq_log_bfqq(bfqd, bfqq, "updated next rq: new budget %lu", new_budget);
|
|
+ bfq_activate_bfqq(bfqd, bfqq);
|
|
+}
|
|
+
|
|
+static inline unsigned int bfq_wrais_duration(struct bfq_data *bfqd)
|
|
+{
|
|
+ u64 dur;
|
|
+
|
|
+ if (bfqd->bfq_raising_max_time > 0)
|
|
+ return bfqd->bfq_raising_max_time;
|
|
+
|
|
+ dur = bfqd->RT_prod;
|
|
+ do_div(dur, bfqd->peak_rate);
|
|
+
|
|
+ return dur;
|
|
+}
|
|
+
|
|
+static void bfq_add_rq_rb(struct request *rq)
|
|
+{
|
|
+ struct bfq_queue *bfqq = RQ_BFQQ(rq);
|
|
+ struct bfq_entity *entity = &bfqq->entity;
|
|
+ struct bfq_data *bfqd = bfqq->bfqd;
|
|
+ struct request *next_rq, *prev;
|
|
+ unsigned long old_raising_coeff = bfqq->raising_coeff;
|
|
+ int idle_for_long_time = 0;
|
|
+
|
|
+ bfq_log_bfqq(bfqd, bfqq, "add_rq_rb %d", rq_is_sync(rq));
|
|
+ bfqq->queued[rq_is_sync(rq)]++;
|
|
+ bfqd->queued++;
|
|
+
|
|
+ elv_rb_add(&bfqq->sort_list, rq);
|
|
+
|
|
+ /*
|
|
+ * Check if this request is a better next-serve candidate.
|
|
+ */
|
|
+ prev = bfqq->next_rq;
|
|
+ next_rq = bfq_choose_req(bfqd, bfqq->next_rq, rq, bfqd->last_position);
|
|
+ BUG_ON(next_rq == NULL);
|
|
+ bfqq->next_rq = next_rq;
|
|
+
|
|
+ /*
|
|
+ * Adjust priority tree position, if next_rq changes.
|
|
+ */
|
|
+ if (prev != bfqq->next_rq)
|
|
+ bfq_rq_pos_tree_add(bfqd, bfqq);
|
|
+
|
|
+ if (!bfq_bfqq_busy(bfqq)) {
|
|
+ int soft_rt = bfqd->bfq_raising_max_softrt_rate > 0 &&
|
|
+ time_is_before_jiffies(bfqq->soft_rt_next_start);
|
|
+ idle_for_long_time = time_is_before_jiffies(
|
|
+ bfqq->budget_timeout +
|
|
+ bfqd->bfq_raising_min_idle_time);
|
|
+ entity->budget = max_t(unsigned long, bfqq->max_budget,
|
|
+ bfq_serv_to_charge(next_rq, bfqq));
|
|
+
|
|
+ if (!bfqd->low_latency)
|
|
+ goto add_bfqq_busy;
|
|
+
|
|
+ /*
|
|
+ * If the queue is not being boosted and has been idle
|
|
+ * for enough time, start a weight-raising period
|
|
+ */
|
|
+ if (old_raising_coeff == 1 &&
|
|
+ (idle_for_long_time || soft_rt)) {
|
|
+ bfqq->raising_coeff = bfqd->bfq_raising_coeff;
|
|
+ if (idle_for_long_time)
|
|
+ bfqq->raising_cur_max_time =
|
|
+ bfq_wrais_duration(bfqd);
|
|
+ else
|
|
+ bfqq->raising_cur_max_time =
|
|
+ bfqd->bfq_raising_rt_max_time;
|
|
+ bfq_log_bfqq(bfqd, bfqq,
|
|
+ "wrais starting at %llu msec,"
|
|
+ "rais_max_time %u",
|
|
+ bfqq->last_rais_start_finish,
|
|
+ jiffies_to_msecs(bfqq->
|
|
+ raising_cur_max_time));
|
|
+ } else if (old_raising_coeff > 1) {
|
|
+ if (idle_for_long_time)
|
|
+ bfqq->raising_cur_max_time =
|
|
+ bfq_wrais_duration(bfqd);
|
|
+ else if (bfqq->raising_cur_max_time ==
|
|
+ bfqd->bfq_raising_rt_max_time &&
|
|
+ !soft_rt) {
|
|
+ bfqq->raising_coeff = 1;
|
|
+ bfq_log_bfqq(bfqd, bfqq,
|
|
+ "wrais ending at %llu msec,"
|
|
+ "rais_max_time %u",
|
|
+ bfqq->last_rais_start_finish,
|
|
+ jiffies_to_msecs(bfqq->
|
|
+ raising_cur_max_time));
|
|
+ } else if ((bfqq->last_rais_start_finish +
|
|
+ bfqq->raising_cur_max_time <
|
|
+ jiffies + bfqd->bfq_raising_rt_max_time) &&
|
|
+ soft_rt) {
|
|
+ /*
|
|
+ *
|
|
+ * The remaining weight-raising time is lower
|
|
+ * than bfqd->bfq_raising_rt_max_time, which
|
|
+ * means that the application is enjoying
|
|
+ * weight raising either because deemed soft rt
|
|
+ * in the near past, or because deemed
|
|
+ * interactive a long ago. In both cases,
|
|
+ * resetting now the current remaining weight-
|
|
+ * raising time for the application to the
|
|
+ * weight-raising duration for soft rt
|
|
+ * applications would not cause any latency
|
|
+ * increase for the application (as the new
|
|
+ * duration would be higher than the remaining
|
|
+ * time).
|
|
+ *
|
|
+ * In addition, the application is now meeting
|
|
+ * the requirements for being deemed soft rt.
|
|
+ * In the end we can correctly and safely
|
|
+ * (re)charge the weight-raising duration for
|
|
+ * the application with the weight-raising
|
|
+ * duration for soft rt applications.
|
|
+ *
|
|
+ * In particular, doing this recharge now, i.e.,
|
|
+ * before the weight-raising period for the
|
|
+ * application finishes, reduces the probability
|
|
+ * of the following negative scenario:
|
|
+ * 1) the weight of a soft rt application is
|
|
+ * raised at startup (as for any newly
|
|
+ * created application),
|
|
+ * 2) since the application is not interactive,
|
|
+ * at a certain time weight-raising is
|
|
+ * stopped for the application,
|
|
+ * 3) at that time the application happens to
|
|
+ * still have pending requests, and hence
|
|
+ * is destined to not have a chance to be
|
|
+ * deemed soft rt before these requests are
|
|
+ * completed (see the comments to the
|
|
+ * function bfq_bfqq_softrt_next_start()
|
|
+ * for details on soft rt detection),
|
|
+ * 4) these pending requests experience a high
|
|
+ * latency because the application is not
|
|
+ * weight-raised while they are pending.
|
|
+ */
|
|
+ bfqq->last_rais_start_finish = jiffies;
|
|
+ bfqq->raising_cur_max_time =
|
|
+ bfqd->bfq_raising_rt_max_time;
|
|
+ }
|
|
+ }
|
|
+ if (old_raising_coeff != bfqq->raising_coeff)
|
|
+ entity->ioprio_changed = 1;
|
|
+add_bfqq_busy:
|
|
+ bfqq->last_idle_bklogged = jiffies;
|
|
+ bfqq->service_from_backlogged = 0;
|
|
+ bfq_clear_bfqq_softrt_update(bfqq);
|
|
+ bfq_add_bfqq_busy(bfqd, bfqq);
|
|
+ } else {
|
|
+ if (bfqd->low_latency && old_raising_coeff == 1 &&
|
|
+ !rq_is_sync(rq) &&
|
|
+ bfqq->last_rais_start_finish +
|
|
+ time_is_before_jiffies(
|
|
+ bfqd->bfq_raising_min_inter_arr_async)) {
|
|
+ bfqq->raising_coeff = bfqd->bfq_raising_coeff;
|
|
+ bfqq->raising_cur_max_time = bfq_wrais_duration(bfqd);
|
|
+
|
|
+ bfqd->raised_busy_queues++;
|
|
+ entity->ioprio_changed = 1;
|
|
+ bfq_log_bfqq(bfqd, bfqq,
|
|
+ "non-idle wrais starting at %llu msec,"
|
|
+ "rais_max_time %u",
|
|
+ bfqq->last_rais_start_finish,
|
|
+ jiffies_to_msecs(bfqq->
|
|
+ raising_cur_max_time));
|
|
+ }
|
|
+ bfq_updated_next_req(bfqd, bfqq);
|
|
+ }
|
|
+
|
|
+ if (bfqd->low_latency &&
|
|
+ (old_raising_coeff == 1 || bfqq->raising_coeff == 1 ||
|
|
+ idle_for_long_time))
|
|
+ bfqq->last_rais_start_finish = jiffies;
|
|
+}
|
|
+
|
|
+static void bfq_reposition_rq_rb(struct bfq_queue *bfqq, struct request *rq)
|
|
+{
|
|
+ elv_rb_del(&bfqq->sort_list, rq);
|
|
+ bfqq->queued[rq_is_sync(rq)]--;
|
|
+ bfqq->bfqd->queued--;
|
|
+ bfq_add_rq_rb(rq);
|
|
+}
|
|
+
|
|
+static struct request *bfq_find_rq_fmerge(struct bfq_data *bfqd,
|
|
+ struct bio *bio)
|
|
+{
|
|
+ struct task_struct *tsk = current;
|
|
+ struct bfq_io_cq *bic;
|
|
+ struct bfq_queue *bfqq;
|
|
+
|
|
+ bic = bfq_bic_lookup(bfqd, tsk->io_context);
|
|
+ if (bic == NULL)
|
|
+ return NULL;
|
|
+
|
|
+ bfqq = bic_to_bfqq(bic, bfq_bio_sync(bio));
|
|
+ if (bfqq != NULL)
|
|
+ return elv_rb_find(&bfqq->sort_list, bio_end_sector(bio));
|
|
+
|
|
+ return NULL;
|
|
+}
|
|
+
|
|
+static void bfq_activate_request(struct request_queue *q, struct request *rq)
|
|
+{
|
|
+ struct bfq_data *bfqd = q->elevator->elevator_data;
|
|
+
|
|
+ bfqd->rq_in_driver++;
|
|
+ bfqd->last_position = blk_rq_pos(rq) + blk_rq_sectors(rq);
|
|
+ bfq_log(bfqd, "activate_request: new bfqd->last_position %llu",
|
|
+ (long long unsigned)bfqd->last_position);
|
|
+}
|
|
+
|
|
+static void bfq_deactivate_request(struct request_queue *q, struct request *rq)
|
|
+{
|
|
+ struct bfq_data *bfqd = q->elevator->elevator_data;
|
|
+
|
|
+ WARN_ON(bfqd->rq_in_driver == 0);
|
|
+ bfqd->rq_in_driver--;
|
|
+}
|
|
+
|
|
+static void bfq_remove_request(struct request *rq)
|
|
+{
|
|
+ struct bfq_queue *bfqq = RQ_BFQQ(rq);
|
|
+ struct bfq_data *bfqd = bfqq->bfqd;
|
|
+
|
|
+ if (bfqq->next_rq == rq) {
|
|
+ bfqq->next_rq = bfq_find_next_rq(bfqd, bfqq, rq);
|
|
+ bfq_updated_next_req(bfqd, bfqq);
|
|
+ }
|
|
+
|
|
+ list_del_init(&rq->queuelist);
|
|
+ bfq_del_rq_rb(rq);
|
|
+
|
|
+ if (rq->cmd_flags & REQ_META) {
|
|
+ WARN_ON(bfqq->meta_pending == 0);
|
|
+ bfqq->meta_pending--;
|
|
+ }
|
|
+}
|
|
+
|
|
+static int bfq_merge(struct request_queue *q, struct request **req,
|
|
+ struct bio *bio)
|
|
+{
|
|
+ struct bfq_data *bfqd = q->elevator->elevator_data;
|
|
+ struct request *__rq;
|
|
+
|
|
+ __rq = bfq_find_rq_fmerge(bfqd, bio);
|
|
+ if (__rq != NULL && elv_rq_merge_ok(__rq, bio)) {
|
|
+ *req = __rq;
|
|
+ return ELEVATOR_FRONT_MERGE;
|
|
+ }
|
|
+
|
|
+ return ELEVATOR_NO_MERGE;
|
|
+}
|
|
+
|
|
+static void bfq_merged_request(struct request_queue *q, struct request *req,
|
|
+ int type)
|
|
+{
|
|
+ if (type == ELEVATOR_FRONT_MERGE) {
|
|
+ struct bfq_queue *bfqq = RQ_BFQQ(req);
|
|
+
|
|
+ bfq_reposition_rq_rb(bfqq, req);
|
|
+ }
|
|
+}
|
|
+
|
|
+static void bfq_merged_requests(struct request_queue *q, struct request *rq,
|
|
+ struct request *next)
|
|
+{
|
|
+ struct bfq_queue *bfqq = RQ_BFQQ(rq);
|
|
+
|
|
+ /*
|
|
+ * Reposition in fifo if next is older than rq.
|
|
+ */
|
|
+ if (!list_empty(&rq->queuelist) && !list_empty(&next->queuelist) &&
|
|
+ time_before(rq_fifo_time(next), rq_fifo_time(rq))) {
|
|
+ list_move(&rq->queuelist, &next->queuelist);
|
|
+ rq_set_fifo_time(rq, rq_fifo_time(next));
|
|
+ }
|
|
+
|
|
+ if (bfqq->next_rq == next)
|
|
+ bfqq->next_rq = rq;
|
|
+
|
|
+ bfq_remove_request(next);
|
|
+}
|
|
+
|
|
+/* Must be called with bfqq != NULL */
|
|
+static inline void bfq_bfqq_end_raising(struct bfq_queue *bfqq)
|
|
+{
|
|
+ BUG_ON(bfqq == NULL);
|
|
+ if (bfq_bfqq_busy(bfqq))
|
|
+ bfqq->bfqd->raised_busy_queues--;
|
|
+ bfqq->raising_coeff = 1;
|
|
+ bfqq->raising_cur_max_time = 0;
|
|
+ /* Trigger a weight change on the next activation of the queue */
|
|
+ bfqq->entity.ioprio_changed = 1;
|
|
+}
|
|
+
|
|
+static void bfq_end_raising_async_queues(struct bfq_data *bfqd,
|
|
+ struct bfq_group *bfqg)
|
|
+{
|
|
+ int i, j;
|
|
+
|
|
+ for (i = 0; i < 2; i++)
|
|
+ for (j = 0; j < IOPRIO_BE_NR; j++)
|
|
+ if (bfqg->async_bfqq[i][j] != NULL)
|
|
+ bfq_bfqq_end_raising(bfqg->async_bfqq[i][j]);
|
|
+ if (bfqg->async_idle_bfqq != NULL)
|
|
+ bfq_bfqq_end_raising(bfqg->async_idle_bfqq);
|
|
+}
|
|
+
|
|
+static void bfq_end_raising(struct bfq_data *bfqd)
|
|
+{
|
|
+ struct bfq_queue *bfqq;
|
|
+
|
|
+ spin_lock_irq(bfqd->queue->queue_lock);
|
|
+
|
|
+ list_for_each_entry(bfqq, &bfqd->active_list, bfqq_list)
|
|
+ bfq_bfqq_end_raising(bfqq);
|
|
+ list_for_each_entry(bfqq, &bfqd->idle_list, bfqq_list)
|
|
+ bfq_bfqq_end_raising(bfqq);
|
|
+ bfq_end_raising_async(bfqd);
|
|
+
|
|
+ spin_unlock_irq(bfqd->queue->queue_lock);
|
|
+}
|
|
+
|
|
+static int bfq_allow_merge(struct request_queue *q, struct request *rq,
|
|
+ struct bio *bio)
|
|
+{
|
|
+ struct bfq_data *bfqd = q->elevator->elevator_data;
|
|
+ struct bfq_io_cq *bic;
|
|
+ struct bfq_queue *bfqq;
|
|
+
|
|
+ /*
|
|
+ * Disallow merge of a sync bio into an async request.
|
|
+ */
|
|
+ if (bfq_bio_sync(bio) && !rq_is_sync(rq))
|
|
+ return 0;
|
|
+
|
|
+ /*
|
|
+ * Lookup the bfqq that this bio will be queued with. Allow
|
|
+ * merge only if rq is queued there.
|
|
+ * Queue lock is held here.
|
|
+ */
|
|
+ bic = bfq_bic_lookup(bfqd, current->io_context);
|
|
+ if (bic == NULL)
|
|
+ return 0;
|
|
+
|
|
+ bfqq = bic_to_bfqq(bic, bfq_bio_sync(bio));
|
|
+ return bfqq == RQ_BFQQ(rq);
|
|
+}
|
|
+
|
|
+static void __bfq_set_in_service_queue(struct bfq_data *bfqd,
|
|
+ struct bfq_queue *bfqq)
|
|
+{
|
|
+ if (bfqq != NULL) {
|
|
+ bfq_mark_bfqq_must_alloc(bfqq);
|
|
+ bfq_mark_bfqq_budget_new(bfqq);
|
|
+ bfq_clear_bfqq_fifo_expire(bfqq);
|
|
+
|
|
+ bfqd->budgets_assigned = (bfqd->budgets_assigned*7 + 256) / 8;
|
|
+
|
|
+ bfq_log_bfqq(bfqd, bfqq,
|
|
+ "set_in_service_queue, cur-budget = %lu",
|
|
+ bfqq->entity.budget);
|
|
+ }
|
|
+
|
|
+ bfqd->in_service_queue = bfqq;
|
|
+}
|
|
+
|
|
+/*
|
|
+ * Get and set a new queue for service.
|
|
+ */
|
|
+static struct bfq_queue *bfq_set_in_service_queue(struct bfq_data *bfqd,
|
|
+ struct bfq_queue *bfqq)
|
|
+{
|
|
+ if (!bfqq)
|
|
+ bfqq = bfq_get_next_queue(bfqd);
|
|
+ else
|
|
+ bfq_get_next_queue_forced(bfqd, bfqq);
|
|
+
|
|
+ __bfq_set_in_service_queue(bfqd, bfqq);
|
|
+ return bfqq;
|
|
+}
|
|
+
|
|
+static inline sector_t bfq_dist_from_last(struct bfq_data *bfqd,
|
|
+ struct request *rq)
|
|
+{
|
|
+ if (blk_rq_pos(rq) >= bfqd->last_position)
|
|
+ return blk_rq_pos(rq) - bfqd->last_position;
|
|
+ else
|
|
+ return bfqd->last_position - blk_rq_pos(rq);
|
|
+}
|
|
+
|
|
+/*
|
|
+ * Return true if bfqq has no request pending and rq is close enough to
|
|
+ * bfqd->last_position, or if rq is closer to bfqd->last_position than
|
|
+ * bfqq->next_rq
|
|
+ */
|
|
+static inline int bfq_rq_close(struct bfq_data *bfqd, struct request *rq)
|
|
+{
|
|
+ return bfq_dist_from_last(bfqd, rq) <= BFQQ_SEEK_THR;
|
|
+}
|
|
+
|
|
+static struct bfq_queue *bfqq_close(struct bfq_data *bfqd)
|
|
+{
|
|
+ struct rb_root *root = &bfqd->rq_pos_tree;
|
|
+ struct rb_node *parent, *node;
|
|
+ struct bfq_queue *__bfqq;
|
|
+ sector_t sector = bfqd->last_position;
|
|
+
|
|
+ if (RB_EMPTY_ROOT(root))
|
|
+ return NULL;
|
|
+
|
|
+ /*
|
|
+ * First, if we find a request starting at the end of the last
|
|
+ * request, choose it.
|
|
+ */
|
|
+ __bfqq = bfq_rq_pos_tree_lookup(bfqd, root, sector, &parent, NULL);
|
|
+ if (__bfqq != NULL)
|
|
+ return __bfqq;
|
|
+
|
|
+ /*
|
|
+ * If the exact sector wasn't found, the parent of the NULL leaf
|
|
+ * will contain the closest sector (rq_pos_tree sorted by next_request
|
|
+ * position).
|
|
+ */
|
|
+ __bfqq = rb_entry(parent, struct bfq_queue, pos_node);
|
|
+ if (bfq_rq_close(bfqd, __bfqq->next_rq))
|
|
+ return __bfqq;
|
|
+
|
|
+ if (blk_rq_pos(__bfqq->next_rq) < sector)
|
|
+ node = rb_next(&__bfqq->pos_node);
|
|
+ else
|
|
+ node = rb_prev(&__bfqq->pos_node);
|
|
+ if (node == NULL)
|
|
+ return NULL;
|
|
+
|
|
+ __bfqq = rb_entry(node, struct bfq_queue, pos_node);
|
|
+ if (bfq_rq_close(bfqd, __bfqq->next_rq))
|
|
+ return __bfqq;
|
|
+
|
|
+ return NULL;
|
|
+}
|
|
+
|
|
+/*
|
|
+ * bfqd - obvious
|
|
+ * cur_bfqq - passed in so that we don't decide that the current queue
|
|
+ * is closely cooperating with itself.
|
|
+ *
|
|
+ * We are assuming that cur_bfqq has dispatched at least one request,
|
|
+ * and that bfqd->last_position reflects a position on the disk associated
|
|
+ * with the I/O issued by cur_bfqq.
|
|
+ */
|
|
+static struct bfq_queue *bfq_close_cooperator(struct bfq_data *bfqd,
|
|
+ struct bfq_queue *cur_bfqq)
|
|
+{
|
|
+ struct bfq_queue *bfqq;
|
|
+
|
|
+ if (bfq_class_idle(cur_bfqq))
|
|
+ return NULL;
|
|
+ if (!bfq_bfqq_sync(cur_bfqq))
|
|
+ return NULL;
|
|
+ if (BFQQ_SEEKY(cur_bfqq))
|
|
+ return NULL;
|
|
+
|
|
+ /* If device has only one backlogged bfq_queue, don't search. */
|
|
+ if (bfqd->busy_queues == 1)
|
|
+ return NULL;
|
|
+
|
|
+ /*
|
|
+ * We should notice if some of the queues are cooperating, e.g.
|
|
+ * working closely on the same area of the disk. In that case,
|
|
+ * we can group them together and don't waste time idling.
|
|
+ */
|
|
+ bfqq = bfqq_close(bfqd);
|
|
+ if (bfqq == NULL || bfqq == cur_bfqq)
|
|
+ return NULL;
|
|
+
|
|
+ /*
|
|
+ * Do not merge queues from different bfq_groups.
|
|
+ */
|
|
+ if (bfqq->entity.parent != cur_bfqq->entity.parent)
|
|
+ return NULL;
|
|
+
|
|
+ /*
|
|
+ * It only makes sense to merge sync queues.
|
|
+ */
|
|
+ if (!bfq_bfqq_sync(bfqq))
|
|
+ return NULL;
|
|
+ if (BFQQ_SEEKY(bfqq))
|
|
+ return NULL;
|
|
+
|
|
+ /*
|
|
+ * Do not merge queues of different priority classes.
|
|
+ */
|
|
+ if (bfq_class_rt(bfqq) != bfq_class_rt(cur_bfqq))
|
|
+ return NULL;
|
|
+
|
|
+ return bfqq;
|
|
+}
|
|
+
|
|
+/*
|
|
+ * If enough samples have been computed, return the current max budget
|
|
+ * stored in bfqd, which is dynamically updated according to the
|
|
+ * estimated disk peak rate; otherwise return the default max budget
|
|
+ */
|
|
+static inline unsigned long bfq_max_budget(struct bfq_data *bfqd)
|
|
+{
|
|
+ if (bfqd->budgets_assigned < 194)
|
|
+ return bfq_default_max_budget;
|
|
+ else
|
|
+ return bfqd->bfq_max_budget;
|
|
+}
|
|
+
|
|
+/*
|
|
+ * Return min budget, which is a fraction of the current or default
|
|
+ * max budget (trying with 1/32)
|
|
+ */
|
|
+static inline unsigned long bfq_min_budget(struct bfq_data *bfqd)
|
|
+{
|
|
+ if (bfqd->budgets_assigned < 194)
|
|
+ return bfq_default_max_budget / 32;
|
|
+ else
|
|
+ return bfqd->bfq_max_budget / 32;
|
|
+}
|
|
+
|
|
+/*
|
|
+ * Decides whether idling should be done for given device and
|
|
+ * given in-service queue.
|
|
+ */
|
|
+static inline bool bfq_queue_nonrot_noidle(struct bfq_data *bfqd,
|
|
+ struct bfq_queue *in_service_bfqq)
|
|
+{
|
|
+ if (in_service_bfqq == NULL)
|
|
+ return false;
|
|
+ /*
|
|
+ * If device is SSD it has no seek penalty, disable idling; but
|
|
+ * do so only if:
|
|
+ * - device does not support queuing, otherwise we still have
|
|
+ * a problem with sync vs async workloads;
|
|
+ * - the queue is not weight-raised, to preserve guarantees.
|
|
+ */
|
|
+ return (blk_queue_nonrot(bfqd->queue) && bfqd->hw_tag &&
|
|
+ in_service_bfqq->raising_coeff == 1);
|
|
+}
|
|
+
|
|
+static void bfq_arm_slice_timer(struct bfq_data *bfqd)
|
|
+{
|
|
+ struct bfq_queue *bfqq = bfqd->in_service_queue;
|
|
+ struct bfq_io_cq *bic;
|
|
+ unsigned long sl;
|
|
+
|
|
+ WARN_ON(!RB_EMPTY_ROOT(&bfqq->sort_list));
|
|
+
|
|
+ /* Tasks have exited, don't wait. */
|
|
+ bic = bfqd->in_service_bic;
|
|
+ if (bic == NULL || atomic_read(&bic->icq.ioc->active_ref) == 0)
|
|
+ return;
|
|
+
|
|
+ bfq_mark_bfqq_wait_request(bfqq);
|
|
+
|
|
+ /*
|
|
+ * We don't want to idle for seeks, but we do want to allow
|
|
+ * fair distribution of slice time for a process doing back-to-back
|
|
+ * seeks. So allow a little bit of time for him to submit a new rq.
|
|
+ *
|
|
+ * To prevent processes with (partly) seeky workloads from
|
|
+ * being too ill-treated, grant them a small fraction of the
|
|
+ * assigned budget before reducing the waiting time to
|
|
+ * BFQ_MIN_TT. This happened to help reduce latency.
|
|
+ */
|
|
+ sl = bfqd->bfq_slice_idle;
|
|
+ if (bfq_sample_valid(bfqq->seek_samples) && BFQQ_SEEKY(bfqq) &&
|
|
+ bfqq->entity.service > bfq_max_budget(bfqd) / 8 &&
|
|
+ bfqq->raising_coeff == 1)
|
|
+ sl = min(sl, msecs_to_jiffies(BFQ_MIN_TT));
|
|
+ else if (bfqq->raising_coeff > 1)
|
|
+ sl = sl * 3;
|
|
+ bfqd->last_idling_start = ktime_get();
|
|
+ mod_timer(&bfqd->idle_slice_timer, jiffies + sl);
|
|
+ bfq_log(bfqd, "arm idle: %u/%u ms",
|
|
+ jiffies_to_msecs(sl), jiffies_to_msecs(bfqd->bfq_slice_idle));
|
|
+}
|
|
+
|
|
+/*
|
|
+ * Set the maximum time for the in-service queue to consume its
|
|
+ * budget. This prevents seeky processes from lowering the disk
|
|
+ * throughput (always guaranteed with a time slice scheme as in CFQ).
|
|
+ */
|
|
+static void bfq_set_budget_timeout(struct bfq_data *bfqd)
|
|
+{
|
|
+ struct bfq_queue *bfqq = bfqd->in_service_queue;
|
|
+ unsigned int timeout_coeff;
|
|
+ if (bfqq->raising_cur_max_time == bfqd->bfq_raising_rt_max_time)
|
|
+ timeout_coeff = 1;
|
|
+ else
|
|
+ timeout_coeff = bfqq->entity.weight / bfqq->entity.orig_weight;
|
|
+
|
|
+ bfqd->last_budget_start = ktime_get();
|
|
+
|
|
+ bfq_clear_bfqq_budget_new(bfqq);
|
|
+ bfqq->budget_timeout = jiffies +
|
|
+ bfqd->bfq_timeout[bfq_bfqq_sync(bfqq)] * timeout_coeff;
|
|
+
|
|
+ bfq_log_bfqq(bfqd, bfqq, "set budget_timeout %u",
|
|
+ jiffies_to_msecs(bfqd->bfq_timeout[bfq_bfqq_sync(bfqq)] *
|
|
+ timeout_coeff));
|
|
+}
|
|
+
|
|
+/*
|
|
+ * Move request from internal lists to the request queue dispatch list.
|
|
+ */
|
|
+static void bfq_dispatch_insert(struct request_queue *q, struct request *rq)
|
|
+{
|
|
+ struct bfq_data *bfqd = q->elevator->elevator_data;
|
|
+ struct bfq_queue *bfqq = RQ_BFQQ(rq);
|
|
+
|
|
+ bfq_remove_request(rq);
|
|
+ bfqq->dispatched++;
|
|
+ elv_dispatch_sort(q, rq);
|
|
+
|
|
+ if (bfq_bfqq_sync(bfqq))
|
|
+ bfqd->sync_flight++;
|
|
+}
|
|
+
|
|
+/*
|
|
+ * Return expired entry, or NULL to just start from scratch in rbtree.
|
|
+ */
|
|
+static struct request *bfq_check_fifo(struct bfq_queue *bfqq)
|
|
+{
|
|
+ struct request *rq = NULL;
|
|
+
|
|
+ if (bfq_bfqq_fifo_expire(bfqq))
|
|
+ return NULL;
|
|
+
|
|
+ bfq_mark_bfqq_fifo_expire(bfqq);
|
|
+
|
|
+ if (list_empty(&bfqq->fifo))
|
|
+ return NULL;
|
|
+
|
|
+ rq = rq_entry_fifo(bfqq->fifo.next);
|
|
+
|
|
+ if (time_before(jiffies, rq_fifo_time(rq)))
|
|
+ return NULL;
|
|
+
|
|
+ return rq;
|
|
+}
|
|
+
|
|
+/*
|
|
+ * Must be called with the queue_lock held.
|
|
+ */
|
|
+static int bfqq_process_refs(struct bfq_queue *bfqq)
|
|
+{
|
|
+ int process_refs, io_refs;
|
|
+
|
|
+ io_refs = bfqq->allocated[READ] + bfqq->allocated[WRITE];
|
|
+ process_refs = atomic_read(&bfqq->ref) - io_refs - bfqq->entity.on_st;
|
|
+ BUG_ON(process_refs < 0);
|
|
+ return process_refs;
|
|
+}
|
|
+
|
|
+static void bfq_setup_merge(struct bfq_queue *bfqq, struct bfq_queue *new_bfqq)
|
|
+{
|
|
+ int process_refs, new_process_refs;
|
|
+ struct bfq_queue *__bfqq;
|
|
+
|
|
+ /*
|
|
+ * If there are no process references on the new_bfqq, then it is
|
|
+ * unsafe to follow the ->new_bfqq chain as other bfqq's in the chain
|
|
+ * may have dropped their last reference (not just their last process
|
|
+ * reference).
|
|
+ */
|
|
+ if (!bfqq_process_refs(new_bfqq))
|
|
+ return;
|
|
+
|
|
+ /* Avoid a circular list and skip interim queue merges. */
|
|
+ while ((__bfqq = new_bfqq->new_bfqq)) {
|
|
+ if (__bfqq == bfqq)
|
|
+ return;
|
|
+ new_bfqq = __bfqq;
|
|
+ }
|
|
+
|
|
+ process_refs = bfqq_process_refs(bfqq);
|
|
+ new_process_refs = bfqq_process_refs(new_bfqq);
|
|
+ /*
|
|
+ * If the process for the bfqq has gone away, there is no
|
|
+ * sense in merging the queues.
|
|
+ */
|
|
+ if (process_refs == 0 || new_process_refs == 0)
|
|
+ return;
|
|
+
|
|
+ /*
|
|
+ * Merge in the direction of the lesser amount of work.
|
|
+ */
|
|
+ if (new_process_refs >= process_refs) {
|
|
+ bfqq->new_bfqq = new_bfqq;
|
|
+ atomic_add(process_refs, &new_bfqq->ref);
|
|
+ } else {
|
|
+ new_bfqq->new_bfqq = bfqq;
|
|
+ atomic_add(new_process_refs, &bfqq->ref);
|
|
+ }
|
|
+ bfq_log_bfqq(bfqq->bfqd, bfqq, "scheduling merge with queue %d",
|
|
+ new_bfqq->pid);
|
|
+}
|
|
+
|
|
+static inline unsigned long bfq_bfqq_budget_left(struct bfq_queue *bfqq)
|
|
+{
|
|
+ struct bfq_entity *entity = &bfqq->entity;
|
|
+ return entity->budget - entity->service;
|
|
+}
|
|
+
|
|
+static void __bfq_bfqq_expire(struct bfq_data *bfqd, struct bfq_queue *bfqq)
|
|
+{
|
|
+ BUG_ON(bfqq != bfqd->in_service_queue);
|
|
+
|
|
+ __bfq_bfqd_reset_in_service(bfqd);
|
|
+
|
|
+ /*
|
|
+ * If this bfqq is shared between multiple processes, check
|
|
+ * to make sure that those processes are still issuing I/Os
|
|
+ * within the mean seek distance. If not, it may be time to
|
|
+ * break the queues apart again.
|
|
+ */
|
|
+ if (bfq_bfqq_coop(bfqq) && BFQQ_SEEKY(bfqq))
|
|
+ bfq_mark_bfqq_split_coop(bfqq);
|
|
+
|
|
+ if (RB_EMPTY_ROOT(&bfqq->sort_list)) {
|
|
+ /*
|
|
+ * overloading budget_timeout field to store when
|
|
+ * the queue remains with no backlog, used by
|
|
+ * the weight-raising mechanism
|
|
+ */
|
|
+ bfqq->budget_timeout = jiffies;
|
|
+ bfq_del_bfqq_busy(bfqd, bfqq, 1);
|
|
+ } else {
|
|
+ bfq_activate_bfqq(bfqd, bfqq);
|
|
+ /*
|
|
+ * Resort priority tree of potential close cooperators.
|
|
+ */
|
|
+ bfq_rq_pos_tree_add(bfqd, bfqq);
|
|
+ }
|
|
+}
|
|
+
|
|
+/**
|
|
+ * __bfq_bfqq_recalc_budget - try to adapt the budget to the @bfqq behavior.
|
|
+ * @bfqd: device data.
|
|
+ * @bfqq: queue to update.
|
|
+ * @reason: reason for expiration.
|
|
+ *
|
|
+ * Handle the feedback on @bfqq budget. See the body for detailed
|
|
+ * comments.
|
|
+ */
|
|
+static void __bfq_bfqq_recalc_budget(struct bfq_data *bfqd,
|
|
+ struct bfq_queue *bfqq,
|
|
+ enum bfqq_expiration reason)
|
|
+{
|
|
+ struct request *next_rq;
|
|
+ unsigned long budget, min_budget;
|
|
+
|
|
+ budget = bfqq->max_budget;
|
|
+ min_budget = bfq_min_budget(bfqd);
|
|
+
|
|
+ BUG_ON(bfqq != bfqd->in_service_queue);
|
|
+
|
|
+ bfq_log_bfqq(bfqd, bfqq, "recalc_budg: last budg %lu, budg left %lu",
|
|
+ bfqq->entity.budget, bfq_bfqq_budget_left(bfqq));
|
|
+ bfq_log_bfqq(bfqd, bfqq, "recalc_budg: last max_budg %lu, min budg %lu",
|
|
+ budget, bfq_min_budget(bfqd));
|
|
+ bfq_log_bfqq(bfqd, bfqq, "recalc_budg: sync %d, seeky %d",
|
|
+ bfq_bfqq_sync(bfqq), BFQQ_SEEKY(bfqd->in_service_queue));
|
|
+
|
|
+ if (bfq_bfqq_sync(bfqq)) {
|
|
+ switch (reason) {
|
|
+ /*
|
|
+ * Caveat: in all the following cases we trade latency
|
|
+ * for throughput.
|
|
+ */
|
|
+ case BFQ_BFQQ_TOO_IDLE:
|
|
+ /*
|
|
+ * This is the only case where we may reduce
|
|
+ * the budget: if there is no requets of the
|
|
+ * process still waiting for completion, then
|
|
+ * we assume (tentatively) that the timer has
|
|
+ * expired because the batch of requests of
|
|
+ * the process could have been served with a
|
|
+ * smaller budget. Hence, betting that
|
|
+ * process will behave in the same way when it
|
|
+ * becomes backlogged again, we reduce its
|
|
+ * next budget. As long as we guess right,
|
|
+ * this budget cut reduces the latency
|
|
+ * experienced by the process.
|
|
+ *
|
|
+ * However, if there are still outstanding
|
|
+ * requests, then the process may have not yet
|
|
+ * issued its next request just because it is
|
|
+ * still waiting for the completion of some of
|
|
+ * the still oustanding ones. So in this
|
|
+ * subcase we do not reduce its budget, on the
|
|
+ * contrary we increase it to possibly boost
|
|
+ * the throughput, as discussed in the
|
|
+ * comments to the BUDGET_TIMEOUT case.
|
|
+ */
|
|
+ if (bfqq->dispatched > 0) /* still oustanding reqs */
|
|
+ budget = min(budget * 2, bfqd->bfq_max_budget);
|
|
+ else {
|
|
+ if (budget > 5 * min_budget)
|
|
+ budget -= 4 * min_budget;
|
|
+ else
|
|
+ budget = min_budget;
|
|
+ }
|
|
+ break;
|
|
+ case BFQ_BFQQ_BUDGET_TIMEOUT:
|
|
+ /*
|
|
+ * We double the budget here because: 1) it
|
|
+ * gives the chance to boost the throughput if
|
|
+ * this is not a seeky process (which may have
|
|
+ * bumped into this timeout because of, e.g.,
|
|
+ * ZBR), 2) together with charge_full_budget
|
|
+ * it helps give seeky processes higher
|
|
+ * timestamps, and hence be served less
|
|
+ * frequently.
|
|
+ */
|
|
+ budget = min(budget * 2, bfqd->bfq_max_budget);
|
|
+ break;
|
|
+ case BFQ_BFQQ_BUDGET_EXHAUSTED:
|
|
+ /*
|
|
+ * The process still has backlog, and did not
|
|
+ * let either the budget timeout or the disk
|
|
+ * idling timeout expire. Hence it is not
|
|
+ * seeky, has a short thinktime and may be
|
|
+ * happy with a higher budget too. So
|
|
+ * definitely increase the budget of this good
|
|
+ * candidate to boost the disk throughput.
|
|
+ */
|
|
+ budget = min(budget * 4, bfqd->bfq_max_budget);
|
|
+ break;
|
|
+ case BFQ_BFQQ_NO_MORE_REQUESTS:
|
|
+ /*
|
|
+ * Leave the budget unchanged.
|
|
+ */
|
|
+ default:
|
|
+ return;
|
|
+ }
|
|
+ } else /* async queue */
|
|
+ /* async queues get always the maximum possible budget
|
|
+ * (their ability to dispatch is limited by
|
|
+ * @bfqd->bfq_max_budget_async_rq).
|
|
+ */
|
|
+ budget = bfqd->bfq_max_budget;
|
|
+
|
|
+ bfqq->max_budget = budget;
|
|
+
|
|
+ if (bfqd->budgets_assigned >= 194 && bfqd->bfq_user_max_budget == 0 &&
|
|
+ bfqq->max_budget > bfqd->bfq_max_budget)
|
|
+ bfqq->max_budget = bfqd->bfq_max_budget;
|
|
+
|
|
+ /*
|
|
+ * Make sure that we have enough budget for the next request.
|
|
+ * Since the finish time of the bfqq must be kept in sync with
|
|
+ * the budget, be sure to call __bfq_bfqq_expire() after the
|
|
+ * update.
|
|
+ */
|
|
+ next_rq = bfqq->next_rq;
|
|
+ if (next_rq != NULL)
|
|
+ bfqq->entity.budget = max_t(unsigned long, bfqq->max_budget,
|
|
+ bfq_serv_to_charge(next_rq, bfqq));
|
|
+ else
|
|
+ bfqq->entity.budget = bfqq->max_budget;
|
|
+
|
|
+ bfq_log_bfqq(bfqd, bfqq, "head sect: %u, new budget %lu",
|
|
+ next_rq != NULL ? blk_rq_sectors(next_rq) : 0,
|
|
+ bfqq->entity.budget);
|
|
+}
|
|
+
|
|
+static unsigned long bfq_calc_max_budget(u64 peak_rate, u64 timeout)
|
|
+{
|
|
+ unsigned long max_budget;
|
|
+
|
|
+ /*
|
|
+ * The max_budget calculated when autotuning is equal to the
|
|
+ * amount of sectors transfered in timeout_sync at the
|
|
+ * estimated peak rate.
|
|
+ */
|
|
+ max_budget = (unsigned long)(peak_rate * 1000 *
|
|
+ timeout >> BFQ_RATE_SHIFT);
|
|
+
|
|
+ return max_budget;
|
|
+}
|
|
+
|
|
+/*
|
|
+ * In addition to updating the peak rate, checks whether the process
|
|
+ * is "slow", and returns 1 if so. This slow flag is used, in addition
|
|
+ * to the budget timeout, to reduce the amount of service provided to
|
|
+ * seeky processes, and hence reduce their chances to lower the
|
|
+ * throughput. See the code for more details.
|
|
+ */
|
|
+static int bfq_update_peak_rate(struct bfq_data *bfqd, struct bfq_queue *bfqq,
|
|
+ int compensate, enum bfqq_expiration reason)
|
|
+{
|
|
+ u64 bw, usecs, expected, timeout;
|
|
+ ktime_t delta;
|
|
+ int update = 0;
|
|
+
|
|
+ if (!bfq_bfqq_sync(bfqq) || bfq_bfqq_budget_new(bfqq))
|
|
+ return 0;
|
|
+
|
|
+ if (compensate)
|
|
+ delta = bfqd->last_idling_start;
|
|
+ else
|
|
+ delta = ktime_get();
|
|
+ delta = ktime_sub(delta, bfqd->last_budget_start);
|
|
+ usecs = ktime_to_us(delta);
|
|
+
|
|
+ /* Don't trust short/unrealistic values. */
|
|
+ if (usecs < 100 || usecs >= LONG_MAX)
|
|
+ return 0;
|
|
+
|
|
+ /*
|
|
+ * Calculate the bandwidth for the last slice. We use a 64 bit
|
|
+ * value to store the peak rate, in sectors per usec in fixed
|
|
+ * point math. We do so to have enough precision in the estimate
|
|
+ * and to avoid overflows.
|
|
+ */
|
|
+ bw = (u64)bfqq->entity.service << BFQ_RATE_SHIFT;
|
|
+ do_div(bw, (unsigned long)usecs);
|
|
+
|
|
+ timeout = jiffies_to_msecs(bfqd->bfq_timeout[BLK_RW_SYNC]);
|
|
+
|
|
+ /*
|
|
+ * Use only long (> 20ms) intervals to filter out spikes for
|
|
+ * the peak rate estimation.
|
|
+ */
|
|
+ if (usecs > 20000) {
|
|
+ if (bw > bfqd->peak_rate ||
|
|
+ (!BFQQ_SEEKY(bfqq) &&
|
|
+ reason == BFQ_BFQQ_BUDGET_TIMEOUT)) {
|
|
+ bfq_log(bfqd, "measured bw =%llu", bw);
|
|
+ /*
|
|
+ * To smooth oscillations use a low-pass filter with
|
|
+ * alpha=7/8, i.e.,
|
|
+ * new_rate = (7/8) * old_rate + (1/8) * bw
|
|
+ */
|
|
+ do_div(bw, 8);
|
|
+ if (bw == 0)
|
|
+ return 0;
|
|
+ bfqd->peak_rate *= 7;
|
|
+ do_div(bfqd->peak_rate, 8);
|
|
+ bfqd->peak_rate += bw;
|
|
+ update = 1;
|
|
+ bfq_log(bfqd, "new peak_rate=%llu", bfqd->peak_rate);
|
|
+ }
|
|
+
|
|
+ update |= bfqd->peak_rate_samples == BFQ_PEAK_RATE_SAMPLES - 1;
|
|
+
|
|
+ if (bfqd->peak_rate_samples < BFQ_PEAK_RATE_SAMPLES)
|
|
+ bfqd->peak_rate_samples++;
|
|
+
|
|
+ if (bfqd->peak_rate_samples == BFQ_PEAK_RATE_SAMPLES &&
|
|
+ update && bfqd->bfq_user_max_budget == 0) {
|
|
+ bfqd->bfq_max_budget =
|
|
+ bfq_calc_max_budget(bfqd->peak_rate, timeout);
|
|
+ bfq_log(bfqd, "new max_budget=%lu",
|
|
+ bfqd->bfq_max_budget);
|
|
+ }
|
|
+ }
|
|
+
|
|
+ /*
|
|
+ * If the process has been served for a too short time
|
|
+ * interval to let its possible sequential accesses prevail on
|
|
+ * the initial seek time needed to move the disk head on the
|
|
+ * first sector it requested, then give the process a chance
|
|
+ * and for the moment return false.
|
|
+ */
|
|
+ if (bfqq->entity.budget <= bfq_max_budget(bfqd) / 8)
|
|
+ return 0;
|
|
+
|
|
+ /*
|
|
+ * A process is considered ``slow'' (i.e., seeky, so that we
|
|
+ * cannot treat it fairly in the service domain, as it would
|
|
+ * slow down too much the other processes) if, when a slice
|
|
+ * ends for whatever reason, it has received service at a
|
|
+ * rate that would not be high enough to complete the budget
|
|
+ * before the budget timeout expiration.
|
|
+ */
|
|
+ expected = bw * 1000 * timeout >> BFQ_RATE_SHIFT;
|
|
+
|
|
+ /*
|
|
+ * Caveat: processes doing IO in the slower disk zones will
|
|
+ * tend to be slow(er) even if not seeky. And the estimated
|
|
+ * peak rate will actually be an average over the disk
|
|
+ * surface. Hence, to not be too harsh with unlucky processes,
|
|
+ * we keep a budget/3 margin of safety before declaring a
|
|
+ * process slow.
|
|
+ */
|
|
+ return expected > (4 * bfqq->entity.budget) / 3;
|
|
+}
|
|
+
|
|
+/*
|
|
+ * To be deemed as soft real-time, an application must meet two requirements.
|
|
+ * The first is that the application must not require an average bandwidth
|
|
+ * higher than the approximate bandwidth required to playback or record a
|
|
+ * compressed high-definition video.
|
|
+ * The next function is invoked on the completion of the last request of a
|
|
+ * batch, to compute the next-start time instant, soft_rt_next_start, such
|
|
+ * that, if the next request of the application does not arrive before
|
|
+ * soft_rt_next_start, then the above requirement on the bandwidth is met.
|
|
+ *
|
|
+ * The second requirement is that the request pattern of the application is
|
|
+ * isochronous, i.e., that, after issuing a request or a batch of requests, the
|
|
+ * application stops for a while, then issues a new batch, and so on. For this
|
|
+ * reason the next function is invoked to compute soft_rt_next_start only for
|
|
+ * applications that meet this requirement, whereas soft_rt_next_start is set
|
|
+ * to infinity for applications that do not.
|
|
+ *
|
|
+ * Unfortunately, even a greedy application may happen to behave in an
|
|
+ * isochronous way if several processes are competing for the CPUs. In fact,
|
|
+ * in this scenario the application stops issuing requests while the CPUs are
|
|
+ * busy serving other processes, then restarts, then stops again for a while,
|
|
+ * and so on. In addition, if the disk achieves a low enough throughput with
|
|
+ * the request pattern issued by the application, then the above bandwidth
|
|
+ * requirement may happen to be met too. To prevent such a greedy application
|
|
+ * to be deemed as soft real-time, a further rule is used in the computation
|
|
+ * of soft_rt_next_start: soft_rt_next_start must be higher than the current
|
|
+ * time plus the maximum time for which the arrival of a request is waited
|
|
+ * for when a sync queue becomes idle, namely bfqd->bfq_slice_idle. This
|
|
+ * filters out greedy applications, as the latter issue instead their next
|
|
+ * request as soon as possible after the last one has been completed (in
|
|
+ * contrast, when a batch of requests is completed, a soft real-time
|
|
+ * application spends some time processing data).
|
|
+ *
|
|
+ * Actually, the last filter may easily generate false positives if: only
|
|
+ * bfqd->bfq_slice_idle is used as a reference time interval, and one or
|
|
+ * both the following two cases occur:
|
|
+ * 1) HZ is so low that the duration of a jiffie is comparable to or higher
|
|
+ * than bfqd->bfq_slice_idle. This happens, e.g., on slow devices with
|
|
+ * HZ=100.
|
|
+ * 2) jiffies, instead of increasing at a constant rate, may stop increasing
|
|
+ * for a while, then suddenly 'jump' by several units to recover the lost
|
|
+ * increments. This seems to happen, e.g., inside virtual machines.
|
|
+ * To address this issue, we do not use as a reference time interval just
|
|
+ * bfqd->bfq_slice_idle, but bfqd->bfq_slice_idle plus a few jiffies. In
|
|
+ * particular we add the minimum number of jiffies for which the filter seems
|
|
+ * to be quite precise also in embedded systems and KVM/QEMU virtual machines.
|
|
+ */
|
|
+static inline u64 bfq_bfqq_softrt_next_start(struct bfq_data *bfqd,
|
|
+ struct bfq_queue *bfqq)
|
|
+{
|
|
+ return max(bfqq->last_idle_bklogged +
|
|
+ HZ * bfqq->service_from_backlogged /
|
|
+ bfqd->bfq_raising_max_softrt_rate,
|
|
+ (u64)jiffies + bfqq->bfqd->bfq_slice_idle + 4);
|
|
+}
|
|
+
|
|
+/**
|
|
+ * bfq_bfqq_expire - expire a queue.
|
|
+ * @bfqd: device owning the queue.
|
|
+ * @bfqq: the queue to expire.
|
|
+ * @compensate: if true, compensate for the time spent idling.
|
|
+ * @reason: the reason causing the expiration.
|
|
+ *
|
|
+ *
|
|
+ * If the process associated to the queue is slow (i.e., seeky), or in
|
|
+ * case of budget timeout, or, finally, if it is async, we
|
|
+ * artificially charge it an entire budget (independently of the
|
|
+ * actual service it received). As a consequence, the queue will get
|
|
+ * higher timestamps than the correct ones upon reactivation, and
|
|
+ * hence it will be rescheduled as if it had received more service
|
|
+ * than what it actually received. In the end, this class of processes
|
|
+ * will receive less service in proportion to how slowly they consume
|
|
+ * their budgets (and hence how seriously they tend to lower the
|
|
+ * throughput).
|
|
+ *
|
|
+ * In contrast, when a queue expires because it has been idling for
|
|
+ * too much or because it exhausted its budget, we do not touch the
|
|
+ * amount of service it has received. Hence when the queue will be
|
|
+ * reactivated and its timestamps updated, the latter will be in sync
|
|
+ * with the actual service received by the queue until expiration.
|
|
+ *
|
|
+ * Charging a full budget to the first type of queues and the exact
|
|
+ * service to the others has the effect of using the WF2Q+ policy to
|
|
+ * schedule the former on a timeslice basis, without violating the
|
|
+ * service domain guarantees of the latter.
|
|
+ */
|
|
+static void bfq_bfqq_expire(struct bfq_data *bfqd,
|
|
+ struct bfq_queue *bfqq,
|
|
+ int compensate,
|
|
+ enum bfqq_expiration reason)
|
|
+{
|
|
+ int slow;
|
|
+ BUG_ON(bfqq != bfqd->in_service_queue);
|
|
+
|
|
+ /* Update disk peak rate for autotuning and check whether the
|
|
+ * process is slow (see bfq_update_peak_rate).
|
|
+ */
|
|
+ slow = bfq_update_peak_rate(bfqd, bfqq, compensate, reason);
|
|
+
|
|
+ /*
|
|
+ * As above explained, 'punish' slow (i.e., seeky), timed-out
|
|
+ * and async queues, to favor sequential sync workloads.
|
|
+ *
|
|
+ * Processes doing IO in the slower disk zones will tend to be
|
|
+ * slow(er) even if not seeky. Hence, since the estimated peak
|
|
+ * rate is actually an average over the disk surface, these
|
|
+ * processes may timeout just for bad luck. To avoid punishing
|
|
+ * them we do not charge a full budget to a process that
|
|
+ * succeeded in consuming at least 2/3 of its budget.
|
|
+ */
|
|
+ if (slow || (reason == BFQ_BFQQ_BUDGET_TIMEOUT &&
|
|
+ bfq_bfqq_budget_left(bfqq) >= bfqq->entity.budget / 3))
|
|
+ bfq_bfqq_charge_full_budget(bfqq);
|
|
+
|
|
+ bfqq->service_from_backlogged += bfqq->entity.service;
|
|
+
|
|
+ if (bfqd->low_latency && bfqq->raising_coeff == 1)
|
|
+ bfqq->last_rais_start_finish = jiffies;
|
|
+
|
|
+ if (bfqd->low_latency && bfqd->bfq_raising_max_softrt_rate > 0) {
|
|
+ if (reason != BFQ_BFQQ_BUDGET_TIMEOUT &&
|
|
+ reason != BFQ_BFQQ_BUDGET_EXHAUSTED) {
|
|
+ /*
|
|
+ * If we get here, then the request pattern is
|
|
+ * isochronous (see the comments to the function
|
|
+ * bfq_bfqq_softrt_next_start()). However, if the
|
|
+ * queue still has in-flight requests, then it is
|
|
+ * better to postpone the computation of next_start
|
|
+ * to the next request completion. In fact, if we
|
|
+ * computed it now, then the application might pass
|
|
+ * the greedy-application filter improperly, because
|
|
+ * the arrival of its next request may happen to be
|
|
+ * higher than (jiffies + bfqq->bfqd->bfq_slice_idle)
|
|
+ * not because the application is truly soft real-
|
|
+ * time, but just because the application is currently
|
|
+ * waiting for the completion of some request before
|
|
+ * issuing, as quickly as possible, its next request.
|
|
+ */
|
|
+ if (bfqq->dispatched > 0) {
|
|
+ bfqq->soft_rt_next_start = -1;
|
|
+ bfq_mark_bfqq_softrt_update(bfqq);
|
|
+ } else
|
|
+ bfqq->soft_rt_next_start =
|
|
+ bfq_bfqq_softrt_next_start(bfqd, bfqq);
|
|
+ } else
|
|
+ bfqq->soft_rt_next_start = -1; /* infinity */
|
|
+ }
|
|
+
|
|
+ bfq_log_bfqq(bfqd, bfqq,
|
|
+ "expire (%d, slow %d, num_disp %d, idle_win %d)", reason, slow,
|
|
+ bfqq->dispatched, bfq_bfqq_idle_window(bfqq));
|
|
+
|
|
+ /* Increase, decrease or leave budget unchanged according to reason */
|
|
+ __bfq_bfqq_recalc_budget(bfqd, bfqq, reason);
|
|
+ __bfq_bfqq_expire(bfqd, bfqq);
|
|
+}
|
|
+
|
|
+/*
|
|
+ * Budget timeout is not implemented through a dedicated timer, but
|
|
+ * just checked on request arrivals and completions, as well as on
|
|
+ * idle timer expirations.
|
|
+ */
|
|
+static int bfq_bfqq_budget_timeout(struct bfq_queue *bfqq)
|
|
+{
|
|
+ if (bfq_bfqq_budget_new(bfqq))
|
|
+ return 0;
|
|
+
|
|
+ if (time_before(jiffies, bfqq->budget_timeout))
|
|
+ return 0;
|
|
+
|
|
+ return 1;
|
|
+}
|
|
+
|
|
+/*
|
|
+ * If we expire a queue that is waiting for the arrival of a new
|
|
+ * request, we may prevent the fictitious timestamp backshifting that
|
|
+ * allows the guarantees of the queue to be preserved (see [1] for
|
|
+ * this tricky aspect). Hence we return true only if this condition
|
|
+ * does not hold, or if the queue is slow enough to deserve only to be
|
|
+ * kicked off for preserving a high throughput.
|
|
+*/
|
|
+static inline int bfq_may_expire_for_budg_timeout(struct bfq_queue *bfqq)
|
|
+{
|
|
+ bfq_log_bfqq(bfqq->bfqd, bfqq,
|
|
+ "may_budget_timeout: wr %d left %d timeout %d",
|
|
+ bfq_bfqq_wait_request(bfqq),
|
|
+ bfq_bfqq_budget_left(bfqq) >= bfqq->entity.budget / 3,
|
|
+ bfq_bfqq_budget_timeout(bfqq));
|
|
+
|
|
+ return (!bfq_bfqq_wait_request(bfqq) ||
|
|
+ bfq_bfqq_budget_left(bfqq) >= bfqq->entity.budget / 3)
|
|
+ &&
|
|
+ bfq_bfqq_budget_timeout(bfqq);
|
|
+}
|
|
+
|
|
+/*
|
|
+ * For weight-raised queues issuing sync requests, idling is always performed,
|
|
+ * as this is instrumental in guaranteeing a high fraction of the throughput
|
|
+ * to these queues, and hence in guaranteeing a lower latency for their
|
|
+ * requests. See [1] for details.
|
|
+ *
|
|
+ * For non-weight-raised queues, idling is instead disabled if the device is
|
|
+ * NCQ-enabled and non-rotational, as this boosts the throughput on such
|
|
+ * devices.
|
|
+ */
|
|
+static inline bool bfq_bfqq_must_not_expire(struct bfq_queue *bfqq)
|
|
+{
|
|
+ struct bfq_data *bfqd = bfqq->bfqd;
|
|
+
|
|
+ return bfq_bfqq_sync(bfqq) && (
|
|
+ bfqq->raising_coeff > 1 ||
|
|
+ (bfq_bfqq_idle_window(bfqq) &&
|
|
+ !(bfqd->hw_tag &&
|
|
+ (blk_queue_nonrot(bfqd->queue) ||
|
|
+ /*
|
|
+ * If there are weight-raised busy queues, then do not idle
|
|
+ * the disk for a sync non-weight-raised queue, and hence
|
|
+ * expire the queue immediately if empty. Combined with the
|
|
+ * timestamping rules of BFQ (see [1] for details), this
|
|
+ * causes sync non-weight-raised queues to get a lower
|
|
+ * fraction of the disk throughput, and hence reduces the rate
|
|
+ * at which the processes associated to these queues ask for
|
|
+ * requests from the request pool.
|
|
+ *
|
|
+ * This is beneficial for weight-raised processes, when the
|
|
+ * system operates in request-pool saturation conditions
|
|
+ * (e.g., in the presence of write hogs). In fact, if
|
|
+ * non-weight-raised processes ask for requests at a lower
|
|
+ * rate, then weight-raised processes have a higher
|
|
+ * probability to get a request from the pool immediately
|
|
+ * (or at least soon) when they need one. Hence they have a
|
|
+ * higher probability to actually get a fraction of the disk
|
|
+ * throughput proportional to their high weight. This is
|
|
+ * especially true with NCQ-enabled drives, which enqueue
|
|
+ * several requests in advance and further reorder
|
|
+ * internally-queued requests.
|
|
+ *
|
|
+ * Mistreating non-weight-raised queues in the above-described
|
|
+ * way, when there are busy weight-raised queues, seems to
|
|
+ * mitigate starvation problems in the presence of heavy write
|
|
+ * workloads and NCQ, and hence to guarantee a higher
|
|
+ * application and system responsiveness in these hostile
|
|
+ * scenarios.
|
|
+ */
|
|
+ bfqd->raised_busy_queues > 0)
|
|
+ )
|
|
+ )
|
|
+ );
|
|
+}
|
|
+
|
|
+/*
|
|
+ * If the in-service queue is empty, but it is sync and either of the following
|
|
+ * conditions holds, then: 1) the queue must remain in service and cannot be
|
|
+ * expired, and 2) the disk must be idled to wait for the possible arrival
|
|
+ * of a new request for the queue. The conditions are:
|
|
+ * - the device is rotational and not performing NCQ, and the queue has its
|
|
+ * idle window set (in this case, waiting for a new request for the queue
|
|
+ * is likely to boost the disk throughput);
|
|
+ * - the queue is weight-raised (waiting for the request is necessary to
|
|
+ * provide the queue with fairness and latency guarantees, see [1] for
|
|
+ * details).
|
|
+ */
|
|
+static inline bool bfq_bfqq_must_idle(struct bfq_queue *bfqq)
|
|
+{
|
|
+ struct bfq_data *bfqd = bfqq->bfqd;
|
|
+
|
|
+ return (RB_EMPTY_ROOT(&bfqq->sort_list) && bfqd->bfq_slice_idle != 0 &&
|
|
+ bfq_bfqq_must_not_expire(bfqq) &&
|
|
+ !bfq_queue_nonrot_noidle(bfqd, bfqq));
|
|
+}
|
|
+
|
|
+/*
|
|
+ * Select a queue for service. If we have a current queue in service,
|
|
+ * check whether to continue servicing it, or retrieve and set a new one.
|
|
+ */
|
|
+static struct bfq_queue *bfq_select_queue(struct bfq_data *bfqd)
|
|
+{
|
|
+ struct bfq_queue *bfqq, *new_bfqq = NULL;
|
|
+ struct request *next_rq;
|
|
+ enum bfqq_expiration reason = BFQ_BFQQ_BUDGET_TIMEOUT;
|
|
+
|
|
+ bfqq = bfqd->in_service_queue;
|
|
+ if (bfqq == NULL)
|
|
+ goto new_queue;
|
|
+
|
|
+ bfq_log_bfqq(bfqd, bfqq, "select_queue: already in-service queue");
|
|
+
|
|
+ /*
|
|
+ * If another queue has a request waiting within our mean seek
|
|
+ * distance, let it run. The expire code will check for close
|
|
+ * cooperators and put the close queue at the front of the
|
|
+ * service tree. If possible, merge the expiring queue with the
|
|
+ * new bfqq.
|
|
+ */
|
|
+ new_bfqq = bfq_close_cooperator(bfqd, bfqq);
|
|
+ if (new_bfqq != NULL && bfqq->new_bfqq == NULL)
|
|
+ bfq_setup_merge(bfqq, new_bfqq);
|
|
+
|
|
+ if (bfq_may_expire_for_budg_timeout(bfqq) &&
|
|
+ !timer_pending(&bfqd->idle_slice_timer) &&
|
|
+ !bfq_bfqq_must_idle(bfqq))
|
|
+ goto expire;
|
|
+
|
|
+ next_rq = bfqq->next_rq;
|
|
+ /*
|
|
+ * If bfqq has requests queued and it has enough budget left to
|
|
+ * serve them, keep the queue, otherwise expire it.
|
|
+ */
|
|
+ if (next_rq != NULL) {
|
|
+ if (bfq_serv_to_charge(next_rq, bfqq) >
|
|
+ bfq_bfqq_budget_left(bfqq)) {
|
|
+ reason = BFQ_BFQQ_BUDGET_EXHAUSTED;
|
|
+ goto expire;
|
|
+ } else {
|
|
+ /*
|
|
+ * The idle timer may be pending because we may not
|
|
+ * disable disk idling even when a new request arrives
|
|
+ */
|
|
+ if (timer_pending(&bfqd->idle_slice_timer)) {
|
|
+ /*
|
|
+ * If we get here: 1) at least a new request
|
|
+ * has arrived but we have not disabled the
|
|
+ * timer because the request was too small,
|
|
+ * 2) then the block layer has unplugged the
|
|
+ * device, causing the dispatch to be invoked.
|
|
+ *
|
|
+ * Since the device is unplugged, now the
|
|
+ * requests are probably large enough to
|
|
+ * provide a reasonable throughput.
|
|
+ * So we disable idling.
|
|
+ */
|
|
+ bfq_clear_bfqq_wait_request(bfqq);
|
|
+ del_timer(&bfqd->idle_slice_timer);
|
|
+ }
|
|
+ if (new_bfqq == NULL)
|
|
+ goto keep_queue;
|
|
+ else
|
|
+ goto expire;
|
|
+ }
|
|
+ }
|
|
+
|
|
+ /*
|
|
+ * No requests pending. If the in-service queue has no cooperator and
|
|
+ * still has requests in flight (possibly waiting for a completion)
|
|
+ * or is idling for a new request, then keep it.
|
|
+ */
|
|
+ if (new_bfqq == NULL && (timer_pending(&bfqd->idle_slice_timer) ||
|
|
+ (bfqq->dispatched != 0 && bfq_bfqq_must_not_expire(bfqq)))) {
|
|
+ bfqq = NULL;
|
|
+ goto keep_queue;
|
|
+ } else if (new_bfqq != NULL && timer_pending(&bfqd->idle_slice_timer)) {
|
|
+ /*
|
|
+ * Expiring the queue because there is a close cooperator,
|
|
+ * cancel timer.
|
|
+ */
|
|
+ bfq_clear_bfqq_wait_request(bfqq);
|
|
+ del_timer(&bfqd->idle_slice_timer);
|
|
+ }
|
|
+
|
|
+ reason = BFQ_BFQQ_NO_MORE_REQUESTS;
|
|
+expire:
|
|
+ bfq_bfqq_expire(bfqd, bfqq, 0, reason);
|
|
+new_queue:
|
|
+ bfqq = bfq_set_in_service_queue(bfqd, new_bfqq);
|
|
+ bfq_log(bfqd, "select_queue: new queue %d returned",
|
|
+ bfqq != NULL ? bfqq->pid : 0);
|
|
+keep_queue:
|
|
+ return bfqq;
|
|
+}
|
|
+
|
|
+static void bfq_update_raising_data(struct bfq_data *bfqd,
|
|
+ struct bfq_queue *bfqq)
|
|
+{
|
|
+ if (bfqq->raising_coeff > 1) { /* queue is being boosted */
|
|
+ struct bfq_entity *entity = &bfqq->entity;
|
|
+
|
|
+ bfq_log_bfqq(bfqd, bfqq,
|
|
+ "raising period dur %u/%u msec, "
|
|
+ "old raising coeff %u, w %d(%d)",
|
|
+ jiffies_to_msecs(jiffies -
|
|
+ bfqq->last_rais_start_finish),
|
|
+ jiffies_to_msecs(bfqq->raising_cur_max_time),
|
|
+ bfqq->raising_coeff,
|
|
+ bfqq->entity.weight, bfqq->entity.orig_weight);
|
|
+
|
|
+ BUG_ON(bfqq != bfqd->in_service_queue && entity->weight !=
|
|
+ entity->orig_weight * bfqq->raising_coeff);
|
|
+ if (entity->ioprio_changed)
|
|
+ bfq_log_bfqq(bfqd, bfqq,
|
|
+ "WARN: pending prio change");
|
|
+ /*
|
|
+ * If too much time has elapsed from the beginning
|
|
+ * of this weight-raising, stop it.
|
|
+ */
|
|
+ if (jiffies - bfqq->last_rais_start_finish >
|
|
+ bfqq->raising_cur_max_time) {
|
|
+ bfqq->last_rais_start_finish = jiffies;
|
|
+ bfq_log_bfqq(bfqd, bfqq,
|
|
+ "wrais ending at %llu msec,"
|
|
+ "rais_max_time %u",
|
|
+ bfqq->last_rais_start_finish,
|
|
+ jiffies_to_msecs(bfqq->
|
|
+ raising_cur_max_time));
|
|
+ bfq_bfqq_end_raising(bfqq);
|
|
+ __bfq_entity_update_weight_prio(
|
|
+ bfq_entity_service_tree(entity),
|
|
+ entity);
|
|
+ }
|
|
+ }
|
|
+}
|
|
+
|
|
+/*
|
|
+ * Dispatch one request from bfqq, moving it to the request queue
|
|
+ * dispatch list.
|
|
+ */
|
|
+static int bfq_dispatch_request(struct bfq_data *bfqd,
|
|
+ struct bfq_queue *bfqq)
|
|
+{
|
|
+ int dispatched = 0;
|
|
+ struct request *rq;
|
|
+ unsigned long service_to_charge;
|
|
+
|
|
+ BUG_ON(RB_EMPTY_ROOT(&bfqq->sort_list));
|
|
+
|
|
+ /* Follow expired path, else get first next available. */
|
|
+ rq = bfq_check_fifo(bfqq);
|
|
+ if (rq == NULL)
|
|
+ rq = bfqq->next_rq;
|
|
+ service_to_charge = bfq_serv_to_charge(rq, bfqq);
|
|
+
|
|
+ if (service_to_charge > bfq_bfqq_budget_left(bfqq)) {
|
|
+ /*
|
|
+ * This may happen if the next rq is chosen
|
|
+ * in fifo order instead of sector order.
|
|
+ * The budget is properly dimensioned
|
|
+ * to be always sufficient to serve the next request
|
|
+ * only if it is chosen in sector order. The reason is
|
|
+ * that it would be quite inefficient and little useful
|
|
+ * to always make sure that the budget is large enough
|
|
+ * to serve even the possible next rq in fifo order.
|
|
+ * In fact, requests are seldom served in fifo order.
|
|
+ *
|
|
+ * Expire the queue for budget exhaustion, and
|
|
+ * make sure that the next act_budget is enough
|
|
+ * to serve the next request, even if it comes
|
|
+ * from the fifo expired path.
|
|
+ */
|
|
+ bfqq->next_rq = rq;
|
|
+ /*
|
|
+ * Since this dispatch is failed, make sure that
|
|
+ * a new one will be performed
|
|
+ */
|
|
+ if (!bfqd->rq_in_driver)
|
|
+ bfq_schedule_dispatch(bfqd);
|
|
+ goto expire;
|
|
+ }
|
|
+
|
|
+ /* Finally, insert request into driver dispatch list. */
|
|
+ bfq_bfqq_served(bfqq, service_to_charge);
|
|
+ bfq_dispatch_insert(bfqd->queue, rq);
|
|
+
|
|
+ bfq_update_raising_data(bfqd, bfqq);
|
|
+
|
|
+ bfq_log_bfqq(bfqd, bfqq,
|
|
+ "dispatched %u sec req (%llu), budg left %lu",
|
|
+ blk_rq_sectors(rq),
|
|
+ (long long unsigned)blk_rq_pos(rq),
|
|
+ bfq_bfqq_budget_left(bfqq));
|
|
+
|
|
+ dispatched++;
|
|
+
|
|
+ if (bfqd->in_service_bic == NULL) {
|
|
+ atomic_long_inc(&RQ_BIC(rq)->icq.ioc->refcount);
|
|
+ bfqd->in_service_bic = RQ_BIC(rq);
|
|
+ }
|
|
+
|
|
+ if (bfqd->busy_queues > 1 && ((!bfq_bfqq_sync(bfqq) &&
|
|
+ dispatched >= bfqd->bfq_max_budget_async_rq) ||
|
|
+ bfq_class_idle(bfqq)))
|
|
+ goto expire;
|
|
+
|
|
+ return dispatched;
|
|
+
|
|
+expire:
|
|
+ bfq_bfqq_expire(bfqd, bfqq, 0, BFQ_BFQQ_BUDGET_EXHAUSTED);
|
|
+ return dispatched;
|
|
+}
|
|
+
|
|
+static int __bfq_forced_dispatch_bfqq(struct bfq_queue *bfqq)
|
|
+{
|
|
+ int dispatched = 0;
|
|
+
|
|
+ while (bfqq->next_rq != NULL) {
|
|
+ bfq_dispatch_insert(bfqq->bfqd->queue, bfqq->next_rq);
|
|
+ dispatched++;
|
|
+ }
|
|
+
|
|
+ BUG_ON(!list_empty(&bfqq->fifo));
|
|
+ return dispatched;
|
|
+}
|
|
+
|
|
+/*
|
|
+ * Drain our current requests. Used for barriers and when switching
|
|
+ * io schedulers on-the-fly.
|
|
+ */
|
|
+static int bfq_forced_dispatch(struct bfq_data *bfqd)
|
|
+{
|
|
+ struct bfq_queue *bfqq, *n;
|
|
+ struct bfq_service_tree *st;
|
|
+ int dispatched = 0;
|
|
+
|
|
+ bfqq = bfqd->in_service_queue;
|
|
+ if (bfqq != NULL)
|
|
+ __bfq_bfqq_expire(bfqd, bfqq);
|
|
+
|
|
+ /*
|
|
+ * Loop through classes, and be careful to leave the scheduler
|
|
+ * in a consistent state, as feedback mechanisms and vtime
|
|
+ * updates cannot be disabled during the process.
|
|
+ */
|
|
+ list_for_each_entry_safe(bfqq, n, &bfqd->active_list, bfqq_list) {
|
|
+ st = bfq_entity_service_tree(&bfqq->entity);
|
|
+
|
|
+ dispatched += __bfq_forced_dispatch_bfqq(bfqq);
|
|
+ bfqq->max_budget = bfq_max_budget(bfqd);
|
|
+
|
|
+ bfq_forget_idle(st);
|
|
+ }
|
|
+
|
|
+ BUG_ON(bfqd->busy_queues != 0);
|
|
+
|
|
+ return dispatched;
|
|
+}
|
|
+
|
|
+static int bfq_dispatch_requests(struct request_queue *q, int force)
|
|
+{
|
|
+ struct bfq_data *bfqd = q->elevator->elevator_data;
|
|
+ struct bfq_queue *bfqq;
|
|
+ int max_dispatch;
|
|
+
|
|
+ bfq_log(bfqd, "dispatch requests: %d busy queues", bfqd->busy_queues);
|
|
+ if (bfqd->busy_queues == 0)
|
|
+ return 0;
|
|
+
|
|
+ if (unlikely(force))
|
|
+ return bfq_forced_dispatch(bfqd);
|
|
+
|
|
+ bfqq = bfq_select_queue(bfqd);
|
|
+ if (bfqq == NULL)
|
|
+ return 0;
|
|
+
|
|
+ max_dispatch = bfqd->bfq_quantum;
|
|
+ if (bfq_class_idle(bfqq))
|
|
+ max_dispatch = 1;
|
|
+
|
|
+ if (!bfq_bfqq_sync(bfqq))
|
|
+ max_dispatch = bfqd->bfq_max_budget_async_rq;
|
|
+
|
|
+ if (bfqq->dispatched >= max_dispatch) {
|
|
+ if (bfqd->busy_queues > 1)
|
|
+ return 0;
|
|
+ if (bfqq->dispatched >= 4 * max_dispatch)
|
|
+ return 0;
|
|
+ }
|
|
+
|
|
+ if (bfqd->sync_flight != 0 && !bfq_bfqq_sync(bfqq))
|
|
+ return 0;
|
|
+
|
|
+ bfq_clear_bfqq_wait_request(bfqq);
|
|
+ BUG_ON(timer_pending(&bfqd->idle_slice_timer));
|
|
+
|
|
+ if (!bfq_dispatch_request(bfqd, bfqq))
|
|
+ return 0;
|
|
+
|
|
+ bfq_log_bfqq(bfqd, bfqq, "dispatched one request of %d (max_disp %d)",
|
|
+ bfqq->pid, max_dispatch);
|
|
+
|
|
+ return 1;
|
|
+}
|
|
+
|
|
+/*
|
|
+ * Task holds one reference to the queue, dropped when task exits. Each rq
|
|
+ * in-flight on this queue also holds a reference, dropped when rq is freed.
|
|
+ *
|
|
+ * Queue lock must be held here.
|
|
+ */
|
|
+static void bfq_put_queue(struct bfq_queue *bfqq)
|
|
+{
|
|
+ struct bfq_data *bfqd = bfqq->bfqd;
|
|
+
|
|
+ BUG_ON(atomic_read(&bfqq->ref) <= 0);
|
|
+
|
|
+ bfq_log_bfqq(bfqd, bfqq, "put_queue: %p %d", bfqq,
|
|
+ atomic_read(&bfqq->ref));
|
|
+ if (!atomic_dec_and_test(&bfqq->ref))
|
|
+ return;
|
|
+
|
|
+ BUG_ON(rb_first(&bfqq->sort_list) != NULL);
|
|
+ BUG_ON(bfqq->allocated[READ] + bfqq->allocated[WRITE] != 0);
|
|
+ BUG_ON(bfqq->entity.tree != NULL);
|
|
+ BUG_ON(bfq_bfqq_busy(bfqq));
|
|
+ BUG_ON(bfqd->in_service_queue == bfqq);
|
|
+
|
|
+ bfq_log_bfqq(bfqd, bfqq, "put_queue: %p freed", bfqq);
|
|
+
|
|
+ kmem_cache_free(bfq_pool, bfqq);
|
|
+}
|
|
+
|
|
+static void bfq_put_cooperator(struct bfq_queue *bfqq)
|
|
+{
|
|
+ struct bfq_queue *__bfqq, *next;
|
|
+
|
|
+ /*
|
|
+ * If this queue was scheduled to merge with another queue, be
|
|
+ * sure to drop the reference taken on that queue (and others in
|
|
+ * the merge chain). See bfq_setup_merge and bfq_merge_bfqqs.
|
|
+ */
|
|
+ __bfqq = bfqq->new_bfqq;
|
|
+ while (__bfqq) {
|
|
+ if (__bfqq == bfqq) {
|
|
+ WARN(1, "bfqq->new_bfqq loop detected.\n");
|
|
+ break;
|
|
+ }
|
|
+ next = __bfqq->new_bfqq;
|
|
+ bfq_put_queue(__bfqq);
|
|
+ __bfqq = next;
|
|
+ }
|
|
+}
|
|
+
|
|
+static void bfq_exit_bfqq(struct bfq_data *bfqd, struct bfq_queue *bfqq)
|
|
+{
|
|
+ if (bfqq == bfqd->in_service_queue) {
|
|
+ __bfq_bfqq_expire(bfqd, bfqq);
|
|
+ bfq_schedule_dispatch(bfqd);
|
|
+ }
|
|
+
|
|
+ bfq_log_bfqq(bfqd, bfqq, "exit_bfqq: %p, %d", bfqq,
|
|
+ atomic_read(&bfqq->ref));
|
|
+
|
|
+ bfq_put_cooperator(bfqq);
|
|
+
|
|
+ bfq_put_queue(bfqq);
|
|
+}
|
|
+
|
|
+static void bfq_init_icq(struct io_cq *icq)
|
|
+{
|
|
+ struct bfq_io_cq *bic = icq_to_bic(icq);
|
|
+
|
|
+ bic->ttime.last_end_request = jiffies;
|
|
+}
|
|
+
|
|
+static void bfq_exit_icq(struct io_cq *icq)
|
|
+{
|
|
+ struct bfq_io_cq *bic = icq_to_bic(icq);
|
|
+ struct bfq_data *bfqd = bic_to_bfqd(bic);
|
|
+
|
|
+ if (bic->bfqq[BLK_RW_ASYNC]) {
|
|
+ bfq_exit_bfqq(bfqd, bic->bfqq[BLK_RW_ASYNC]);
|
|
+ bic->bfqq[BLK_RW_ASYNC] = NULL;
|
|
+ }
|
|
+
|
|
+ if (bic->bfqq[BLK_RW_SYNC]) {
|
|
+ bfq_exit_bfqq(bfqd, bic->bfqq[BLK_RW_SYNC]);
|
|
+ bic->bfqq[BLK_RW_SYNC] = NULL;
|
|
+ }
|
|
+}
|
|
+
|
|
+/*
|
|
+ * Update the entity prio values; note that the new values will not
|
|
+ * be used until the next (re)activation.
|
|
+ */
|
|
+static void bfq_init_prio_data(struct bfq_queue *bfqq, struct bfq_io_cq *bic)
|
|
+{
|
|
+ struct task_struct *tsk = current;
|
|
+ int ioprio_class;
|
|
+
|
|
+ if (!bfq_bfqq_prio_changed(bfqq))
|
|
+ return;
|
|
+
|
|
+ ioprio_class = IOPRIO_PRIO_CLASS(bic->ioprio);
|
|
+ switch (ioprio_class) {
|
|
+ default:
|
|
+ dev_err(bfqq->bfqd->queue->backing_dev_info.dev,
|
|
+ "bfq: bad prio %x\n", ioprio_class);
|
|
+ case IOPRIO_CLASS_NONE:
|
|
+ /*
|
|
+ * No prio set, inherit CPU scheduling settings.
|
|
+ */
|
|
+ bfqq->entity.new_ioprio = task_nice_ioprio(tsk);
|
|
+ bfqq->entity.new_ioprio_class = task_nice_ioclass(tsk);
|
|
+ break;
|
|
+ case IOPRIO_CLASS_RT:
|
|
+ bfqq->entity.new_ioprio = IOPRIO_PRIO_DATA(bic->ioprio);
|
|
+ bfqq->entity.new_ioprio_class = IOPRIO_CLASS_RT;
|
|
+ break;
|
|
+ case IOPRIO_CLASS_BE:
|
|
+ bfqq->entity.new_ioprio = IOPRIO_PRIO_DATA(bic->ioprio);
|
|
+ bfqq->entity.new_ioprio_class = IOPRIO_CLASS_BE;
|
|
+ break;
|
|
+ case IOPRIO_CLASS_IDLE:
|
|
+ bfqq->entity.new_ioprio_class = IOPRIO_CLASS_IDLE;
|
|
+ bfqq->entity.new_ioprio = 7;
|
|
+ bfq_clear_bfqq_idle_window(bfqq);
|
|
+ break;
|
|
+ }
|
|
+
|
|
+ bfqq->entity.ioprio_changed = 1;
|
|
+
|
|
+ /*
|
|
+ * Keep track of original prio settings in case we have to temporarily
|
|
+ * elevate the priority of this queue.
|
|
+ */
|
|
+ bfqq->org_ioprio = bfqq->entity.new_ioprio;
|
|
+ bfq_clear_bfqq_prio_changed(bfqq);
|
|
+}
|
|
+
|
|
+static void bfq_changed_ioprio(struct bfq_io_cq *bic)
|
|
+{
|
|
+ struct bfq_data *bfqd;
|
|
+ struct bfq_queue *bfqq, *new_bfqq;
|
|
+ struct bfq_group *bfqg;
|
|
+ unsigned long uninitialized_var(flags);
|
|
+ int ioprio = bic->icq.ioc->ioprio;
|
|
+
|
|
+ bfqd = bfq_get_bfqd_locked(&(bic->icq.q->elevator->elevator_data),
|
|
+ &flags);
|
|
+ /*
|
|
+ * This condition may trigger on a newly created bic, be sure to drop
|
|
+ * the lock before returning.
|
|
+ */
|
|
+ if (unlikely(bfqd == NULL) || likely(bic->ioprio == ioprio))
|
|
+ goto out;
|
|
+
|
|
+ bfqq = bic->bfqq[BLK_RW_ASYNC];
|
|
+ if (bfqq != NULL) {
|
|
+ bfqg = container_of(bfqq->entity.sched_data, struct bfq_group,
|
|
+ sched_data);
|
|
+ new_bfqq = bfq_get_queue(bfqd, bfqg, BLK_RW_ASYNC, bic,
|
|
+ GFP_ATOMIC);
|
|
+ if (new_bfqq != NULL) {
|
|
+ bic->bfqq[BLK_RW_ASYNC] = new_bfqq;
|
|
+ bfq_log_bfqq(bfqd, bfqq,
|
|
+ "changed_ioprio: bfqq %p %d",
|
|
+ bfqq, atomic_read(&bfqq->ref));
|
|
+ bfq_put_queue(bfqq);
|
|
+ }
|
|
+ }
|
|
+
|
|
+ bfqq = bic->bfqq[BLK_RW_SYNC];
|
|
+ if (bfqq != NULL)
|
|
+ bfq_mark_bfqq_prio_changed(bfqq);
|
|
+
|
|
+ bic->ioprio = ioprio;
|
|
+
|
|
+out:
|
|
+ bfq_put_bfqd_unlock(bfqd, &flags);
|
|
+}
|
|
+
|
|
+static void bfq_init_bfqq(struct bfq_data *bfqd, struct bfq_queue *bfqq,
|
|
+ pid_t pid, int is_sync)
|
|
+{
|
|
+ RB_CLEAR_NODE(&bfqq->entity.rb_node);
|
|
+ INIT_LIST_HEAD(&bfqq->fifo);
|
|
+
|
|
+ atomic_set(&bfqq->ref, 0);
|
|
+ bfqq->bfqd = bfqd;
|
|
+
|
|
+ bfq_mark_bfqq_prio_changed(bfqq);
|
|
+
|
|
+ if (is_sync) {
|
|
+ if (!bfq_class_idle(bfqq))
|
|
+ bfq_mark_bfqq_idle_window(bfqq);
|
|
+ bfq_mark_bfqq_sync(bfqq);
|
|
+ }
|
|
+
|
|
+ /* Tentative initial value to trade off between thr and lat */
|
|
+ bfqq->max_budget = (2 * bfq_max_budget(bfqd)) / 3;
|
|
+ bfqq->pid = pid;
|
|
+
|
|
+ bfqq->raising_coeff = 1;
|
|
+ bfqq->last_rais_start_finish = 0;
|
|
+ bfqq->soft_rt_next_start = -1;
|
|
+}
|
|
+
|
|
+static struct bfq_queue *bfq_find_alloc_queue(struct bfq_data *bfqd,
|
|
+ struct bfq_group *bfqg,
|
|
+ int is_sync,
|
|
+ struct bfq_io_cq *bic,
|
|
+ gfp_t gfp_mask)
|
|
+{
|
|
+ struct bfq_queue *bfqq, *new_bfqq = NULL;
|
|
+
|
|
+retry:
|
|
+ /* bic always exists here */
|
|
+ bfqq = bic_to_bfqq(bic, is_sync);
|
|
+
|
|
+ /*
|
|
+ * Always try a new alloc if we fall back to the OOM bfqq
|
|
+ * originally, since it should just be a temporary situation.
|
|
+ */
|
|
+ if (bfqq == NULL || bfqq == &bfqd->oom_bfqq) {
|
|
+ bfqq = NULL;
|
|
+ if (new_bfqq != NULL) {
|
|
+ bfqq = new_bfqq;
|
|
+ new_bfqq = NULL;
|
|
+ } else if (gfp_mask & __GFP_WAIT) {
|
|
+ spin_unlock_irq(bfqd->queue->queue_lock);
|
|
+ new_bfqq = kmem_cache_alloc_node(bfq_pool,
|
|
+ gfp_mask | __GFP_ZERO,
|
|
+ bfqd->queue->node);
|
|
+ spin_lock_irq(bfqd->queue->queue_lock);
|
|
+ if (new_bfqq != NULL)
|
|
+ goto retry;
|
|
+ } else {
|
|
+ bfqq = kmem_cache_alloc_node(bfq_pool,
|
|
+ gfp_mask | __GFP_ZERO,
|
|
+ bfqd->queue->node);
|
|
+ }
|
|
+
|
|
+ if (bfqq != NULL) {
|
|
+ bfq_init_bfqq(bfqd, bfqq, current->pid, is_sync);
|
|
+ bfq_log_bfqq(bfqd, bfqq, "allocated");
|
|
+ } else {
|
|
+ bfqq = &bfqd->oom_bfqq;
|
|
+ bfq_log_bfqq(bfqd, bfqq, "using oom bfqq");
|
|
+ }
|
|
+
|
|
+ bfq_init_prio_data(bfqq, bic);
|
|
+ bfq_init_entity(&bfqq->entity, bfqg);
|
|
+ }
|
|
+
|
|
+ if (new_bfqq != NULL)
|
|
+ kmem_cache_free(bfq_pool, new_bfqq);
|
|
+
|
|
+ return bfqq;
|
|
+}
|
|
+
|
|
+static struct bfq_queue **bfq_async_queue_prio(struct bfq_data *bfqd,
|
|
+ struct bfq_group *bfqg,
|
|
+ int ioprio_class, int ioprio)
|
|
+{
|
|
+ switch (ioprio_class) {
|
|
+ case IOPRIO_CLASS_RT:
|
|
+ return &bfqg->async_bfqq[0][ioprio];
|
|
+ case IOPRIO_CLASS_NONE:
|
|
+ ioprio = IOPRIO_NORM;
|
|
+ /* fall through */
|
|
+ case IOPRIO_CLASS_BE:
|
|
+ return &bfqg->async_bfqq[1][ioprio];
|
|
+ case IOPRIO_CLASS_IDLE:
|
|
+ return &bfqg->async_idle_bfqq;
|
|
+ default:
|
|
+ BUG();
|
|
+ }
|
|
+}
|
|
+
|
|
+static struct bfq_queue *bfq_get_queue(struct bfq_data *bfqd,
|
|
+ struct bfq_group *bfqg, int is_sync,
|
|
+ struct bfq_io_cq *bic, gfp_t gfp_mask)
|
|
+{
|
|
+ const int ioprio = IOPRIO_PRIO_DATA(bic->ioprio);
|
|
+ const int ioprio_class = IOPRIO_PRIO_CLASS(bic->ioprio);
|
|
+ struct bfq_queue **async_bfqq = NULL;
|
|
+ struct bfq_queue *bfqq = NULL;
|
|
+
|
|
+ if (!is_sync) {
|
|
+ async_bfqq = bfq_async_queue_prio(bfqd, bfqg, ioprio_class,
|
|
+ ioprio);
|
|
+ bfqq = *async_bfqq;
|
|
+ }
|
|
+
|
|
+ if (bfqq == NULL)
|
|
+ bfqq = bfq_find_alloc_queue(bfqd, bfqg, is_sync, bic, gfp_mask);
|
|
+
|
|
+ /*
|
|
+ * Pin the queue now that it's allocated, scheduler exit will prune it.
|
|
+ */
|
|
+ if (!is_sync && *async_bfqq == NULL) {
|
|
+ atomic_inc(&bfqq->ref);
|
|
+ bfq_log_bfqq(bfqd, bfqq, "get_queue, bfqq not in async: %p, %d",
|
|
+ bfqq, atomic_read(&bfqq->ref));
|
|
+ *async_bfqq = bfqq;
|
|
+ }
|
|
+
|
|
+ atomic_inc(&bfqq->ref);
|
|
+ bfq_log_bfqq(bfqd, bfqq, "get_queue, at end: %p, %d", bfqq,
|
|
+ atomic_read(&bfqq->ref));
|
|
+ return bfqq;
|
|
+}
|
|
+
|
|
+static void bfq_update_io_thinktime(struct bfq_data *bfqd,
|
|
+ struct bfq_io_cq *bic)
|
|
+{
|
|
+ unsigned long elapsed = jiffies - bic->ttime.last_end_request;
|
|
+ unsigned long ttime = min(elapsed, 2UL * bfqd->bfq_slice_idle);
|
|
+
|
|
+ bic->ttime.ttime_samples = (7*bic->ttime.ttime_samples + 256) / 8;
|
|
+ bic->ttime.ttime_total = (7*bic->ttime.ttime_total + 256*ttime) / 8;
|
|
+ bic->ttime.ttime_mean = (bic->ttime.ttime_total + 128) /
|
|
+ bic->ttime.ttime_samples;
|
|
+}
|
|
+
|
|
+static void bfq_update_io_seektime(struct bfq_data *bfqd,
|
|
+ struct bfq_queue *bfqq,
|
|
+ struct request *rq)
|
|
+{
|
|
+ sector_t sdist;
|
|
+ u64 total;
|
|
+
|
|
+ if (bfqq->last_request_pos < blk_rq_pos(rq))
|
|
+ sdist = blk_rq_pos(rq) - bfqq->last_request_pos;
|
|
+ else
|
|
+ sdist = bfqq->last_request_pos - blk_rq_pos(rq);
|
|
+
|
|
+ /*
|
|
+ * Don't allow the seek distance to get too large from the
|
|
+ * odd fragment, pagein, etc.
|
|
+ */
|
|
+ if (bfqq->seek_samples == 0) /* first request, not really a seek */
|
|
+ sdist = 0;
|
|
+ else if (bfqq->seek_samples <= 60) /* second & third seek */
|
|
+ sdist = min(sdist, (bfqq->seek_mean * 4) + 2*1024*1024);
|
|
+ else
|
|
+ sdist = min(sdist, (bfqq->seek_mean * 4) + 2*1024*64);
|
|
+
|
|
+ bfqq->seek_samples = (7*bfqq->seek_samples + 256) / 8;
|
|
+ bfqq->seek_total = (7*bfqq->seek_total + (u64)256*sdist) / 8;
|
|
+ total = bfqq->seek_total + (bfqq->seek_samples/2);
|
|
+ do_div(total, bfqq->seek_samples);
|
|
+ bfqq->seek_mean = (sector_t)total;
|
|
+
|
|
+ bfq_log_bfqq(bfqd, bfqq, "dist=%llu mean=%llu", (u64)sdist,
|
|
+ (u64)bfqq->seek_mean);
|
|
+}
|
|
+
|
|
+/*
|
|
+ * Disable idle window if the process thinks too long or seeks so much that
|
|
+ * it doesn't matter.
|
|
+ */
|
|
+static void bfq_update_idle_window(struct bfq_data *bfqd,
|
|
+ struct bfq_queue *bfqq,
|
|
+ struct bfq_io_cq *bic)
|
|
+{
|
|
+ int enable_idle;
|
|
+
|
|
+ /* Don't idle for async or idle io prio class. */
|
|
+ if (!bfq_bfqq_sync(bfqq) || bfq_class_idle(bfqq))
|
|
+ return;
|
|
+
|
|
+ enable_idle = bfq_bfqq_idle_window(bfqq);
|
|
+
|
|
+ if (atomic_read(&bic->icq.ioc->active_ref) == 0 ||
|
|
+ bfqd->bfq_slice_idle == 0 ||
|
|
+ (bfqd->hw_tag && BFQQ_SEEKY(bfqq) &&
|
|
+ bfqq->raising_coeff == 1))
|
|
+ enable_idle = 0;
|
|
+ else if (bfq_sample_valid(bic->ttime.ttime_samples)) {
|
|
+ if (bic->ttime.ttime_mean > bfqd->bfq_slice_idle &&
|
|
+ bfqq->raising_coeff == 1)
|
|
+ enable_idle = 0;
|
|
+ else
|
|
+ enable_idle = 1;
|
|
+ }
|
|
+ bfq_log_bfqq(bfqd, bfqq, "update_idle_window: enable_idle %d",
|
|
+ enable_idle);
|
|
+
|
|
+ if (enable_idle)
|
|
+ bfq_mark_bfqq_idle_window(bfqq);
|
|
+ else
|
|
+ bfq_clear_bfqq_idle_window(bfqq);
|
|
+}
|
|
+
|
|
+/*
|
|
+ * Called when a new fs request (rq) is added to bfqq. Check if there's
|
|
+ * something we should do about it.
|
|
+ */
|
|
+static void bfq_rq_enqueued(struct bfq_data *bfqd, struct bfq_queue *bfqq,
|
|
+ struct request *rq)
|
|
+{
|
|
+ struct bfq_io_cq *bic = RQ_BIC(rq);
|
|
+
|
|
+ if (rq->cmd_flags & REQ_META)
|
|
+ bfqq->meta_pending++;
|
|
+
|
|
+ bfq_update_io_thinktime(bfqd, bic);
|
|
+ bfq_update_io_seektime(bfqd, bfqq, rq);
|
|
+ if (bfqq->entity.service > bfq_max_budget(bfqd) / 8 ||
|
|
+ !BFQQ_SEEKY(bfqq))
|
|
+ bfq_update_idle_window(bfqd, bfqq, bic);
|
|
+
|
|
+ bfq_log_bfqq(bfqd, bfqq,
|
|
+ "rq_enqueued: idle_window=%d (seeky %d, mean %llu)",
|
|
+ bfq_bfqq_idle_window(bfqq), BFQQ_SEEKY(bfqq),
|
|
+ (long long unsigned)bfqq->seek_mean);
|
|
+
|
|
+ bfqq->last_request_pos = blk_rq_pos(rq) + blk_rq_sectors(rq);
|
|
+
|
|
+ if (bfqq == bfqd->in_service_queue && bfq_bfqq_wait_request(bfqq)) {
|
|
+ int small_req = bfqq->queued[rq_is_sync(rq)] == 1 &&
|
|
+ blk_rq_sectors(rq) < 32;
|
|
+ int budget_timeout = bfq_bfqq_budget_timeout(bfqq);
|
|
+
|
|
+ /*
|
|
+ * There is just this request queued: if the request
|
|
+ * is small and the queue is not to be expired, then
|
|
+ * just exit.
|
|
+ *
|
|
+ * In this way, if the disk is being idled to wait for
|
|
+ * a new request from the in-service queue, we avoid
|
|
+ * unplugging the device and committing the disk to serve
|
|
+ * just a small request. On the contrary, we wait for
|
|
+ * the block layer to decide when to unplug the device:
|
|
+ * hopefully, new requests will be merged to this one
|
|
+ * quickly, then the device will be unplugged and
|
|
+ * larger requests will be dispatched.
|
|
+ */
|
|
+ if (small_req && !budget_timeout)
|
|
+ return;
|
|
+
|
|
+ /*
|
|
+ * A large enough request arrived, or the queue is to
|
|
+ * be expired: in both cases disk idling is to be
|
|
+ * stopped, so clear wait_request flag and reset
|
|
+ * timer.
|
|
+ */
|
|
+ bfq_clear_bfqq_wait_request(bfqq);
|
|
+ del_timer(&bfqd->idle_slice_timer);
|
|
+
|
|
+ /*
|
|
+ * The queue is not empty, because a new request just
|
|
+ * arrived. Hence we can safely expire the queue, in
|
|
+ * case of budget timeout, without risking that the
|
|
+ * timestamps of the queue are not updated correctly.
|
|
+ * See [1] for more details.
|
|
+ */
|
|
+ if (budget_timeout)
|
|
+ bfq_bfqq_expire(bfqd, bfqq, 0, BFQ_BFQQ_BUDGET_TIMEOUT);
|
|
+
|
|
+ /*
|
|
+ * Let the request rip immediately, or let a new queue be
|
|
+ * selected if bfqq has just been expired.
|
|
+ */
|
|
+ __blk_run_queue(bfqd->queue);
|
|
+ }
|
|
+}
|
|
+
|
|
+static void bfq_insert_request(struct request_queue *q, struct request *rq)
|
|
+{
|
|
+ struct bfq_data *bfqd = q->elevator->elevator_data;
|
|
+ struct bfq_queue *bfqq = RQ_BFQQ(rq);
|
|
+
|
|
+ assert_spin_locked(bfqd->queue->queue_lock);
|
|
+ bfq_init_prio_data(bfqq, RQ_BIC(rq));
|
|
+
|
|
+ bfq_add_rq_rb(rq);
|
|
+
|
|
+ rq_set_fifo_time(rq, jiffies + bfqd->bfq_fifo_expire[rq_is_sync(rq)]);
|
|
+ list_add_tail(&rq->queuelist, &bfqq->fifo);
|
|
+
|
|
+ bfq_rq_enqueued(bfqd, bfqq, rq);
|
|
+}
|
|
+
|
|
+static void bfq_update_hw_tag(struct bfq_data *bfqd)
|
|
+{
|
|
+ bfqd->max_rq_in_driver = max(bfqd->max_rq_in_driver,
|
|
+ bfqd->rq_in_driver);
|
|
+
|
|
+ if (bfqd->hw_tag == 1)
|
|
+ return;
|
|
+
|
|
+ /*
|
|
+ * This sample is valid if the number of outstanding requests
|
|
+ * is large enough to allow a queueing behavior. Note that the
|
|
+ * sum is not exact, as it's not taking into account deactivated
|
|
+ * requests.
|
|
+ */
|
|
+ if (bfqd->rq_in_driver + bfqd->queued < BFQ_HW_QUEUE_THRESHOLD)
|
|
+ return;
|
|
+
|
|
+ if (bfqd->hw_tag_samples++ < BFQ_HW_QUEUE_SAMPLES)
|
|
+ return;
|
|
+
|
|
+ bfqd->hw_tag = bfqd->max_rq_in_driver > BFQ_HW_QUEUE_THRESHOLD;
|
|
+ bfqd->max_rq_in_driver = 0;
|
|
+ bfqd->hw_tag_samples = 0;
|
|
+}
|
|
+
|
|
+static void bfq_completed_request(struct request_queue *q, struct request *rq)
|
|
+{
|
|
+ struct bfq_queue *bfqq = RQ_BFQQ(rq);
|
|
+ struct bfq_data *bfqd = bfqq->bfqd;
|
|
+ const int sync = rq_is_sync(rq);
|
|
+
|
|
+ bfq_log_bfqq(bfqd, bfqq, "completed %u sects req (%d)",
|
|
+ blk_rq_sectors(rq), sync);
|
|
+
|
|
+ bfq_update_hw_tag(bfqd);
|
|
+
|
|
+ WARN_ON(!bfqd->rq_in_driver);
|
|
+ WARN_ON(!bfqq->dispatched);
|
|
+ bfqd->rq_in_driver--;
|
|
+ bfqq->dispatched--;
|
|
+
|
|
+ if (bfq_bfqq_sync(bfqq))
|
|
+ bfqd->sync_flight--;
|
|
+
|
|
+ if (sync)
|
|
+ RQ_BIC(rq)->ttime.last_end_request = jiffies;
|
|
+
|
|
+ /*
|
|
+ * The computation of softrt_next_start was scheduled for the next
|
|
+ * request completion: it is now time to compute it.
|
|
+ */
|
|
+ if (bfq_bfqq_softrt_update(bfqq) && RB_EMPTY_ROOT(&bfqq->sort_list))
|
|
+ bfqq->soft_rt_next_start =
|
|
+ bfq_bfqq_softrt_next_start(bfqd, bfqq);
|
|
+
|
|
+ /*
|
|
+ * If this is the in-service queue, check if it needs to be expired,
|
|
+ * or if we want to idle in case it has no pending requests.
|
|
+ */
|
|
+ if (bfqd->in_service_queue == bfqq) {
|
|
+ if (bfq_bfqq_budget_new(bfqq))
|
|
+ bfq_set_budget_timeout(bfqd);
|
|
+
|
|
+ if (bfq_bfqq_must_idle(bfqq)) {
|
|
+ bfq_arm_slice_timer(bfqd);
|
|
+ goto out;
|
|
+ } else if (bfq_may_expire_for_budg_timeout(bfqq))
|
|
+ bfq_bfqq_expire(bfqd, bfqq, 0, BFQ_BFQQ_BUDGET_TIMEOUT);
|
|
+ else if (RB_EMPTY_ROOT(&bfqq->sort_list) &&
|
|
+ (bfqq->dispatched == 0 ||
|
|
+ !bfq_bfqq_must_not_expire(bfqq)))
|
|
+ bfq_bfqq_expire(bfqd, bfqq, 0,
|
|
+ BFQ_BFQQ_NO_MORE_REQUESTS);
|
|
+ }
|
|
+
|
|
+ if (!bfqd->rq_in_driver)
|
|
+ bfq_schedule_dispatch(bfqd);
|
|
+
|
|
+out:
|
|
+ return;
|
|
+}
|
|
+
|
|
+static inline int __bfq_may_queue(struct bfq_queue *bfqq)
|
|
+{
|
|
+ if (bfq_bfqq_wait_request(bfqq) && bfq_bfqq_must_alloc(bfqq)) {
|
|
+ bfq_clear_bfqq_must_alloc(bfqq);
|
|
+ return ELV_MQUEUE_MUST;
|
|
+ }
|
|
+
|
|
+ return ELV_MQUEUE_MAY;
|
|
+}
|
|
+
|
|
+static int bfq_may_queue(struct request_queue *q, int rw)
|
|
+{
|
|
+ struct bfq_data *bfqd = q->elevator->elevator_data;
|
|
+ struct task_struct *tsk = current;
|
|
+ struct bfq_io_cq *bic;
|
|
+ struct bfq_queue *bfqq;
|
|
+
|
|
+ /*
|
|
+ * Don't force setup of a queue from here, as a call to may_queue
|
|
+ * does not necessarily imply that a request actually will be queued.
|
|
+ * So just lookup a possibly existing queue, or return 'may queue'
|
|
+ * if that fails.
|
|
+ */
|
|
+ bic = bfq_bic_lookup(bfqd, tsk->io_context);
|
|
+ if (bic == NULL)
|
|
+ return ELV_MQUEUE_MAY;
|
|
+
|
|
+ bfqq = bic_to_bfqq(bic, rw_is_sync(rw));
|
|
+ if (bfqq != NULL) {
|
|
+ bfq_init_prio_data(bfqq, bic);
|
|
+
|
|
+ return __bfq_may_queue(bfqq);
|
|
+ }
|
|
+
|
|
+ return ELV_MQUEUE_MAY;
|
|
+}
|
|
+
|
|
+/*
|
|
+ * Queue lock held here.
|
|
+ */
|
|
+static void bfq_put_request(struct request *rq)
|
|
+{
|
|
+ struct bfq_queue *bfqq = RQ_BFQQ(rq);
|
|
+
|
|
+ if (bfqq != NULL) {
|
|
+ const int rw = rq_data_dir(rq);
|
|
+
|
|
+ BUG_ON(!bfqq->allocated[rw]);
|
|
+ bfqq->allocated[rw]--;
|
|
+
|
|
+ rq->elv.priv[0] = NULL;
|
|
+ rq->elv.priv[1] = NULL;
|
|
+
|
|
+ bfq_log_bfqq(bfqq->bfqd, bfqq, "put_request %p, %d",
|
|
+ bfqq, atomic_read(&bfqq->ref));
|
|
+ bfq_put_queue(bfqq);
|
|
+ }
|
|
+}
|
|
+
|
|
+static struct bfq_queue *
|
|
+bfq_merge_bfqqs(struct bfq_data *bfqd, struct bfq_io_cq *bic,
|
|
+ struct bfq_queue *bfqq)
|
|
+{
|
|
+ bfq_log_bfqq(bfqd, bfqq, "merging with queue %lu",
|
|
+ (long unsigned)bfqq->new_bfqq->pid);
|
|
+ bic_set_bfqq(bic, bfqq->new_bfqq, 1);
|
|
+ bfq_mark_bfqq_coop(bfqq->new_bfqq);
|
|
+ bfq_put_queue(bfqq);
|
|
+ return bic_to_bfqq(bic, 1);
|
|
+}
|
|
+
|
|
+/*
|
|
+ * Returns NULL if a new bfqq should be allocated, or the old bfqq if this
|
|
+ * was the last process referring to said bfqq.
|
|
+ */
|
|
+static struct bfq_queue *
|
|
+bfq_split_bfqq(struct bfq_io_cq *bic, struct bfq_queue *bfqq)
|
|
+{
|
|
+ bfq_log_bfqq(bfqq->bfqd, bfqq, "splitting queue");
|
|
+ if (bfqq_process_refs(bfqq) == 1) {
|
|
+ bfqq->pid = current->pid;
|
|
+ bfq_clear_bfqq_coop(bfqq);
|
|
+ bfq_clear_bfqq_split_coop(bfqq);
|
|
+ return bfqq;
|
|
+ }
|
|
+
|
|
+ bic_set_bfqq(bic, NULL, 1);
|
|
+
|
|
+ bfq_put_cooperator(bfqq);
|
|
+
|
|
+ bfq_put_queue(bfqq);
|
|
+ return NULL;
|
|
+}
|
|
+
|
|
+/*
|
|
+ * Allocate bfq data structures associated with this request.
|
|
+ */
|
|
+static int bfq_set_request(struct request_queue *q, struct request *rq,
|
|
+ struct bio *bio, gfp_t gfp_mask)
|
|
+{
|
|
+ struct bfq_data *bfqd = q->elevator->elevator_data;
|
|
+ struct bfq_io_cq *bic = icq_to_bic(rq->elv.icq);
|
|
+ const int rw = rq_data_dir(rq);
|
|
+ const int is_sync = rq_is_sync(rq);
|
|
+ struct bfq_queue *bfqq;
|
|
+ struct bfq_group *bfqg;
|
|
+ unsigned long flags;
|
|
+
|
|
+ might_sleep_if(gfp_mask & __GFP_WAIT);
|
|
+
|
|
+ bfq_changed_ioprio(bic);
|
|
+
|
|
+ spin_lock_irqsave(q->queue_lock, flags);
|
|
+
|
|
+ if (bic == NULL)
|
|
+ goto queue_fail;
|
|
+
|
|
+ bfqg = bfq_bic_update_cgroup(bic);
|
|
+
|
|
+new_queue:
|
|
+ bfqq = bic_to_bfqq(bic, is_sync);
|
|
+ if (bfqq == NULL || bfqq == &bfqd->oom_bfqq) {
|
|
+ bfqq = bfq_get_queue(bfqd, bfqg, is_sync, bic, gfp_mask);
|
|
+ bic_set_bfqq(bic, bfqq, is_sync);
|
|
+ } else {
|
|
+ /*
|
|
+ * If the queue was seeky for too long, break it apart.
|
|
+ */
|
|
+ if (bfq_bfqq_coop(bfqq) && bfq_bfqq_split_coop(bfqq)) {
|
|
+ bfq_log_bfqq(bfqd, bfqq, "breaking apart bfqq");
|
|
+ bfqq = bfq_split_bfqq(bic, bfqq);
|
|
+ if (!bfqq)
|
|
+ goto new_queue;
|
|
+ }
|
|
+
|
|
+ /*
|
|
+ * Check to see if this queue is scheduled to merge with
|
|
+ * another closely cooperating queue. The merging of queues
|
|
+ * happens here as it must be done in process context.
|
|
+ * The reference on new_bfqq was taken in merge_bfqqs.
|
|
+ */
|
|
+ if (bfqq->new_bfqq != NULL)
|
|
+ bfqq = bfq_merge_bfqqs(bfqd, bic, bfqq);
|
|
+ }
|
|
+
|
|
+ bfqq->allocated[rw]++;
|
|
+ atomic_inc(&bfqq->ref);
|
|
+ bfq_log_bfqq(bfqd, bfqq, "set_request: bfqq %p, %d", bfqq,
|
|
+ atomic_read(&bfqq->ref));
|
|
+
|
|
+ rq->elv.priv[0] = bic;
|
|
+ rq->elv.priv[1] = bfqq;
|
|
+
|
|
+ spin_unlock_irqrestore(q->queue_lock, flags);
|
|
+
|
|
+ return 0;
|
|
+
|
|
+queue_fail:
|
|
+ bfq_schedule_dispatch(bfqd);
|
|
+ spin_unlock_irqrestore(q->queue_lock, flags);
|
|
+
|
|
+ return 1;
|
|
+}
|
|
+
|
|
+static void bfq_kick_queue(struct work_struct *work)
|
|
+{
|
|
+ struct bfq_data *bfqd =
|
|
+ container_of(work, struct bfq_data, unplug_work);
|
|
+ struct request_queue *q = bfqd->queue;
|
|
+
|
|
+ spin_lock_irq(q->queue_lock);
|
|
+ __blk_run_queue(q);
|
|
+ spin_unlock_irq(q->queue_lock);
|
|
+}
|
|
+
|
|
+/*
|
|
+ * Handler of the expiration of the timer running if the in-service queue
|
|
+ * is idling inside its time slice.
|
|
+ */
|
|
+static void bfq_idle_slice_timer(unsigned long data)
|
|
+{
|
|
+ struct bfq_data *bfqd = (struct bfq_data *)data;
|
|
+ struct bfq_queue *bfqq;
|
|
+ unsigned long flags;
|
|
+ enum bfqq_expiration reason;
|
|
+
|
|
+ spin_lock_irqsave(bfqd->queue->queue_lock, flags);
|
|
+
|
|
+ bfqq = bfqd->in_service_queue;
|
|
+ /*
|
|
+ * Theoretical race here: the in-service queue can be NULL or different
|
|
+ * from the queue that was idling if the timer handler spins on
|
|
+ * the queue_lock and a new request arrives for the current
|
|
+ * queue and there is a full dispatch cycle that changes the
|
|
+ * in-service queue. This can hardly happen, but in the worst case
|
|
+ * we just expire a queue too early.
|
|
+ */
|
|
+ if (bfqq != NULL) {
|
|
+ bfq_log_bfqq(bfqd, bfqq, "slice_timer expired");
|
|
+ if (bfq_bfqq_budget_timeout(bfqq))
|
|
+ /*
|
|
+ * Also here the queue can be safely expired
|
|
+ * for budget timeout without wasting
|
|
+ * guarantees
|
|
+ */
|
|
+ reason = BFQ_BFQQ_BUDGET_TIMEOUT;
|
|
+ else if (bfqq->queued[0] == 0 && bfqq->queued[1] == 0)
|
|
+ /*
|
|
+ * The queue may not be empty upon timer expiration,
|
|
+ * because we may not disable the timer when the first
|
|
+ * request of the in-service queue arrives during
|
|
+ * disk idling
|
|
+ */
|
|
+ reason = BFQ_BFQQ_TOO_IDLE;
|
|
+ else
|
|
+ goto schedule_dispatch;
|
|
+
|
|
+ bfq_bfqq_expire(bfqd, bfqq, 1, reason);
|
|
+ }
|
|
+
|
|
+schedule_dispatch:
|
|
+ bfq_schedule_dispatch(bfqd);
|
|
+
|
|
+ spin_unlock_irqrestore(bfqd->queue->queue_lock, flags);
|
|
+}
|
|
+
|
|
+static void bfq_shutdown_timer_wq(struct bfq_data *bfqd)
|
|
+{
|
|
+ del_timer_sync(&bfqd->idle_slice_timer);
|
|
+ cancel_work_sync(&bfqd->unplug_work);
|
|
+}
|
|
+
|
|
+static inline void __bfq_put_async_bfqq(struct bfq_data *bfqd,
|
|
+ struct bfq_queue **bfqq_ptr)
|
|
+{
|
|
+ struct bfq_group *root_group = bfqd->root_group;
|
|
+ struct bfq_queue *bfqq = *bfqq_ptr;
|
|
+
|
|
+ bfq_log(bfqd, "put_async_bfqq: %p", bfqq);
|
|
+ if (bfqq != NULL) {
|
|
+ bfq_bfqq_move(bfqd, bfqq, &bfqq->entity, root_group);
|
|
+ bfq_log_bfqq(bfqd, bfqq, "put_async_bfqq: putting %p, %d",
|
|
+ bfqq, atomic_read(&bfqq->ref));
|
|
+ bfq_put_queue(bfqq);
|
|
+ *bfqq_ptr = NULL;
|
|
+ }
|
|
+}
|
|
+
|
|
+/*
|
|
+ * Release all the bfqg references to its async queues. If we are
|
|
+ * deallocating the group these queues may still contain requests, so
|
|
+ * we reparent them to the root cgroup (i.e., the only one that will
|
|
+ * exist for sure untill all the requests on a device are gone).
|
|
+ */
|
|
+static void bfq_put_async_queues(struct bfq_data *bfqd, struct bfq_group *bfqg)
|
|
+{
|
|
+ int i, j;
|
|
+
|
|
+ for (i = 0; i < 2; i++)
|
|
+ for (j = 0; j < IOPRIO_BE_NR; j++)
|
|
+ __bfq_put_async_bfqq(bfqd, &bfqg->async_bfqq[i][j]);
|
|
+
|
|
+ __bfq_put_async_bfqq(bfqd, &bfqg->async_idle_bfqq);
|
|
+}
|
|
+
|
|
+static void bfq_exit_queue(struct elevator_queue *e)
|
|
+{
|
|
+ struct bfq_data *bfqd = e->elevator_data;
|
|
+ struct request_queue *q = bfqd->queue;
|
|
+ struct bfq_queue *bfqq, *n;
|
|
+
|
|
+ bfq_shutdown_timer_wq(bfqd);
|
|
+
|
|
+ spin_lock_irq(q->queue_lock);
|
|
+
|
|
+ BUG_ON(bfqd->in_service_queue != NULL);
|
|
+ list_for_each_entry_safe(bfqq, n, &bfqd->idle_list, bfqq_list)
|
|
+ bfq_deactivate_bfqq(bfqd, bfqq, 0);
|
|
+
|
|
+ bfq_disconnect_groups(bfqd);
|
|
+ spin_unlock_irq(q->queue_lock);
|
|
+
|
|
+ bfq_shutdown_timer_wq(bfqd);
|
|
+
|
|
+ synchronize_rcu();
|
|
+
|
|
+ BUG_ON(timer_pending(&bfqd->idle_slice_timer));
|
|
+
|
|
+ bfq_free_root_group(bfqd);
|
|
+ kfree(bfqd);
|
|
+}
|
|
+
|
|
+static int bfq_init_queue(struct request_queue *q, struct elevator_type *e)
|
|
+{
|
|
+ struct bfq_group *bfqg;
|
|
+ struct bfq_data *bfqd;
|
|
+ struct elevator_queue *eq;
|
|
+
|
|
+ eq = elevator_alloc(q, e);
|
|
+ if (eq == NULL)
|
|
+ return -ENOMEM;
|
|
+
|
|
+ bfqd = kzalloc_node(sizeof(*bfqd), GFP_KERNEL, q->node);
|
|
+ if (bfqd == NULL) {
|
|
+ kobject_put(&eq->kobj);
|
|
+ return -ENOMEM;
|
|
+ }
|
|
+ eq->elevator_data = bfqd;
|
|
+
|
|
+ /*
|
|
+ * Our fallback bfqq if bfq_find_alloc_queue() runs into OOM issues.
|
|
+ * Grab a permanent reference to it, so that the normal code flow
|
|
+ * will not attempt to free it.
|
|
+ */
|
|
+ bfq_init_bfqq(bfqd, &bfqd->oom_bfqq, 1, 0);
|
|
+ atomic_inc(&bfqd->oom_bfqq.ref);
|
|
+
|
|
+ bfqd->queue = q;
|
|
+
|
|
+ spin_lock_irq(q->queue_lock);
|
|
+ q->elevator = eq;
|
|
+ spin_unlock_irq(q->queue_lock);
|
|
+
|
|
+ bfqg = bfq_alloc_root_group(bfqd, q->node);
|
|
+ if (bfqg == NULL) {
|
|
+ kfree(bfqd);
|
|
+ kobject_put(&eq->kobj);
|
|
+ return -ENOMEM;
|
|
+ }
|
|
+
|
|
+ bfqd->root_group = bfqg;
|
|
+
|
|
+ init_timer(&bfqd->idle_slice_timer);
|
|
+ bfqd->idle_slice_timer.function = bfq_idle_slice_timer;
|
|
+ bfqd->idle_slice_timer.data = (unsigned long)bfqd;
|
|
+
|
|
+ bfqd->rq_pos_tree = RB_ROOT;
|
|
+
|
|
+ INIT_WORK(&bfqd->unplug_work, bfq_kick_queue);
|
|
+
|
|
+ INIT_LIST_HEAD(&bfqd->active_list);
|
|
+ INIT_LIST_HEAD(&bfqd->idle_list);
|
|
+
|
|
+ bfqd->hw_tag = -1;
|
|
+
|
|
+ bfqd->bfq_max_budget = bfq_default_max_budget;
|
|
+
|
|
+ bfqd->bfq_quantum = bfq_quantum;
|
|
+ bfqd->bfq_fifo_expire[0] = bfq_fifo_expire[0];
|
|
+ bfqd->bfq_fifo_expire[1] = bfq_fifo_expire[1];
|
|
+ bfqd->bfq_back_max = bfq_back_max;
|
|
+ bfqd->bfq_back_penalty = bfq_back_penalty;
|
|
+ bfqd->bfq_slice_idle = bfq_slice_idle;
|
|
+ bfqd->bfq_class_idle_last_service = 0;
|
|
+ bfqd->bfq_max_budget_async_rq = bfq_max_budget_async_rq;
|
|
+ bfqd->bfq_timeout[BLK_RW_ASYNC] = bfq_timeout_async;
|
|
+ bfqd->bfq_timeout[BLK_RW_SYNC] = bfq_timeout_sync;
|
|
+
|
|
+ bfqd->low_latency = true;
|
|
+
|
|
+ bfqd->bfq_raising_coeff = 20;
|
|
+ bfqd->bfq_raising_rt_max_time = msecs_to_jiffies(300);
|
|
+ bfqd->bfq_raising_max_time = 0;
|
|
+ bfqd->bfq_raising_min_idle_time = msecs_to_jiffies(2000);
|
|
+ bfqd->bfq_raising_min_inter_arr_async = msecs_to_jiffies(500);
|
|
+ bfqd->bfq_raising_max_softrt_rate = 7000; /*
|
|
+ * Approximate rate required
|
|
+ * to playback or record a
|
|
+ * high-definition compressed
|
|
+ * video.
|
|
+ */
|
|
+ bfqd->raised_busy_queues = 0;
|
|
+
|
|
+ /* Initially estimate the device's peak rate as the reference rate */
|
|
+ if (blk_queue_nonrot(bfqd->queue)) {
|
|
+ bfqd->RT_prod = R_nonrot * T_nonrot;
|
|
+ bfqd->peak_rate = R_nonrot;
|
|
+ } else {
|
|
+ bfqd->RT_prod = R_rot * T_rot;
|
|
+ bfqd->peak_rate = R_rot;
|
|
+ }
|
|
+
|
|
+ return 0;
|
|
+}
|
|
+
|
|
+static void bfq_slab_kill(void)
|
|
+{
|
|
+ if (bfq_pool != NULL)
|
|
+ kmem_cache_destroy(bfq_pool);
|
|
+}
|
|
+
|
|
+static int __init bfq_slab_setup(void)
|
|
+{
|
|
+ bfq_pool = KMEM_CACHE(bfq_queue, 0);
|
|
+ if (bfq_pool == NULL)
|
|
+ return -ENOMEM;
|
|
+ return 0;
|
|
+}
|
|
+
|
|
+static ssize_t bfq_var_show(unsigned int var, char *page)
|
|
+{
|
|
+ return sprintf(page, "%d\n", var);
|
|
+}
|
|
+
|
|
+static ssize_t bfq_var_store(unsigned long *var, const char *page, size_t count)
|
|
+{
|
|
+ unsigned long new_val;
|
|
+ int ret = kstrtoul(page, 10, &new_val);
|
|
+
|
|
+ if (ret == 0)
|
|
+ *var = new_val;
|
|
+
|
|
+ return count;
|
|
+}
|
|
+
|
|
+static ssize_t bfq_raising_max_time_show(struct elevator_queue *e, char *page)
|
|
+{
|
|
+ struct bfq_data *bfqd = e->elevator_data;
|
|
+ return sprintf(page, "%d\n", bfqd->bfq_raising_max_time > 0 ?
|
|
+ jiffies_to_msecs(bfqd->bfq_raising_max_time) :
|
|
+ jiffies_to_msecs(bfq_wrais_duration(bfqd)));
|
|
+}
|
|
+
|
|
+static ssize_t bfq_weights_show(struct elevator_queue *e, char *page)
|
|
+{
|
|
+ struct bfq_queue *bfqq;
|
|
+ struct bfq_data *bfqd = e->elevator_data;
|
|
+ ssize_t num_char = 0;
|
|
+
|
|
+ num_char += sprintf(page + num_char, "Tot reqs queued %d\n\n",
|
|
+ bfqd->queued);
|
|
+
|
|
+ spin_lock_irq(bfqd->queue->queue_lock);
|
|
+
|
|
+ num_char += sprintf(page + num_char, "Active:\n");
|
|
+ list_for_each_entry(bfqq, &bfqd->active_list, bfqq_list) {
|
|
+ num_char += sprintf(page + num_char,
|
|
+ "pid%d: weight %hu, nr_queued %d %d,"
|
|
+ " dur %d/%u\n",
|
|
+ bfqq->pid,
|
|
+ bfqq->entity.weight,
|
|
+ bfqq->queued[0],
|
|
+ bfqq->queued[1],
|
|
+ jiffies_to_msecs(jiffies -
|
|
+ bfqq->last_rais_start_finish),
|
|
+ jiffies_to_msecs(bfqq->raising_cur_max_time));
|
|
+ }
|
|
+
|
|
+ num_char += sprintf(page + num_char, "Idle:\n");
|
|
+ list_for_each_entry(bfqq, &bfqd->idle_list, bfqq_list) {
|
|
+ num_char += sprintf(page + num_char,
|
|
+ "pid%d: weight %hu, dur %d/%u\n",
|
|
+ bfqq->pid,
|
|
+ bfqq->entity.weight,
|
|
+ jiffies_to_msecs(jiffies -
|
|
+ bfqq->last_rais_start_finish),
|
|
+ jiffies_to_msecs(bfqq->raising_cur_max_time));
|
|
+ }
|
|
+
|
|
+ spin_unlock_irq(bfqd->queue->queue_lock);
|
|
+
|
|
+ return num_char;
|
|
+}
|
|
+
|
|
+#define SHOW_FUNCTION(__FUNC, __VAR, __CONV) \
|
|
+static ssize_t __FUNC(struct elevator_queue *e, char *page) \
|
|
+{ \
|
|
+ struct bfq_data *bfqd = e->elevator_data; \
|
|
+ unsigned int __data = __VAR; \
|
|
+ if (__CONV) \
|
|
+ __data = jiffies_to_msecs(__data); \
|
|
+ return bfq_var_show(__data, (page)); \
|
|
+}
|
|
+SHOW_FUNCTION(bfq_quantum_show, bfqd->bfq_quantum, 0);
|
|
+SHOW_FUNCTION(bfq_fifo_expire_sync_show, bfqd->bfq_fifo_expire[1], 1);
|
|
+SHOW_FUNCTION(bfq_fifo_expire_async_show, bfqd->bfq_fifo_expire[0], 1);
|
|
+SHOW_FUNCTION(bfq_back_seek_max_show, bfqd->bfq_back_max, 0);
|
|
+SHOW_FUNCTION(bfq_back_seek_penalty_show, bfqd->bfq_back_penalty, 0);
|
|
+SHOW_FUNCTION(bfq_slice_idle_show, bfqd->bfq_slice_idle, 1);
|
|
+SHOW_FUNCTION(bfq_max_budget_show, bfqd->bfq_user_max_budget, 0);
|
|
+SHOW_FUNCTION(bfq_max_budget_async_rq_show, bfqd->bfq_max_budget_async_rq, 0);
|
|
+SHOW_FUNCTION(bfq_timeout_sync_show, bfqd->bfq_timeout[BLK_RW_SYNC], 1);
|
|
+SHOW_FUNCTION(bfq_timeout_async_show, bfqd->bfq_timeout[BLK_RW_ASYNC], 1);
|
|
+SHOW_FUNCTION(bfq_low_latency_show, bfqd->low_latency, 0);
|
|
+SHOW_FUNCTION(bfq_raising_coeff_show, bfqd->bfq_raising_coeff, 0);
|
|
+SHOW_FUNCTION(bfq_raising_rt_max_time_show, bfqd->bfq_raising_rt_max_time, 1);
|
|
+SHOW_FUNCTION(bfq_raising_min_idle_time_show, bfqd->bfq_raising_min_idle_time,
|
|
+ 1);
|
|
+SHOW_FUNCTION(bfq_raising_min_inter_arr_async_show,
|
|
+ bfqd->bfq_raising_min_inter_arr_async,
|
|
+ 1);
|
|
+SHOW_FUNCTION(bfq_raising_max_softrt_rate_show,
|
|
+ bfqd->bfq_raising_max_softrt_rate, 0);
|
|
+#undef SHOW_FUNCTION
|
|
+
|
|
+#define STORE_FUNCTION(__FUNC, __PTR, MIN, MAX, __CONV) \
|
|
+static ssize_t \
|
|
+__FUNC(struct elevator_queue *e, const char *page, size_t count) \
|
|
+{ \
|
|
+ struct bfq_data *bfqd = e->elevator_data; \
|
|
+ unsigned long uninitialized_var(__data); \
|
|
+ int ret = bfq_var_store(&__data, (page), count); \
|
|
+ if (__data < (MIN)) \
|
|
+ __data = (MIN); \
|
|
+ else if (__data > (MAX)) \
|
|
+ __data = (MAX); \
|
|
+ if (__CONV) \
|
|
+ *(__PTR) = msecs_to_jiffies(__data); \
|
|
+ else \
|
|
+ *(__PTR) = __data; \
|
|
+ return ret; \
|
|
+}
|
|
+STORE_FUNCTION(bfq_quantum_store, &bfqd->bfq_quantum, 1, INT_MAX, 0);
|
|
+STORE_FUNCTION(bfq_fifo_expire_sync_store, &bfqd->bfq_fifo_expire[1], 1,
|
|
+ INT_MAX, 1);
|
|
+STORE_FUNCTION(bfq_fifo_expire_async_store, &bfqd->bfq_fifo_expire[0], 1,
|
|
+ INT_MAX, 1);
|
|
+STORE_FUNCTION(bfq_back_seek_max_store, &bfqd->bfq_back_max, 0, INT_MAX, 0);
|
|
+STORE_FUNCTION(bfq_back_seek_penalty_store, &bfqd->bfq_back_penalty, 1,
|
|
+ INT_MAX, 0);
|
|
+STORE_FUNCTION(bfq_slice_idle_store, &bfqd->bfq_slice_idle, 0, INT_MAX, 1);
|
|
+STORE_FUNCTION(bfq_max_budget_async_rq_store, &bfqd->bfq_max_budget_async_rq,
|
|
+ 1, INT_MAX, 0);
|
|
+STORE_FUNCTION(bfq_timeout_async_store, &bfqd->bfq_timeout[BLK_RW_ASYNC], 0,
|
|
+ INT_MAX, 1);
|
|
+STORE_FUNCTION(bfq_raising_coeff_store, &bfqd->bfq_raising_coeff, 1,
|
|
+ INT_MAX, 0);
|
|
+STORE_FUNCTION(bfq_raising_max_time_store, &bfqd->bfq_raising_max_time, 0,
|
|
+ INT_MAX, 1);
|
|
+STORE_FUNCTION(bfq_raising_rt_max_time_store, &bfqd->bfq_raising_rt_max_time, 0,
|
|
+ INT_MAX, 1);
|
|
+STORE_FUNCTION(bfq_raising_min_idle_time_store,
|
|
+ &bfqd->bfq_raising_min_idle_time, 0, INT_MAX, 1);
|
|
+STORE_FUNCTION(bfq_raising_min_inter_arr_async_store,
|
|
+ &bfqd->bfq_raising_min_inter_arr_async, 0, INT_MAX, 1);
|
|
+STORE_FUNCTION(bfq_raising_max_softrt_rate_store,
|
|
+ &bfqd->bfq_raising_max_softrt_rate, 0, INT_MAX, 0);
|
|
+#undef STORE_FUNCTION
|
|
+
|
|
+/* do nothing for the moment */
|
|
+static ssize_t bfq_weights_store(struct elevator_queue *e,
|
|
+ const char *page, size_t count)
|
|
+{
|
|
+ return count;
|
|
+}
|
|
+
|
|
+static inline unsigned long bfq_estimated_max_budget(struct bfq_data *bfqd)
|
|
+{
|
|
+ u64 timeout = jiffies_to_msecs(bfqd->bfq_timeout[BLK_RW_SYNC]);
|
|
+
|
|
+ if (bfqd->peak_rate_samples >= BFQ_PEAK_RATE_SAMPLES)
|
|
+ return bfq_calc_max_budget(bfqd->peak_rate, timeout);
|
|
+ else
|
|
+ return bfq_default_max_budget;
|
|
+}
|
|
+
|
|
+static ssize_t bfq_max_budget_store(struct elevator_queue *e,
|
|
+ const char *page, size_t count)
|
|
+{
|
|
+ struct bfq_data *bfqd = e->elevator_data;
|
|
+ unsigned long uninitialized_var(__data);
|
|
+ int ret = bfq_var_store(&__data, (page), count);
|
|
+
|
|
+ if (__data == 0)
|
|
+ bfqd->bfq_max_budget = bfq_estimated_max_budget(bfqd);
|
|
+ else {
|
|
+ if (__data > INT_MAX)
|
|
+ __data = INT_MAX;
|
|
+ bfqd->bfq_max_budget = __data;
|
|
+ }
|
|
+
|
|
+ bfqd->bfq_user_max_budget = __data;
|
|
+
|
|
+ return ret;
|
|
+}
|
|
+
|
|
+static ssize_t bfq_timeout_sync_store(struct elevator_queue *e,
|
|
+ const char *page, size_t count)
|
|
+{
|
|
+ struct bfq_data *bfqd = e->elevator_data;
|
|
+ unsigned long uninitialized_var(__data);
|
|
+ int ret = bfq_var_store(&__data, (page), count);
|
|
+
|
|
+ if (__data < 1)
|
|
+ __data = 1;
|
|
+ else if (__data > INT_MAX)
|
|
+ __data = INT_MAX;
|
|
+
|
|
+ bfqd->bfq_timeout[BLK_RW_SYNC] = msecs_to_jiffies(__data);
|
|
+ if (bfqd->bfq_user_max_budget == 0)
|
|
+ bfqd->bfq_max_budget = bfq_estimated_max_budget(bfqd);
|
|
+
|
|
+ return ret;
|
|
+}
|
|
+
|
|
+static ssize_t bfq_low_latency_store(struct elevator_queue *e,
|
|
+ const char *page, size_t count)
|
|
+{
|
|
+ struct bfq_data *bfqd = e->elevator_data;
|
|
+ unsigned long uninitialized_var(__data);
|
|
+ int ret = bfq_var_store(&__data, (page), count);
|
|
+
|
|
+ if (__data > 1)
|
|
+ __data = 1;
|
|
+ if (__data == 0 && bfqd->low_latency != 0)
|
|
+ bfq_end_raising(bfqd);
|
|
+ bfqd->low_latency = __data;
|
|
+
|
|
+ return ret;
|
|
+}
|
|
+
|
|
+#define BFQ_ATTR(name) \
|
|
+ __ATTR(name, S_IRUGO|S_IWUSR, bfq_##name##_show, bfq_##name##_store)
|
|
+
|
|
+static struct elv_fs_entry bfq_attrs[] = {
|
|
+ BFQ_ATTR(quantum),
|
|
+ BFQ_ATTR(fifo_expire_sync),
|
|
+ BFQ_ATTR(fifo_expire_async),
|
|
+ BFQ_ATTR(back_seek_max),
|
|
+ BFQ_ATTR(back_seek_penalty),
|
|
+ BFQ_ATTR(slice_idle),
|
|
+ BFQ_ATTR(max_budget),
|
|
+ BFQ_ATTR(max_budget_async_rq),
|
|
+ BFQ_ATTR(timeout_sync),
|
|
+ BFQ_ATTR(timeout_async),
|
|
+ BFQ_ATTR(low_latency),
|
|
+ BFQ_ATTR(raising_coeff),
|
|
+ BFQ_ATTR(raising_max_time),
|
|
+ BFQ_ATTR(raising_rt_max_time),
|
|
+ BFQ_ATTR(raising_min_idle_time),
|
|
+ BFQ_ATTR(raising_min_inter_arr_async),
|
|
+ BFQ_ATTR(raising_max_softrt_rate),
|
|
+ BFQ_ATTR(weights),
|
|
+ __ATTR_NULL
|
|
+};
|
|
+
|
|
+static struct elevator_type iosched_bfq = {
|
|
+ .ops = {
|
|
+ .elevator_merge_fn = bfq_merge,
|
|
+ .elevator_merged_fn = bfq_merged_request,
|
|
+ .elevator_merge_req_fn = bfq_merged_requests,
|
|
+ .elevator_allow_merge_fn = bfq_allow_merge,
|
|
+ .elevator_dispatch_fn = bfq_dispatch_requests,
|
|
+ .elevator_add_req_fn = bfq_insert_request,
|
|
+ .elevator_activate_req_fn = bfq_activate_request,
|
|
+ .elevator_deactivate_req_fn = bfq_deactivate_request,
|
|
+ .elevator_completed_req_fn = bfq_completed_request,
|
|
+ .elevator_former_req_fn = elv_rb_former_request,
|
|
+ .elevator_latter_req_fn = elv_rb_latter_request,
|
|
+ .elevator_init_icq_fn = bfq_init_icq,
|
|
+ .elevator_exit_icq_fn = bfq_exit_icq,
|
|
+ .elevator_set_req_fn = bfq_set_request,
|
|
+ .elevator_put_req_fn = bfq_put_request,
|
|
+ .elevator_may_queue_fn = bfq_may_queue,
|
|
+ .elevator_init_fn = bfq_init_queue,
|
|
+ .elevator_exit_fn = bfq_exit_queue,
|
|
+ },
|
|
+ .icq_size = sizeof(struct bfq_io_cq),
|
|
+ .icq_align = __alignof__(struct bfq_io_cq),
|
|
+ .elevator_attrs = bfq_attrs,
|
|
+ .elevator_name = "bfq",
|
|
+ .elevator_owner = THIS_MODULE,
|
|
+};
|
|
+
|
|
+static int __init bfq_init(void)
|
|
+{
|
|
+ /*
|
|
+ * Can be 0 on HZ < 1000 setups.
|
|
+ */
|
|
+ if (bfq_slice_idle == 0)
|
|
+ bfq_slice_idle = 1;
|
|
+
|
|
+ if (bfq_timeout_async == 0)
|
|
+ bfq_timeout_async = 1;
|
|
+
|
|
+ if (bfq_slab_setup())
|
|
+ return -ENOMEM;
|
|
+
|
|
+ elv_register(&iosched_bfq);
|
|
+ printk(KERN_INFO "BFQ I/O-scheduler version: v7");
|
|
+
|
|
+ return 0;
|
|
+}
|
|
+
|
|
+static void __exit bfq_exit(void)
|
|
+{
|
|
+ elv_unregister(&iosched_bfq);
|
|
+ bfq_slab_kill();
|
|
+}
|
|
+
|
|
+module_init(bfq_init);
|
|
+module_exit(bfq_exit);
|
|
+
|
|
+MODULE_AUTHOR("Fabio Checconi, Paolo Valente");
|
|
+MODULE_LICENSE("GPL");
|
|
+MODULE_DESCRIPTION("Budget Fair Queueing IO scheduler");
|
|
diff --git a/block/bfq-sched.c b/block/bfq-sched.c
|
|
new file mode 100644
|
|
index 0000000..30df81c
|
|
--- /dev/null
|
|
+++ b/block/bfq-sched.c
|
|
@@ -0,0 +1,1077 @@
|
|
+/*
|
|
+ * BFQ: Hierarchical B-WF2Q+ scheduler.
|
|
+ *
|
|
+ * Based on ideas and code from CFQ:
|
|
+ * Copyright (C) 2003 Jens Axboe <axboe@kernel.dk>
|
|
+ *
|
|
+ * Copyright (C) 2008 Fabio Checconi <fabio@gandalf.sssup.it>
|
|
+ * Paolo Valente <paolo.valente@unimore.it>
|
|
+ *
|
|
+ * Copyright (C) 2010 Paolo Valente <paolo.valente@unimore.it>
|
|
+ */
|
|
+
|
|
+#ifdef CONFIG_CGROUP_BFQIO
|
|
+#define for_each_entity(entity) \
|
|
+ for (; entity != NULL; entity = entity->parent)
|
|
+
|
|
+#define for_each_entity_safe(entity, parent) \
|
|
+ for (; entity && ({ parent = entity->parent; 1; }); entity = parent)
|
|
+
|
|
+static struct bfq_entity *bfq_lookup_next_entity(struct bfq_sched_data *sd,
|
|
+ int extract,
|
|
+ struct bfq_data *bfqd);
|
|
+
|
|
+static inline void bfq_update_budget(struct bfq_entity *next_active)
|
|
+{
|
|
+ struct bfq_entity *bfqg_entity;
|
|
+ struct bfq_group *bfqg;
|
|
+ struct bfq_sched_data *group_sd;
|
|
+
|
|
+ BUG_ON(next_active == NULL);
|
|
+
|
|
+ group_sd = next_active->sched_data;
|
|
+
|
|
+ bfqg = container_of(group_sd, struct bfq_group, sched_data);
|
|
+ /*
|
|
+ * bfq_group's my_entity field is not NULL only if the group
|
|
+ * is not the root group. We must not touch the root entity
|
|
+ * as it must never become an active entity.
|
|
+ */
|
|
+ bfqg_entity = bfqg->my_entity;
|
|
+ if (bfqg_entity != NULL)
|
|
+ bfqg_entity->budget = next_active->budget;
|
|
+}
|
|
+
|
|
+static int bfq_update_next_active(struct bfq_sched_data *sd)
|
|
+{
|
|
+ struct bfq_entity *next_active;
|
|
+
|
|
+ if (sd->active_entity != NULL)
|
|
+ /* will update/requeue at the end of service */
|
|
+ return 0;
|
|
+
|
|
+ /*
|
|
+ * NOTE: this can be improved in many ways, such as returning
|
|
+ * 1 (and thus propagating upwards the update) only when the
|
|
+ * budget changes, or caching the bfqq that will be scheduled
|
|
+ * next from this subtree. By now we worry more about
|
|
+ * correctness than about performance...
|
|
+ */
|
|
+ next_active = bfq_lookup_next_entity(sd, 0, NULL);
|
|
+ sd->next_active = next_active;
|
|
+
|
|
+ if (next_active != NULL)
|
|
+ bfq_update_budget(next_active);
|
|
+
|
|
+ return 1;
|
|
+}
|
|
+
|
|
+static inline void bfq_check_next_active(struct bfq_sched_data *sd,
|
|
+ struct bfq_entity *entity)
|
|
+{
|
|
+ BUG_ON(sd->next_active != entity);
|
|
+}
|
|
+#else
|
|
+#define for_each_entity(entity) \
|
|
+ for (; entity != NULL; entity = NULL)
|
|
+
|
|
+#define for_each_entity_safe(entity, parent) \
|
|
+ for (parent = NULL; entity != NULL; entity = parent)
|
|
+
|
|
+static inline int bfq_update_next_active(struct bfq_sched_data *sd)
|
|
+{
|
|
+ return 0;
|
|
+}
|
|
+
|
|
+static inline void bfq_check_next_active(struct bfq_sched_data *sd,
|
|
+ struct bfq_entity *entity)
|
|
+{
|
|
+}
|
|
+
|
|
+static inline void bfq_update_budget(struct bfq_entity *next_active)
|
|
+{
|
|
+}
|
|
+#endif
|
|
+
|
|
+/*
|
|
+ * Shift for timestamp calculations. This actually limits the maximum
|
|
+ * service allowed in one timestamp delta (small shift values increase it),
|
|
+ * the maximum total weight that can be used for the queues in the system
|
|
+ * (big shift values increase it), and the period of virtual time wraparounds.
|
|
+ */
|
|
+#define WFQ_SERVICE_SHIFT 22
|
|
+
|
|
+/**
|
|
+ * bfq_gt - compare two timestamps.
|
|
+ * @a: first ts.
|
|
+ * @b: second ts.
|
|
+ *
|
|
+ * Return @a > @b, dealing with wrapping correctly.
|
|
+ */
|
|
+static inline int bfq_gt(u64 a, u64 b)
|
|
+{
|
|
+ return (s64)(a - b) > 0;
|
|
+}
|
|
+
|
|
+static inline struct bfq_queue *bfq_entity_to_bfqq(struct bfq_entity *entity)
|
|
+{
|
|
+ struct bfq_queue *bfqq = NULL;
|
|
+
|
|
+ BUG_ON(entity == NULL);
|
|
+
|
|
+ if (entity->my_sched_data == NULL)
|
|
+ bfqq = container_of(entity, struct bfq_queue, entity);
|
|
+
|
|
+ return bfqq;
|
|
+}
|
|
+
|
|
+
|
|
+/**
|
|
+ * bfq_delta - map service into the virtual time domain.
|
|
+ * @service: amount of service.
|
|
+ * @weight: scale factor (weight of an entity or weight sum).
|
|
+ */
|
|
+static inline u64 bfq_delta(unsigned long service,
|
|
+ unsigned long weight)
|
|
+{
|
|
+ u64 d = (u64)service << WFQ_SERVICE_SHIFT;
|
|
+
|
|
+ do_div(d, weight);
|
|
+ return d;
|
|
+}
|
|
+
|
|
+/**
|
|
+ * bfq_calc_finish - assign the finish time to an entity.
|
|
+ * @entity: the entity to act upon.
|
|
+ * @service: the service to be charged to the entity.
|
|
+ */
|
|
+static inline void bfq_calc_finish(struct bfq_entity *entity,
|
|
+ unsigned long service)
|
|
+{
|
|
+ struct bfq_queue *bfqq = bfq_entity_to_bfqq(entity);
|
|
+
|
|
+ BUG_ON(entity->weight == 0);
|
|
+
|
|
+ entity->finish = entity->start +
|
|
+ bfq_delta(service, entity->weight);
|
|
+
|
|
+ if (bfqq != NULL) {
|
|
+ bfq_log_bfqq(bfqq->bfqd, bfqq,
|
|
+ "calc_finish: serv %lu, w %d",
|
|
+ service, entity->weight);
|
|
+ bfq_log_bfqq(bfqq->bfqd, bfqq,
|
|
+ "calc_finish: start %llu, finish %llu, delta %llu",
|
|
+ entity->start, entity->finish,
|
|
+ bfq_delta(service, entity->weight));
|
|
+ }
|
|
+}
|
|
+
|
|
+/**
|
|
+ * bfq_entity_of - get an entity from a node.
|
|
+ * @node: the node field of the entity.
|
|
+ *
|
|
+ * Convert a node pointer to the relative entity. This is used only
|
|
+ * to simplify the logic of some functions and not as the generic
|
|
+ * conversion mechanism because, e.g., in the tree walking functions,
|
|
+ * the check for a %NULL value would be redundant.
|
|
+ */
|
|
+static inline struct bfq_entity *bfq_entity_of(struct rb_node *node)
|
|
+{
|
|
+ struct bfq_entity *entity = NULL;
|
|
+
|
|
+ if (node != NULL)
|
|
+ entity = rb_entry(node, struct bfq_entity, rb_node);
|
|
+
|
|
+ return entity;
|
|
+}
|
|
+
|
|
+/**
|
|
+ * bfq_extract - remove an entity from a tree.
|
|
+ * @root: the tree root.
|
|
+ * @entity: the entity to remove.
|
|
+ */
|
|
+static inline void bfq_extract(struct rb_root *root,
|
|
+ struct bfq_entity *entity)
|
|
+{
|
|
+ BUG_ON(entity->tree != root);
|
|
+
|
|
+ entity->tree = NULL;
|
|
+ rb_erase(&entity->rb_node, root);
|
|
+}
|
|
+
|
|
+/**
|
|
+ * bfq_idle_extract - extract an entity from the idle tree.
|
|
+ * @st: the service tree of the owning @entity.
|
|
+ * @entity: the entity being removed.
|
|
+ */
|
|
+static void bfq_idle_extract(struct bfq_service_tree *st,
|
|
+ struct bfq_entity *entity)
|
|
+{
|
|
+ struct bfq_queue *bfqq = bfq_entity_to_bfqq(entity);
|
|
+ struct rb_node *next;
|
|
+
|
|
+ BUG_ON(entity->tree != &st->idle);
|
|
+
|
|
+ if (entity == st->first_idle) {
|
|
+ next = rb_next(&entity->rb_node);
|
|
+ st->first_idle = bfq_entity_of(next);
|
|
+ }
|
|
+
|
|
+ if (entity == st->last_idle) {
|
|
+ next = rb_prev(&entity->rb_node);
|
|
+ st->last_idle = bfq_entity_of(next);
|
|
+ }
|
|
+
|
|
+ bfq_extract(&st->idle, entity);
|
|
+
|
|
+ if (bfqq != NULL)
|
|
+ list_del(&bfqq->bfqq_list);
|
|
+}
|
|
+
|
|
+/**
|
|
+ * bfq_insert - generic tree insertion.
|
|
+ * @root: tree root.
|
|
+ * @entity: entity to insert.
|
|
+ *
|
|
+ * This is used for the idle and the active tree, since they are both
|
|
+ * ordered by finish time.
|
|
+ */
|
|
+static void bfq_insert(struct rb_root *root, struct bfq_entity *entity)
|
|
+{
|
|
+ struct bfq_entity *entry;
|
|
+ struct rb_node **node = &root->rb_node;
|
|
+ struct rb_node *parent = NULL;
|
|
+
|
|
+ BUG_ON(entity->tree != NULL);
|
|
+
|
|
+ while (*node != NULL) {
|
|
+ parent = *node;
|
|
+ entry = rb_entry(parent, struct bfq_entity, rb_node);
|
|
+
|
|
+ if (bfq_gt(entry->finish, entity->finish))
|
|
+ node = &parent->rb_left;
|
|
+ else
|
|
+ node = &parent->rb_right;
|
|
+ }
|
|
+
|
|
+ rb_link_node(&entity->rb_node, parent, node);
|
|
+ rb_insert_color(&entity->rb_node, root);
|
|
+
|
|
+ entity->tree = root;
|
|
+}
|
|
+
|
|
+/**
|
|
+ * bfq_update_min - update the min_start field of a entity.
|
|
+ * @entity: the entity to update.
|
|
+ * @node: one of its children.
|
|
+ *
|
|
+ * This function is called when @entity may store an invalid value for
|
|
+ * min_start due to updates to the active tree. The function assumes
|
|
+ * that the subtree rooted at @node (which may be its left or its right
|
|
+ * child) has a valid min_start value.
|
|
+ */
|
|
+static inline void bfq_update_min(struct bfq_entity *entity,
|
|
+ struct rb_node *node)
|
|
+{
|
|
+ struct bfq_entity *child;
|
|
+
|
|
+ if (node != NULL) {
|
|
+ child = rb_entry(node, struct bfq_entity, rb_node);
|
|
+ if (bfq_gt(entity->min_start, child->min_start))
|
|
+ entity->min_start = child->min_start;
|
|
+ }
|
|
+}
|
|
+
|
|
+/**
|
|
+ * bfq_update_active_node - recalculate min_start.
|
|
+ * @node: the node to update.
|
|
+ *
|
|
+ * @node may have changed position or one of its children may have moved,
|
|
+ * this function updates its min_start value. The left and right subtrees
|
|
+ * are assumed to hold a correct min_start value.
|
|
+ */
|
|
+static inline void bfq_update_active_node(struct rb_node *node)
|
|
+{
|
|
+ struct bfq_entity *entity = rb_entry(node, struct bfq_entity, rb_node);
|
|
+
|
|
+ entity->min_start = entity->start;
|
|
+ bfq_update_min(entity, node->rb_right);
|
|
+ bfq_update_min(entity, node->rb_left);
|
|
+}
|
|
+
|
|
+/**
|
|
+ * bfq_update_active_tree - update min_start for the whole active tree.
|
|
+ * @node: the starting node.
|
|
+ *
|
|
+ * @node must be the deepest modified node after an update. This function
|
|
+ * updates its min_start using the values held by its children, assuming
|
|
+ * that they did not change, and then updates all the nodes that may have
|
|
+ * changed in the path to the root. The only nodes that may have changed
|
|
+ * are the ones in the path or their siblings.
|
|
+ */
|
|
+static void bfq_update_active_tree(struct rb_node *node)
|
|
+{
|
|
+ struct rb_node *parent;
|
|
+
|
|
+up:
|
|
+ bfq_update_active_node(node);
|
|
+
|
|
+ parent = rb_parent(node);
|
|
+ if (parent == NULL)
|
|
+ return;
|
|
+
|
|
+ if (node == parent->rb_left && parent->rb_right != NULL)
|
|
+ bfq_update_active_node(parent->rb_right);
|
|
+ else if (parent->rb_left != NULL)
|
|
+ bfq_update_active_node(parent->rb_left);
|
|
+
|
|
+ node = parent;
|
|
+ goto up;
|
|
+}
|
|
+
|
|
+/**
|
|
+ * bfq_active_insert - insert an entity in the active tree of its group/device.
|
|
+ * @st: the service tree of the entity.
|
|
+ * @entity: the entity being inserted.
|
|
+ *
|
|
+ * The active tree is ordered by finish time, but an extra key is kept
|
|
+ * per each node, containing the minimum value for the start times of
|
|
+ * its children (and the node itself), so it's possible to search for
|
|
+ * the eligible node with the lowest finish time in logarithmic time.
|
|
+ */
|
|
+static void bfq_active_insert(struct bfq_service_tree *st,
|
|
+ struct bfq_entity *entity)
|
|
+{
|
|
+ struct bfq_queue *bfqq = bfq_entity_to_bfqq(entity);
|
|
+ struct rb_node *node = &entity->rb_node;
|
|
+
|
|
+ bfq_insert(&st->active, entity);
|
|
+
|
|
+ if (node->rb_left != NULL)
|
|
+ node = node->rb_left;
|
|
+ else if (node->rb_right != NULL)
|
|
+ node = node->rb_right;
|
|
+
|
|
+ bfq_update_active_tree(node);
|
|
+
|
|
+ if (bfqq != NULL)
|
|
+ list_add(&bfqq->bfqq_list, &bfqq->bfqd->active_list);
|
|
+}
|
|
+
|
|
+/**
|
|
+ * bfq_ioprio_to_weight - calc a weight from an ioprio.
|
|
+ * @ioprio: the ioprio value to convert.
|
|
+ */
|
|
+static unsigned short bfq_ioprio_to_weight(int ioprio)
|
|
+{
|
|
+ WARN_ON(ioprio < 0 || ioprio >= IOPRIO_BE_NR);
|
|
+ return IOPRIO_BE_NR - ioprio;
|
|
+}
|
|
+
|
|
+/**
|
|
+ * bfq_weight_to_ioprio - calc an ioprio from a weight.
|
|
+ * @weight: the weight value to convert.
|
|
+ *
|
|
+ * To preserve as mush as possible the old only-ioprio user interface,
|
|
+ * 0 is used as an escape ioprio value for weights (numerically) equal or
|
|
+ * larger than IOPRIO_BE_NR
|
|
+ */
|
|
+static unsigned short bfq_weight_to_ioprio(int weight)
|
|
+{
|
|
+ WARN_ON(weight < BFQ_MIN_WEIGHT || weight > BFQ_MAX_WEIGHT);
|
|
+ return IOPRIO_BE_NR - weight < 0 ? 0 : IOPRIO_BE_NR - weight;
|
|
+}
|
|
+
|
|
+static inline void bfq_get_entity(struct bfq_entity *entity)
|
|
+{
|
|
+ struct bfq_queue *bfqq = bfq_entity_to_bfqq(entity);
|
|
+ struct bfq_sched_data *sd;
|
|
+
|
|
+ if (bfqq != NULL) {
|
|
+ sd = entity->sched_data;
|
|
+ atomic_inc(&bfqq->ref);
|
|
+ bfq_log_bfqq(bfqq->bfqd, bfqq, "get_entity: %p %d",
|
|
+ bfqq, atomic_read(&bfqq->ref));
|
|
+ }
|
|
+}
|
|
+
|
|
+/**
|
|
+ * bfq_find_deepest - find the deepest node that an extraction can modify.
|
|
+ * @node: the node being removed.
|
|
+ *
|
|
+ * Do the first step of an extraction in an rb tree, looking for the
|
|
+ * node that will replace @node, and returning the deepest node that
|
|
+ * the following modifications to the tree can touch. If @node is the
|
|
+ * last node in the tree return %NULL.
|
|
+ */
|
|
+static struct rb_node *bfq_find_deepest(struct rb_node *node)
|
|
+{
|
|
+ struct rb_node *deepest;
|
|
+
|
|
+ if (node->rb_right == NULL && node->rb_left == NULL)
|
|
+ deepest = rb_parent(node);
|
|
+ else if (node->rb_right == NULL)
|
|
+ deepest = node->rb_left;
|
|
+ else if (node->rb_left == NULL)
|
|
+ deepest = node->rb_right;
|
|
+ else {
|
|
+ deepest = rb_next(node);
|
|
+ if (deepest->rb_right != NULL)
|
|
+ deepest = deepest->rb_right;
|
|
+ else if (rb_parent(deepest) != node)
|
|
+ deepest = rb_parent(deepest);
|
|
+ }
|
|
+
|
|
+ return deepest;
|
|
+}
|
|
+
|
|
+/**
|
|
+ * bfq_active_extract - remove an entity from the active tree.
|
|
+ * @st: the service_tree containing the tree.
|
|
+ * @entity: the entity being removed.
|
|
+ */
|
|
+static void bfq_active_extract(struct bfq_service_tree *st,
|
|
+ struct bfq_entity *entity)
|
|
+{
|
|
+ struct bfq_queue *bfqq = bfq_entity_to_bfqq(entity);
|
|
+ struct rb_node *node;
|
|
+
|
|
+ node = bfq_find_deepest(&entity->rb_node);
|
|
+ bfq_extract(&st->active, entity);
|
|
+
|
|
+ if (node != NULL)
|
|
+ bfq_update_active_tree(node);
|
|
+
|
|
+ if (bfqq != NULL)
|
|
+ list_del(&bfqq->bfqq_list);
|
|
+}
|
|
+
|
|
+/**
|
|
+ * bfq_idle_insert - insert an entity into the idle tree.
|
|
+ * @st: the service tree containing the tree.
|
|
+ * @entity: the entity to insert.
|
|
+ */
|
|
+static void bfq_idle_insert(struct bfq_service_tree *st,
|
|
+ struct bfq_entity *entity)
|
|
+{
|
|
+ struct bfq_queue *bfqq = bfq_entity_to_bfqq(entity);
|
|
+ struct bfq_entity *first_idle = st->first_idle;
|
|
+ struct bfq_entity *last_idle = st->last_idle;
|
|
+
|
|
+ if (first_idle == NULL || bfq_gt(first_idle->finish, entity->finish))
|
|
+ st->first_idle = entity;
|
|
+ if (last_idle == NULL || bfq_gt(entity->finish, last_idle->finish))
|
|
+ st->last_idle = entity;
|
|
+
|
|
+ bfq_insert(&st->idle, entity);
|
|
+
|
|
+ if (bfqq != NULL)
|
|
+ list_add(&bfqq->bfqq_list, &bfqq->bfqd->idle_list);
|
|
+}
|
|
+
|
|
+/**
|
|
+ * bfq_forget_entity - remove an entity from the wfq trees.
|
|
+ * @st: the service tree.
|
|
+ * @entity: the entity being removed.
|
|
+ *
|
|
+ * Update the device status and forget everything about @entity, putting
|
|
+ * the device reference to it, if it is a queue. Entities belonging to
|
|
+ * groups are not refcounted.
|
|
+ */
|
|
+static void bfq_forget_entity(struct bfq_service_tree *st,
|
|
+ struct bfq_entity *entity)
|
|
+{
|
|
+ struct bfq_queue *bfqq = bfq_entity_to_bfqq(entity);
|
|
+ struct bfq_sched_data *sd;
|
|
+
|
|
+ BUG_ON(!entity->on_st);
|
|
+
|
|
+ entity->on_st = 0;
|
|
+ st->wsum -= entity->weight;
|
|
+ if (bfqq != NULL) {
|
|
+ sd = entity->sched_data;
|
|
+ bfq_log_bfqq(bfqq->bfqd, bfqq, "forget_entity: %p %d",
|
|
+ bfqq, atomic_read(&bfqq->ref));
|
|
+ bfq_put_queue(bfqq);
|
|
+ }
|
|
+}
|
|
+
|
|
+/**
|
|
+ * bfq_put_idle_entity - release the idle tree ref of an entity.
|
|
+ * @st: service tree for the entity.
|
|
+ * @entity: the entity being released.
|
|
+ */
|
|
+static void bfq_put_idle_entity(struct bfq_service_tree *st,
|
|
+ struct bfq_entity *entity)
|
|
+{
|
|
+ bfq_idle_extract(st, entity);
|
|
+ bfq_forget_entity(st, entity);
|
|
+}
|
|
+
|
|
+/**
|
|
+ * bfq_forget_idle - update the idle tree if necessary.
|
|
+ * @st: the service tree to act upon.
|
|
+ *
|
|
+ * To preserve the global O(log N) complexity we only remove one entry here;
|
|
+ * as the idle tree will not grow indefinitely this can be done safely.
|
|
+ */
|
|
+static void bfq_forget_idle(struct bfq_service_tree *st)
|
|
+{
|
|
+ struct bfq_entity *first_idle = st->first_idle;
|
|
+ struct bfq_entity *last_idle = st->last_idle;
|
|
+
|
|
+ if (RB_EMPTY_ROOT(&st->active) && last_idle != NULL &&
|
|
+ !bfq_gt(last_idle->finish, st->vtime)) {
|
|
+ /*
|
|
+ * Forget the whole idle tree, increasing the vtime past
|
|
+ * the last finish time of idle entities.
|
|
+ */
|
|
+ st->vtime = last_idle->finish;
|
|
+ }
|
|
+
|
|
+ if (first_idle != NULL && !bfq_gt(first_idle->finish, st->vtime))
|
|
+ bfq_put_idle_entity(st, first_idle);
|
|
+}
|
|
+
|
|
+static struct bfq_service_tree *
|
|
+__bfq_entity_update_weight_prio(struct bfq_service_tree *old_st,
|
|
+ struct bfq_entity *entity)
|
|
+{
|
|
+ struct bfq_service_tree *new_st = old_st;
|
|
+
|
|
+ if (entity->ioprio_changed) {
|
|
+ struct bfq_queue *bfqq = bfq_entity_to_bfqq(entity);
|
|
+
|
|
+ BUG_ON(old_st->wsum < entity->weight);
|
|
+ old_st->wsum -= entity->weight;
|
|
+
|
|
+ if (entity->new_weight != entity->orig_weight) {
|
|
+ entity->orig_weight = entity->new_weight;
|
|
+ entity->ioprio =
|
|
+ bfq_weight_to_ioprio(entity->orig_weight);
|
|
+ } else if (entity->new_ioprio != entity->ioprio) {
|
|
+ entity->ioprio = entity->new_ioprio;
|
|
+ entity->orig_weight =
|
|
+ bfq_ioprio_to_weight(entity->ioprio);
|
|
+ } else
|
|
+ entity->new_weight = entity->orig_weight =
|
|
+ bfq_ioprio_to_weight(entity->ioprio);
|
|
+
|
|
+ entity->ioprio_class = entity->new_ioprio_class;
|
|
+ entity->ioprio_changed = 0;
|
|
+
|
|
+ /*
|
|
+ * NOTE: here we may be changing the weight too early,
|
|
+ * this will cause unfairness. The correct approach
|
|
+ * would have required additional complexity to defer
|
|
+ * weight changes to the proper time instants (i.e.,
|
|
+ * when entity->finish <= old_st->vtime).
|
|
+ */
|
|
+ new_st = bfq_entity_service_tree(entity);
|
|
+ entity->weight = entity->orig_weight *
|
|
+ (bfqq != NULL ? bfqq->raising_coeff : 1);
|
|
+ new_st->wsum += entity->weight;
|
|
+
|
|
+ if (new_st != old_st)
|
|
+ entity->start = new_st->vtime;
|
|
+ }
|
|
+
|
|
+ return new_st;
|
|
+}
|
|
+
|
|
+/**
|
|
+ * bfq_bfqq_served - update the scheduler status after selection for service.
|
|
+ * @bfqq: the queue being served.
|
|
+ * @served: bytes to transfer.
|
|
+ *
|
|
+ * NOTE: this can be optimized, as the timestamps of upper level entities
|
|
+ * are synchronized every time a new bfqq is selected for service. By now,
|
|
+ * we keep it to better check consistency.
|
|
+ */
|
|
+static void bfq_bfqq_served(struct bfq_queue *bfqq, unsigned long served)
|
|
+{
|
|
+ struct bfq_entity *entity = &bfqq->entity;
|
|
+ struct bfq_service_tree *st;
|
|
+
|
|
+ for_each_entity(entity) {
|
|
+ st = bfq_entity_service_tree(entity);
|
|
+
|
|
+ entity->service += served;
|
|
+ BUG_ON(entity->service > entity->budget);
|
|
+ BUG_ON(st->wsum == 0);
|
|
+
|
|
+ st->vtime += bfq_delta(served, st->wsum);
|
|
+ bfq_forget_idle(st);
|
|
+ }
|
|
+ bfq_log_bfqq(bfqq->bfqd, bfqq, "bfqq_served %lu secs", served);
|
|
+}
|
|
+
|
|
+/**
|
|
+ * bfq_bfqq_charge_full_budget - set the service to the entity budget.
|
|
+ * @bfqq: the queue that needs a service update.
|
|
+ *
|
|
+ * When it's not possible to be fair in the service domain, because
|
|
+ * a queue is not consuming its budget fast enough (the meaning of
|
|
+ * fast depends on the timeout parameter), we charge it a full
|
|
+ * budget. In this way we should obtain a sort of time-domain
|
|
+ * fairness among all the seeky/slow queues.
|
|
+ */
|
|
+static inline void bfq_bfqq_charge_full_budget(struct bfq_queue *bfqq)
|
|
+{
|
|
+ struct bfq_entity *entity = &bfqq->entity;
|
|
+
|
|
+ bfq_log_bfqq(bfqq->bfqd, bfqq, "charge_full_budget");
|
|
+
|
|
+ bfq_bfqq_served(bfqq, entity->budget - entity->service);
|
|
+}
|
|
+
|
|
+/**
|
|
+ * __bfq_activate_entity - activate an entity.
|
|
+ * @entity: the entity being activated.
|
|
+ *
|
|
+ * Called whenever an entity is activated, i.e., it is not active and one
|
|
+ * of its children receives a new request, or has to be reactivated due to
|
|
+ * budget exhaustion. It uses the current budget of the entity (and the
|
|
+ * service received if @entity is active) of the queue to calculate its
|
|
+ * timestamps.
|
|
+ */
|
|
+static void __bfq_activate_entity(struct bfq_entity *entity)
|
|
+{
|
|
+ struct bfq_sched_data *sd = entity->sched_data;
|
|
+ struct bfq_service_tree *st = bfq_entity_service_tree(entity);
|
|
+
|
|
+ if (entity == sd->active_entity) {
|
|
+ BUG_ON(entity->tree != NULL);
|
|
+ /*
|
|
+ * If we are requeueing the current entity we have
|
|
+ * to take care of not charging to it service it has
|
|
+ * not received.
|
|
+ */
|
|
+ bfq_calc_finish(entity, entity->service);
|
|
+ entity->start = entity->finish;
|
|
+ sd->active_entity = NULL;
|
|
+ } else if (entity->tree == &st->active) {
|
|
+ /*
|
|
+ * Requeueing an entity due to a change of some
|
|
+ * next_active entity below it. We reuse the old
|
|
+ * start time.
|
|
+ */
|
|
+ bfq_active_extract(st, entity);
|
|
+ } else if (entity->tree == &st->idle) {
|
|
+ /*
|
|
+ * Must be on the idle tree, bfq_idle_extract() will
|
|
+ * check for that.
|
|
+ */
|
|
+ bfq_idle_extract(st, entity);
|
|
+ entity->start = bfq_gt(st->vtime, entity->finish) ?
|
|
+ st->vtime : entity->finish;
|
|
+ } else {
|
|
+ /*
|
|
+ * The finish time of the entity may be invalid, and
|
|
+ * it is in the past for sure, otherwise the queue
|
|
+ * would have been on the idle tree.
|
|
+ */
|
|
+ entity->start = st->vtime;
|
|
+ st->wsum += entity->weight;
|
|
+ bfq_get_entity(entity);
|
|
+
|
|
+ BUG_ON(entity->on_st);
|
|
+ entity->on_st = 1;
|
|
+ }
|
|
+
|
|
+ st = __bfq_entity_update_weight_prio(st, entity);
|
|
+ bfq_calc_finish(entity, entity->budget);
|
|
+ bfq_active_insert(st, entity);
|
|
+}
|
|
+
|
|
+/**
|
|
+ * bfq_activate_entity - activate an entity and its ancestors if necessary.
|
|
+ * @entity: the entity to activate.
|
|
+ *
|
|
+ * Activate @entity and all the entities on the path from it to the root.
|
|
+ */
|
|
+static void bfq_activate_entity(struct bfq_entity *entity)
|
|
+{
|
|
+ struct bfq_sched_data *sd;
|
|
+
|
|
+ for_each_entity(entity) {
|
|
+ __bfq_activate_entity(entity);
|
|
+
|
|
+ sd = entity->sched_data;
|
|
+ if (!bfq_update_next_active(sd))
|
|
+ /*
|
|
+ * No need to propagate the activation to the
|
|
+ * upper entities, as they will be updated when
|
|
+ * the active entity is rescheduled.
|
|
+ */
|
|
+ break;
|
|
+ }
|
|
+}
|
|
+
|
|
+/**
|
|
+ * __bfq_deactivate_entity - deactivate an entity from its service tree.
|
|
+ * @entity: the entity to deactivate.
|
|
+ * @requeue: if false, the entity will not be put into the idle tree.
|
|
+ *
|
|
+ * Deactivate an entity, independently from its previous state. If the
|
|
+ * entity was not on a service tree just return, otherwise if it is on
|
|
+ * any scheduler tree, extract it from that tree, and if necessary
|
|
+ * and if the caller did not specify @requeue, put it on the idle tree.
|
|
+ *
|
|
+ * Return %1 if the caller should update the entity hierarchy, i.e.,
|
|
+ * if the entity was under service or if it was the next_active for
|
|
+ * its sched_data; return %0 otherwise.
|
|
+ */
|
|
+static int __bfq_deactivate_entity(struct bfq_entity *entity, int requeue)
|
|
+{
|
|
+ struct bfq_sched_data *sd = entity->sched_data;
|
|
+ struct bfq_service_tree *st = bfq_entity_service_tree(entity);
|
|
+ int was_active = entity == sd->active_entity;
|
|
+ int ret = 0;
|
|
+
|
|
+ if (!entity->on_st)
|
|
+ return 0;
|
|
+
|
|
+ BUG_ON(was_active && entity->tree != NULL);
|
|
+
|
|
+ if (was_active) {
|
|
+ bfq_calc_finish(entity, entity->service);
|
|
+ sd->active_entity = NULL;
|
|
+ } else if (entity->tree == &st->active)
|
|
+ bfq_active_extract(st, entity);
|
|
+ else if (entity->tree == &st->idle)
|
|
+ bfq_idle_extract(st, entity);
|
|
+ else if (entity->tree != NULL)
|
|
+ BUG();
|
|
+
|
|
+ if (was_active || sd->next_active == entity)
|
|
+ ret = bfq_update_next_active(sd);
|
|
+
|
|
+ if (!requeue || !bfq_gt(entity->finish, st->vtime))
|
|
+ bfq_forget_entity(st, entity);
|
|
+ else
|
|
+ bfq_idle_insert(st, entity);
|
|
+
|
|
+ BUG_ON(sd->active_entity == entity);
|
|
+ BUG_ON(sd->next_active == entity);
|
|
+
|
|
+ return ret;
|
|
+}
|
|
+
|
|
+/**
|
|
+ * bfq_deactivate_entity - deactivate an entity.
|
|
+ * @entity: the entity to deactivate.
|
|
+ * @requeue: true if the entity can be put on the idle tree
|
|
+ */
|
|
+static void bfq_deactivate_entity(struct bfq_entity *entity, int requeue)
|
|
+{
|
|
+ struct bfq_sched_data *sd;
|
|
+ struct bfq_entity *parent;
|
|
+
|
|
+ for_each_entity_safe(entity, parent) {
|
|
+ sd = entity->sched_data;
|
|
+
|
|
+ if (!__bfq_deactivate_entity(entity, requeue))
|
|
+ /*
|
|
+ * The parent entity is still backlogged, and
|
|
+ * we don't need to update it as it is still
|
|
+ * under service.
|
|
+ */
|
|
+ break;
|
|
+
|
|
+ if (sd->next_active != NULL)
|
|
+ /*
|
|
+ * The parent entity is still backlogged and
|
|
+ * the budgets on the path towards the root
|
|
+ * need to be updated.
|
|
+ */
|
|
+ goto update;
|
|
+
|
|
+ /*
|
|
+ * If we reach there the parent is no more backlogged and
|
|
+ * we want to propagate the dequeue upwards.
|
|
+ */
|
|
+ requeue = 1;
|
|
+ }
|
|
+
|
|
+ return;
|
|
+
|
|
+update:
|
|
+ entity = parent;
|
|
+ for_each_entity(entity) {
|
|
+ __bfq_activate_entity(entity);
|
|
+
|
|
+ sd = entity->sched_data;
|
|
+ if (!bfq_update_next_active(sd))
|
|
+ break;
|
|
+ }
|
|
+}
|
|
+
|
|
+/**
|
|
+ * bfq_update_vtime - update vtime if necessary.
|
|
+ * @st: the service tree to act upon.
|
|
+ *
|
|
+ * If necessary update the service tree vtime to have at least one
|
|
+ * eligible entity, skipping to its start time. Assumes that the
|
|
+ * active tree of the device is not empty.
|
|
+ *
|
|
+ * NOTE: this hierarchical implementation updates vtimes quite often,
|
|
+ * we may end up with reactivated tasks getting timestamps after a
|
|
+ * vtime skip done because we needed a ->first_active entity on some
|
|
+ * intermediate node.
|
|
+ */
|
|
+static void bfq_update_vtime(struct bfq_service_tree *st)
|
|
+{
|
|
+ struct bfq_entity *entry;
|
|
+ struct rb_node *node = st->active.rb_node;
|
|
+
|
|
+ entry = rb_entry(node, struct bfq_entity, rb_node);
|
|
+ if (bfq_gt(entry->min_start, st->vtime)) {
|
|
+ st->vtime = entry->min_start;
|
|
+ bfq_forget_idle(st);
|
|
+ }
|
|
+}
|
|
+
|
|
+/**
|
|
+ * bfq_first_active - find the eligible entity with the smallest finish time
|
|
+ * @st: the service tree to select from.
|
|
+ *
|
|
+ * This function searches the first schedulable entity, starting from the
|
|
+ * root of the tree and going on the left every time on this side there is
|
|
+ * a subtree with at least one eligible (start >= vtime) entity. The path
|
|
+ * on the right is followed only if a) the left subtree contains no eligible
|
|
+ * entities and b) no eligible entity has been found yet.
|
|
+ */
|
|
+static struct bfq_entity *bfq_first_active_entity(struct bfq_service_tree *st)
|
|
+{
|
|
+ struct bfq_entity *entry, *first = NULL;
|
|
+ struct rb_node *node = st->active.rb_node;
|
|
+
|
|
+ while (node != NULL) {
|
|
+ entry = rb_entry(node, struct bfq_entity, rb_node);
|
|
+left:
|
|
+ if (!bfq_gt(entry->start, st->vtime))
|
|
+ first = entry;
|
|
+
|
|
+ BUG_ON(bfq_gt(entry->min_start, st->vtime));
|
|
+
|
|
+ if (node->rb_left != NULL) {
|
|
+ entry = rb_entry(node->rb_left,
|
|
+ struct bfq_entity, rb_node);
|
|
+ if (!bfq_gt(entry->min_start, st->vtime)) {
|
|
+ node = node->rb_left;
|
|
+ goto left;
|
|
+ }
|
|
+ }
|
|
+ if (first != NULL)
|
|
+ break;
|
|
+ node = node->rb_right;
|
|
+ }
|
|
+
|
|
+ BUG_ON(first == NULL && !RB_EMPTY_ROOT(&st->active));
|
|
+ return first;
|
|
+}
|
|
+
|
|
+/**
|
|
+ * __bfq_lookup_next_entity - return the first eligible entity in @st.
|
|
+ * @st: the service tree.
|
|
+ *
|
|
+ * Update the virtual time in @st and return the first eligible entity
|
|
+ * it contains.
|
|
+ */
|
|
+static struct bfq_entity *__bfq_lookup_next_entity(struct bfq_service_tree *st,
|
|
+ bool force)
|
|
+{
|
|
+ struct bfq_entity *entity, *new_next_active = NULL;
|
|
+
|
|
+ if (RB_EMPTY_ROOT(&st->active))
|
|
+ return NULL;
|
|
+
|
|
+ bfq_update_vtime(st);
|
|
+ entity = bfq_first_active_entity(st);
|
|
+ BUG_ON(bfq_gt(entity->start, st->vtime));
|
|
+
|
|
+ /*
|
|
+ * If the chosen entity does not match with the sched_data's
|
|
+ * next_active and we are forcedly serving the IDLE priority
|
|
+ * class tree, bubble up budget update.
|
|
+ */
|
|
+ if (unlikely(force && entity != entity->sched_data->next_active)) {
|
|
+ new_next_active = entity;
|
|
+ for_each_entity(new_next_active)
|
|
+ bfq_update_budget(new_next_active);
|
|
+ }
|
|
+
|
|
+ return entity;
|
|
+}
|
|
+
|
|
+/**
|
|
+ * bfq_lookup_next_entity - return the first eligible entity in @sd.
|
|
+ * @sd: the sched_data.
|
|
+ * @extract: if true the returned entity will be also extracted from @sd.
|
|
+ *
|
|
+ * NOTE: since we cache the next_active entity at each level of the
|
|
+ * hierarchy, the complexity of the lookup can be decreased with
|
|
+ * absolutely no effort just returning the cached next_active value;
|
|
+ * we prefer to do full lookups to test the consistency of * the data
|
|
+ * structures.
|
|
+ */
|
|
+static struct bfq_entity *bfq_lookup_next_entity(struct bfq_sched_data *sd,
|
|
+ int extract,
|
|
+ struct bfq_data *bfqd)
|
|
+{
|
|
+ struct bfq_service_tree *st = sd->service_tree;
|
|
+ struct bfq_entity *entity;
|
|
+ int i = 0;
|
|
+
|
|
+ BUG_ON(sd->active_entity != NULL);
|
|
+
|
|
+ if (bfqd != NULL &&
|
|
+ jiffies - bfqd->bfq_class_idle_last_service > BFQ_CL_IDLE_TIMEOUT) {
|
|
+ entity = __bfq_lookup_next_entity(st + BFQ_IOPRIO_CLASSES - 1,
|
|
+ true);
|
|
+ if (entity != NULL) {
|
|
+ i = BFQ_IOPRIO_CLASSES - 1;
|
|
+ bfqd->bfq_class_idle_last_service = jiffies;
|
|
+ sd->next_active = entity;
|
|
+ }
|
|
+ }
|
|
+ for (; i < BFQ_IOPRIO_CLASSES; i++) {
|
|
+ entity = __bfq_lookup_next_entity(st + i, false);
|
|
+ if (entity != NULL) {
|
|
+ if (extract) {
|
|
+ bfq_check_next_active(sd, entity);
|
|
+ bfq_active_extract(st + i, entity);
|
|
+ sd->active_entity = entity;
|
|
+ sd->next_active = NULL;
|
|
+ }
|
|
+ break;
|
|
+ }
|
|
+ }
|
|
+
|
|
+ return entity;
|
|
+}
|
|
+
|
|
+/*
|
|
+ * Get next queue for service.
|
|
+ */
|
|
+static struct bfq_queue *bfq_get_next_queue(struct bfq_data *bfqd)
|
|
+{
|
|
+ struct bfq_entity *entity = NULL;
|
|
+ struct bfq_sched_data *sd;
|
|
+ struct bfq_queue *bfqq;
|
|
+
|
|
+ BUG_ON(bfqd->in_service_queue != NULL);
|
|
+
|
|
+ if (bfqd->busy_queues == 0)
|
|
+ return NULL;
|
|
+
|
|
+ sd = &bfqd->root_group->sched_data;
|
|
+ for (; sd != NULL; sd = entity->my_sched_data) {
|
|
+ entity = bfq_lookup_next_entity(sd, 1, bfqd);
|
|
+ BUG_ON(entity == NULL);
|
|
+ entity->service = 0;
|
|
+ }
|
|
+
|
|
+ bfqq = bfq_entity_to_bfqq(entity);
|
|
+ BUG_ON(bfqq == NULL);
|
|
+
|
|
+ return bfqq;
|
|
+}
|
|
+
|
|
+/*
|
|
+ * Forced extraction of the given queue.
|
|
+ */
|
|
+static void bfq_get_next_queue_forced(struct bfq_data *bfqd,
|
|
+ struct bfq_queue *bfqq)
|
|
+{
|
|
+ struct bfq_entity *entity;
|
|
+ struct bfq_sched_data *sd;
|
|
+
|
|
+ BUG_ON(bfqd->in_service_queue != NULL);
|
|
+
|
|
+ entity = &bfqq->entity;
|
|
+ /*
|
|
+ * Bubble up extraction/update from the leaf to the root.
|
|
+ */
|
|
+ for_each_entity(entity) {
|
|
+ sd = entity->sched_data;
|
|
+ bfq_update_budget(entity);
|
|
+ bfq_update_vtime(bfq_entity_service_tree(entity));
|
|
+ bfq_active_extract(bfq_entity_service_tree(entity), entity);
|
|
+ sd->active_entity = entity;
|
|
+ sd->next_active = NULL;
|
|
+ entity->service = 0;
|
|
+ }
|
|
+
|
|
+ return;
|
|
+}
|
|
+
|
|
+static void __bfq_bfqd_reset_in_service(struct bfq_data *bfqd)
|
|
+{
|
|
+ if (bfqd->in_service_bic != NULL) {
|
|
+ put_io_context(bfqd->in_service_bic->icq.ioc);
|
|
+ bfqd->in_service_bic = NULL;
|
|
+ }
|
|
+
|
|
+ bfqd->in_service_queue = NULL;
|
|
+ del_timer(&bfqd->idle_slice_timer);
|
|
+}
|
|
+
|
|
+static void bfq_deactivate_bfqq(struct bfq_data *bfqd, struct bfq_queue *bfqq,
|
|
+ int requeue)
|
|
+{
|
|
+ struct bfq_entity *entity = &bfqq->entity;
|
|
+
|
|
+ if (bfqq == bfqd->in_service_queue)
|
|
+ __bfq_bfqd_reset_in_service(bfqd);
|
|
+
|
|
+ bfq_deactivate_entity(entity, requeue);
|
|
+}
|
|
+
|
|
+static void bfq_activate_bfqq(struct bfq_data *bfqd, struct bfq_queue *bfqq)
|
|
+{
|
|
+ struct bfq_entity *entity = &bfqq->entity;
|
|
+
|
|
+ bfq_activate_entity(entity);
|
|
+}
|
|
+
|
|
+/*
|
|
+ * Called when the bfqq no longer has requests pending, remove it from
|
|
+ * the service tree.
|
|
+ */
|
|
+static void bfq_del_bfqq_busy(struct bfq_data *bfqd, struct bfq_queue *bfqq,
|
|
+ int requeue)
|
|
+{
|
|
+ BUG_ON(!bfq_bfqq_busy(bfqq));
|
|
+ BUG_ON(!RB_EMPTY_ROOT(&bfqq->sort_list));
|
|
+
|
|
+ bfq_log_bfqq(bfqd, bfqq, "del from busy");
|
|
+
|
|
+ bfq_clear_bfqq_busy(bfqq);
|
|
+
|
|
+ BUG_ON(bfqd->busy_queues == 0);
|
|
+ bfqd->busy_queues--;
|
|
+ if (bfqq->raising_coeff > 1)
|
|
+ bfqd->raised_busy_queues--;
|
|
+
|
|
+ bfq_deactivate_bfqq(bfqd, bfqq, requeue);
|
|
+}
|
|
+
|
|
+/*
|
|
+ * Called when an inactive queue receives a new request.
|
|
+ */
|
|
+static void bfq_add_bfqq_busy(struct bfq_data *bfqd, struct bfq_queue *bfqq)
|
|
+{
|
|
+ BUG_ON(bfq_bfqq_busy(bfqq));
|
|
+ BUG_ON(bfqq == bfqd->in_service_queue);
|
|
+
|
|
+ bfq_log_bfqq(bfqd, bfqq, "add to busy");
|
|
+
|
|
+ bfq_activate_bfqq(bfqd, bfqq);
|
|
+
|
|
+ bfq_mark_bfqq_busy(bfqq);
|
|
+ bfqd->busy_queues++;
|
|
+ if (bfqq->raising_coeff > 1)
|
|
+ bfqd->raised_busy_queues++;
|
|
+}
|
|
diff --git a/block/bfq.h b/block/bfq.h
|
|
new file mode 100644
|
|
index 0000000..68b28e3
|
|
--- /dev/null
|
|
+++ b/block/bfq.h
|
|
@@ -0,0 +1,614 @@
|
|
+/*
|
|
+ * BFQ-v7 for 3.13.0: data structures and common functions prototypes.
|
|
+ *
|
|
+ * Based on ideas and code from CFQ:
|
|
+ * Copyright (C) 2003 Jens Axboe <axboe@kernel.dk>
|
|
+ *
|
|
+ * Copyright (C) 2008 Fabio Checconi <fabio@gandalf.sssup.it>
|
|
+ * Paolo Valente <paolo.valente@unimore.it>
|
|
+ *
|
|
+ * Copyright (C) 2010 Paolo Valente <paolo.valente@unimore.it>
|
|
+ */
|
|
+
|
|
+#ifndef _BFQ_H
|
|
+#define _BFQ_H
|
|
+
|
|
+#include <linux/blktrace_api.h>
|
|
+#include <linux/hrtimer.h>
|
|
+#include <linux/ioprio.h>
|
|
+#include <linux/rbtree.h>
|
|
+
|
|
+#define BFQ_IOPRIO_CLASSES 3
|
|
+#define BFQ_CL_IDLE_TIMEOUT (HZ/5)
|
|
+
|
|
+#define BFQ_MIN_WEIGHT 1
|
|
+#define BFQ_MAX_WEIGHT 1000
|
|
+
|
|
+#define BFQ_DEFAULT_GRP_WEIGHT 10
|
|
+#define BFQ_DEFAULT_GRP_IOPRIO 0
|
|
+#define BFQ_DEFAULT_GRP_CLASS IOPRIO_CLASS_BE
|
|
+
|
|
+struct bfq_entity;
|
|
+
|
|
+/**
|
|
+ * struct bfq_service_tree - per ioprio_class service tree.
|
|
+ * @active: tree for active entities (i.e., those backlogged).
|
|
+ * @idle: tree for idle entities (i.e., those not backlogged, with V <= F_i).
|
|
+ * @first_idle: idle entity with minimum F_i.
|
|
+ * @last_idle: idle entity with maximum F_i.
|
|
+ * @vtime: scheduler virtual time.
|
|
+ * @wsum: scheduler weight sum; active and idle entities contribute to it.
|
|
+ *
|
|
+ * Each service tree represents a B-WF2Q+ scheduler on its own. Each
|
|
+ * ioprio_class has its own independent scheduler, and so its own
|
|
+ * bfq_service_tree. All the fields are protected by the queue lock
|
|
+ * of the containing bfqd.
|
|
+ */
|
|
+struct bfq_service_tree {
|
|
+ struct rb_root active;
|
|
+ struct rb_root idle;
|
|
+
|
|
+ struct bfq_entity *first_idle;
|
|
+ struct bfq_entity *last_idle;
|
|
+
|
|
+ u64 vtime;
|
|
+ unsigned long wsum;
|
|
+};
|
|
+
|
|
+/**
|
|
+ * struct bfq_sched_data - multi-class scheduler.
|
|
+ * @active_entity: entity under service.
|
|
+ * @next_active: head-of-the-line entity in the scheduler.
|
|
+ * @service_tree: array of service trees, one per ioprio_class.
|
|
+ *
|
|
+ * bfq_sched_data is the basic scheduler queue. It supports three
|
|
+ * ioprio_classes, and can be used either as a toplevel queue or as
|
|
+ * an intermediate queue on a hierarchical setup.
|
|
+ * @next_active points to the active entity of the sched_data service
|
|
+ * trees that will be scheduled next.
|
|
+ *
|
|
+ * The supported ioprio_classes are the same as in CFQ, in descending
|
|
+ * priority order, IOPRIO_CLASS_RT, IOPRIO_CLASS_BE, IOPRIO_CLASS_IDLE.
|
|
+ * Requests from higher priority queues are served before all the
|
|
+ * requests from lower priority queues; among requests of the same
|
|
+ * queue requests are served according to B-WF2Q+.
|
|
+ * All the fields are protected by the queue lock of the containing bfqd.
|
|
+ */
|
|
+struct bfq_sched_data {
|
|
+ struct bfq_entity *active_entity;
|
|
+ struct bfq_entity *next_active;
|
|
+ struct bfq_service_tree service_tree[BFQ_IOPRIO_CLASSES];
|
|
+};
|
|
+
|
|
+/**
|
|
+ * struct bfq_entity - schedulable entity.
|
|
+ * @rb_node: service_tree member.
|
|
+ * @on_st: flag, true if the entity is on a tree (either the active or
|
|
+ * the idle one of its service_tree).
|
|
+ * @finish: B-WF2Q+ finish timestamp (aka F_i).
|
|
+ * @start: B-WF2Q+ start timestamp (aka S_i).
|
|
+ * @tree: tree the entity is enqueued into; %NULL if not on a tree.
|
|
+ * @min_start: minimum start time of the (active) subtree rooted at
|
|
+ * this entity; used for O(log N) lookups into active trees.
|
|
+ * @service: service received during the last round of service.
|
|
+ * @budget: budget used to calculate F_i; F_i = S_i + @budget / @weight.
|
|
+ * @weight: weight of the queue
|
|
+ * @parent: parent entity, for hierarchical scheduling.
|
|
+ * @my_sched_data: for non-leaf nodes in the cgroup hierarchy, the
|
|
+ * associated scheduler queue, %NULL on leaf nodes.
|
|
+ * @sched_data: the scheduler queue this entity belongs to.
|
|
+ * @ioprio: the ioprio in use.
|
|
+ * @new_weight: when a weight change is requested, the new weight value.
|
|
+ * @orig_weight: original weight, used to implement weight boosting
|
|
+ * @new_ioprio: when an ioprio change is requested, the new ioprio value.
|
|
+ * @ioprio_class: the ioprio_class in use.
|
|
+ * @new_ioprio_class: when an ioprio_class change is requested, the new
|
|
+ * ioprio_class value.
|
|
+ * @ioprio_changed: flag, true when the user requested a weight, ioprio or
|
|
+ * ioprio_class change.
|
|
+ *
|
|
+ * A bfq_entity is used to represent either a bfq_queue (leaf node in the
|
|
+ * cgroup hierarchy) or a bfq_group into the upper level scheduler. Each
|
|
+ * entity belongs to the sched_data of the parent group in the cgroup
|
|
+ * hierarchy. Non-leaf entities have also their own sched_data, stored
|
|
+ * in @my_sched_data.
|
|
+ *
|
|
+ * Each entity stores independently its priority values; this would
|
|
+ * allow different weights on different devices, but this
|
|
+ * functionality is not exported to userspace by now. Priorities and
|
|
+ * weights are updated lazily, first storing the new values into the
|
|
+ * new_* fields, then setting the @ioprio_changed flag. As soon as
|
|
+ * there is a transition in the entity state that allows the priority
|
|
+ * update to take place the effective and the requested priority
|
|
+ * values are synchronized.
|
|
+ *
|
|
+ * Unless cgroups are used, the weight value is calculated from the
|
|
+ * ioprio to export the same interface as CFQ. When dealing with
|
|
+ * ``well-behaved'' queues (i.e., queues that do not spend too much
|
|
+ * time to consume their budget and have true sequential behavior, and
|
|
+ * when there are no external factors breaking anticipation) the
|
|
+ * relative weights at each level of the cgroups hierarchy should be
|
|
+ * guaranteed. All the fields are protected by the queue lock of the
|
|
+ * containing bfqd.
|
|
+ */
|
|
+struct bfq_entity {
|
|
+ struct rb_node rb_node;
|
|
+
|
|
+ int on_st;
|
|
+
|
|
+ u64 finish;
|
|
+ u64 start;
|
|
+
|
|
+ struct rb_root *tree;
|
|
+
|
|
+ u64 min_start;
|
|
+
|
|
+ unsigned long service, budget;
|
|
+ unsigned short weight, new_weight;
|
|
+ unsigned short orig_weight;
|
|
+
|
|
+ struct bfq_entity *parent;
|
|
+
|
|
+ struct bfq_sched_data *my_sched_data;
|
|
+ struct bfq_sched_data *sched_data;
|
|
+
|
|
+ unsigned short ioprio, new_ioprio;
|
|
+ unsigned short ioprio_class, new_ioprio_class;
|
|
+
|
|
+ int ioprio_changed;
|
|
+};
|
|
+
|
|
+struct bfq_group;
|
|
+
|
|
+/**
|
|
+ * struct bfq_queue - leaf schedulable entity.
|
|
+ * @ref: reference counter.
|
|
+ * @bfqd: parent bfq_data.
|
|
+ * @new_bfqq: shared bfq_queue if queue is cooperating with
|
|
+ * one or more other queues.
|
|
+ * @pos_node: request-position tree member (see bfq_data's @rq_pos_tree).
|
|
+ * @pos_root: request-position tree root (see bfq_data's @rq_pos_tree).
|
|
+ * @sort_list: sorted list of pending requests.
|
|
+ * @next_rq: if fifo isn't expired, next request to serve.
|
|
+ * @queued: nr of requests queued in @sort_list.
|
|
+ * @allocated: currently allocated requests.
|
|
+ * @meta_pending: pending metadata requests.
|
|
+ * @fifo: fifo list of requests in sort_list.
|
|
+ * @entity: entity representing this queue in the scheduler.
|
|
+ * @max_budget: maximum budget allowed from the feedback mechanism.
|
|
+ * @budget_timeout: budget expiration (in jiffies).
|
|
+ * @dispatched: number of requests on the dispatch list or inside driver.
|
|
+ * @org_ioprio: saved ioprio during boosted periods.
|
|
+ * @flags: status flags.
|
|
+ * @bfqq_list: node for active/idle bfqq list inside our bfqd.
|
|
+ * @seek_samples: number of seeks sampled
|
|
+ * @seek_total: sum of the distances of the seeks sampled
|
|
+ * @seek_mean: mean seek distance
|
|
+ * @last_request_pos: position of the last request enqueued
|
|
+ * @pid: pid of the process owning the queue, used for logging purposes.
|
|
+ * @last_rais_start_time: last (idle -> weight-raised) transition attempt
|
|
+ * @raising_cur_max_time: current max raising time for this queue
|
|
+ * @last_idle_bklogged: time of the last transition of the @bfq_queue from
|
|
+ * idle to backlogged
|
|
+ * @service_from_backlogged: cumulative service received from the @bfq_queue
|
|
+ * since the last transition from idle to backlogged
|
|
+ *
|
|
+ * A bfq_queue is a leaf request queue; it can be associated to an io_context
|
|
+ * or more (if it is an async one). @cgroup holds a reference to the
|
|
+ * cgroup, to be sure that it does not disappear while a bfqq still
|
|
+ * references it (mostly to avoid races between request issuing and task
|
|
+ * migration followed by cgroup distruction).
|
|
+ * All the fields are protected by the queue lock of the containing bfqd.
|
|
+ */
|
|
+struct bfq_queue {
|
|
+ atomic_t ref;
|
|
+ struct bfq_data *bfqd;
|
|
+
|
|
+ /* fields for cooperating queues handling */
|
|
+ struct bfq_queue *new_bfqq;
|
|
+ struct rb_node pos_node;
|
|
+ struct rb_root *pos_root;
|
|
+
|
|
+ struct rb_root sort_list;
|
|
+ struct request *next_rq;
|
|
+ int queued[2];
|
|
+ int allocated[2];
|
|
+ int meta_pending;
|
|
+ struct list_head fifo;
|
|
+
|
|
+ struct bfq_entity entity;
|
|
+
|
|
+ unsigned long max_budget;
|
|
+ unsigned long budget_timeout;
|
|
+
|
|
+ int dispatched;
|
|
+
|
|
+ unsigned short org_ioprio;
|
|
+
|
|
+ unsigned int flags;
|
|
+
|
|
+ struct list_head bfqq_list;
|
|
+
|
|
+ unsigned int seek_samples;
|
|
+ u64 seek_total;
|
|
+ sector_t seek_mean;
|
|
+ sector_t last_request_pos;
|
|
+
|
|
+ pid_t pid;
|
|
+
|
|
+ /* weight-raising fields */
|
|
+ unsigned int raising_cur_max_time;
|
|
+ unsigned long soft_rt_next_start;
|
|
+ u64 last_rais_start_finish;
|
|
+ unsigned int raising_coeff;
|
|
+ u64 last_idle_bklogged;
|
|
+ unsigned long service_from_backlogged;
|
|
+};
|
|
+
|
|
+/**
|
|
+ * struct bfq_ttime - per process thinktime stats.
|
|
+ * @ttime_total: total process thinktime
|
|
+ * @ttime_samples: number of thinktime samples
|
|
+ * @ttime_mean: average process thinktime
|
|
+ */
|
|
+struct bfq_ttime {
|
|
+ unsigned long last_end_request;
|
|
+
|
|
+ unsigned long ttime_total;
|
|
+ unsigned long ttime_samples;
|
|
+ unsigned long ttime_mean;
|
|
+};
|
|
+
|
|
+/**
|
|
+ * struct bfq_io_cq - per (request_queue, io_context) structure.
|
|
+ * @icq: associated io_cq structure
|
|
+ * @bfqq: array of two process queues, the sync and the async
|
|
+ * @ttime: associated @bfq_ttime struct
|
|
+ */
|
|
+struct bfq_io_cq {
|
|
+ struct io_cq icq; /* must be the first member */
|
|
+ struct bfq_queue *bfqq[2];
|
|
+ struct bfq_ttime ttime;
|
|
+ int ioprio;
|
|
+};
|
|
+
|
|
+/**
|
|
+ * struct bfq_data - per device data structure.
|
|
+ * @queue: request queue for the managed device.
|
|
+ * @root_group: root bfq_group for the device.
|
|
+ * @rq_pos_tree: rbtree sorted by next_request position,
|
|
+ * used when determining if two or more queues
|
|
+ * have interleaving requests (see bfq_close_cooperator).
|
|
+ * @busy_queues: number of bfq_queues containing requests (including the
|
|
+ * queue under service, even if it is idling).
|
|
+ * @raised_busy_queues: number of weight-raised busy bfq_queues.
|
|
+ * @queued: number of queued requests.
|
|
+ * @rq_in_driver: number of requests dispatched and waiting for completion.
|
|
+ * @sync_flight: number of sync requests in the driver.
|
|
+ * @max_rq_in_driver: max number of reqs in driver in the last @hw_tag_samples
|
|
+ * completed requests .
|
|
+ * @hw_tag_samples: nr of samples used to calculate hw_tag.
|
|
+ * @hw_tag: flag set to one if the driver is showing a queueing behavior.
|
|
+ * @budgets_assigned: number of budgets assigned.
|
|
+ * @idle_slice_timer: timer set when idling for the next sequential request
|
|
+ * from the queue under service.
|
|
+ * @unplug_work: delayed work to restart dispatching on the request queue.
|
|
+ * @in_service_queue: bfq_queue under service.
|
|
+ * @in_service_bic: bfq_io_cq (bic) associated with the @in_service_queue.
|
|
+ * @last_position: on-disk position of the last served request.
|
|
+ * @last_budget_start: beginning of the last budget.
|
|
+ * @last_idling_start: beginning of the last idle slice.
|
|
+ * @peak_rate: peak transfer rate observed for a budget.
|
|
+ * @peak_rate_samples: number of samples used to calculate @peak_rate.
|
|
+ * @bfq_max_budget: maximum budget allotted to a bfq_queue before rescheduling.
|
|
+ * @group_list: list of all the bfq_groups active on the device.
|
|
+ * @active_list: list of all the bfq_queues active on the device.
|
|
+ * @idle_list: list of all the bfq_queues idle on the device.
|
|
+ * @bfq_quantum: max number of requests dispatched per dispatch round.
|
|
+ * @bfq_fifo_expire: timeout for async/sync requests; when it expires
|
|
+ * requests are served in fifo order.
|
|
+ * @bfq_back_penalty: weight of backward seeks wrt forward ones.
|
|
+ * @bfq_back_max: maximum allowed backward seek.
|
|
+ * @bfq_slice_idle: maximum idling time.
|
|
+ * @bfq_user_max_budget: user-configured max budget value (0 for auto-tuning).
|
|
+ * @bfq_max_budget_async_rq: maximum budget (in nr of requests) allotted to
|
|
+ * async queues.
|
|
+ * @bfq_timeout: timeout for bfq_queues to consume their budget; used to
|
|
+ * to prevent seeky queues to impose long latencies to well
|
|
+ * behaved ones (this also implies that seeky queues cannot
|
|
+ * receive guarantees in the service domain; after a timeout
|
|
+ * they are charged for the whole allocated budget, to try
|
|
+ * to preserve a behavior reasonably fair among them, but
|
|
+ * without service-domain guarantees).
|
|
+ * @bfq_raising_coeff: Maximum factor by which the weight of a boosted
|
|
+ * queue is multiplied
|
|
+ * @bfq_raising_max_time: maximum duration of a weight-raising period (jiffies)
|
|
+ * @bfq_raising_rt_max_time: maximum duration for soft real-time processes
|
|
+ * @bfq_raising_min_idle_time: minimum idle period after which weight-raising
|
|
+ * may be reactivated for a queue (in jiffies)
|
|
+ * @bfq_raising_min_inter_arr_async: minimum period between request arrivals
|
|
+ * after which weight-raising may be
|
|
+ * reactivated for an already busy queue
|
|
+ * (in jiffies)
|
|
+ * @bfq_raising_max_softrt_rate: max service-rate for a soft real-time queue,
|
|
+ * sectors per seconds
|
|
+ * @RT_prod: cached value of the product R*T used for computing the maximum
|
|
+ * duration of the weight raising automatically
|
|
+ * @oom_bfqq: fallback dummy bfqq for extreme OOM conditions
|
|
+ *
|
|
+ * All the fields are protected by the @queue lock.
|
|
+ */
|
|
+struct bfq_data {
|
|
+ struct request_queue *queue;
|
|
+
|
|
+ struct bfq_group *root_group;
|
|
+
|
|
+ struct rb_root rq_pos_tree;
|
|
+
|
|
+ int busy_queues;
|
|
+ int raised_busy_queues;
|
|
+ int queued;
|
|
+ int rq_in_driver;
|
|
+ int sync_flight;
|
|
+
|
|
+ int max_rq_in_driver;
|
|
+ int hw_tag_samples;
|
|
+ int hw_tag;
|
|
+
|
|
+ int budgets_assigned;
|
|
+
|
|
+ struct timer_list idle_slice_timer;
|
|
+ struct work_struct unplug_work;
|
|
+
|
|
+ struct bfq_queue *in_service_queue;
|
|
+ struct bfq_io_cq *in_service_bic;
|
|
+
|
|
+ sector_t last_position;
|
|
+
|
|
+ ktime_t last_budget_start;
|
|
+ ktime_t last_idling_start;
|
|
+ int peak_rate_samples;
|
|
+ u64 peak_rate;
|
|
+ unsigned long bfq_max_budget;
|
|
+
|
|
+ struct hlist_head group_list;
|
|
+ struct list_head active_list;
|
|
+ struct list_head idle_list;
|
|
+
|
|
+ unsigned int bfq_quantum;
|
|
+ unsigned int bfq_fifo_expire[2];
|
|
+ unsigned int bfq_back_penalty;
|
|
+ unsigned int bfq_back_max;
|
|
+ unsigned int bfq_slice_idle;
|
|
+ u64 bfq_class_idle_last_service;
|
|
+
|
|
+ unsigned int bfq_user_max_budget;
|
|
+ unsigned int bfq_max_budget_async_rq;
|
|
+ unsigned int bfq_timeout[2];
|
|
+
|
|
+ bool low_latency;
|
|
+
|
|
+ /* parameters of the low_latency heuristics */
|
|
+ unsigned int bfq_raising_coeff;
|
|
+ unsigned int bfq_raising_max_time;
|
|
+ unsigned int bfq_raising_rt_max_time;
|
|
+ unsigned int bfq_raising_min_idle_time;
|
|
+ unsigned long bfq_raising_min_inter_arr_async;
|
|
+ unsigned int bfq_raising_max_softrt_rate;
|
|
+ u64 RT_prod;
|
|
+
|
|
+ struct bfq_queue oom_bfqq;
|
|
+};
|
|
+
|
|
+enum bfqq_state_flags {
|
|
+ BFQ_BFQQ_FLAG_busy = 0, /* has requests or is under service */
|
|
+ BFQ_BFQQ_FLAG_wait_request, /* waiting for a request */
|
|
+ BFQ_BFQQ_FLAG_must_alloc, /* must be allowed rq alloc */
|
|
+ BFQ_BFQQ_FLAG_fifo_expire, /* FIFO checked in this slice */
|
|
+ BFQ_BFQQ_FLAG_idle_window, /* slice idling enabled */
|
|
+ BFQ_BFQQ_FLAG_prio_changed, /* task priority has changed */
|
|
+ BFQ_BFQQ_FLAG_sync, /* synchronous queue */
|
|
+ BFQ_BFQQ_FLAG_budget_new, /* no completion with this budget */
|
|
+ BFQ_BFQQ_FLAG_coop, /* bfqq is shared */
|
|
+ BFQ_BFQQ_FLAG_split_coop, /* shared bfqq will be splitted */
|
|
+ BFQ_BFQQ_FLAG_softrt_update, /* needs softrt-next-start update */
|
|
+};
|
|
+
|
|
+#define BFQ_BFQQ_FNS(name) \
|
|
+static inline void bfq_mark_bfqq_##name(struct bfq_queue *bfqq) \
|
|
+{ \
|
|
+ (bfqq)->flags |= (1 << BFQ_BFQQ_FLAG_##name); \
|
|
+} \
|
|
+static inline void bfq_clear_bfqq_##name(struct bfq_queue *bfqq) \
|
|
+{ \
|
|
+ (bfqq)->flags &= ~(1 << BFQ_BFQQ_FLAG_##name); \
|
|
+} \
|
|
+static inline int bfq_bfqq_##name(const struct bfq_queue *bfqq) \
|
|
+{ \
|
|
+ return ((bfqq)->flags & (1 << BFQ_BFQQ_FLAG_##name)) != 0; \
|
|
+}
|
|
+
|
|
+BFQ_BFQQ_FNS(busy);
|
|
+BFQ_BFQQ_FNS(wait_request);
|
|
+BFQ_BFQQ_FNS(must_alloc);
|
|
+BFQ_BFQQ_FNS(fifo_expire);
|
|
+BFQ_BFQQ_FNS(idle_window);
|
|
+BFQ_BFQQ_FNS(prio_changed);
|
|
+BFQ_BFQQ_FNS(sync);
|
|
+BFQ_BFQQ_FNS(budget_new);
|
|
+BFQ_BFQQ_FNS(coop);
|
|
+BFQ_BFQQ_FNS(split_coop);
|
|
+BFQ_BFQQ_FNS(softrt_update);
|
|
+#undef BFQ_BFQQ_FNS
|
|
+
|
|
+/* Logging facilities. */
|
|
+#define bfq_log_bfqq(bfqd, bfqq, fmt, args...) \
|
|
+ blk_add_trace_msg((bfqd)->queue, "bfq%d " fmt, (bfqq)->pid, ##args)
|
|
+
|
|
+#define bfq_log(bfqd, fmt, args...) \
|
|
+ blk_add_trace_msg((bfqd)->queue, "bfq " fmt, ##args)
|
|
+
|
|
+/* Expiration reasons. */
|
|
+enum bfqq_expiration {
|
|
+ BFQ_BFQQ_TOO_IDLE = 0, /* queue has been idling for too long */
|
|
+ BFQ_BFQQ_BUDGET_TIMEOUT, /* budget took too long to be used */
|
|
+ BFQ_BFQQ_BUDGET_EXHAUSTED, /* budget consumed */
|
|
+ BFQ_BFQQ_NO_MORE_REQUESTS, /* the queue has no more requests */
|
|
+};
|
|
+
|
|
+#ifdef CONFIG_CGROUP_BFQIO
|
|
+/**
|
|
+ * struct bfq_group - per (device, cgroup) data structure.
|
|
+ * @entity: schedulable entity to insert into the parent group sched_data.
|
|
+ * @sched_data: own sched_data, to contain child entities (they may be
|
|
+ * both bfq_queues and bfq_groups).
|
|
+ * @group_node: node to be inserted into the bfqio_cgroup->group_data
|
|
+ * list of the containing cgroup's bfqio_cgroup.
|
|
+ * @bfqd_node: node to be inserted into the @bfqd->group_list list
|
|
+ * of the groups active on the same device; used for cleanup.
|
|
+ * @bfqd: the bfq_data for the device this group acts upon.
|
|
+ * @async_bfqq: array of async queues for all the tasks belonging to
|
|
+ * the group, one queue per ioprio value per ioprio_class,
|
|
+ * except for the idle class that has only one queue.
|
|
+ * @async_idle_bfqq: async queue for the idle class (ioprio is ignored).
|
|
+ * @my_entity: pointer to @entity, %NULL for the toplevel group; used
|
|
+ * to avoid too many special cases during group creation/migration.
|
|
+ *
|
|
+ * Each (device, cgroup) pair has its own bfq_group, i.e., for each cgroup
|
|
+ * there is a set of bfq_groups, each one collecting the lower-level
|
|
+ * entities belonging to the group that are acting on the same device.
|
|
+ *
|
|
+ * Locking works as follows:
|
|
+ * o @group_node is protected by the bfqio_cgroup lock, and is accessed
|
|
+ * via RCU from its readers.
|
|
+ * o @bfqd is protected by the queue lock, RCU is used to access it
|
|
+ * from the readers.
|
|
+ * o All the other fields are protected by the @bfqd queue lock.
|
|
+ */
|
|
+struct bfq_group {
|
|
+ struct bfq_entity entity;
|
|
+ struct bfq_sched_data sched_data;
|
|
+
|
|
+ struct hlist_node group_node;
|
|
+ struct hlist_node bfqd_node;
|
|
+
|
|
+ void *bfqd;
|
|
+
|
|
+ struct bfq_queue *async_bfqq[2][IOPRIO_BE_NR];
|
|
+ struct bfq_queue *async_idle_bfqq;
|
|
+
|
|
+ struct bfq_entity *my_entity;
|
|
+};
|
|
+
|
|
+/**
|
|
+ * struct bfqio_cgroup - bfq cgroup data structure.
|
|
+ * @css: subsystem state for bfq in the containing cgroup.
|
|
+ * @online: flag marked when the subsystem is inserted.
|
|
+ * @weight: cgroup weight.
|
|
+ * @ioprio: cgroup ioprio.
|
|
+ * @ioprio_class: cgroup ioprio_class.
|
|
+ * @lock: spinlock that protects @ioprio, @ioprio_class and @group_data.
|
|
+ * @group_data: list containing the bfq_group belonging to this cgroup.
|
|
+ *
|
|
+ * @group_data is accessed using RCU, with @lock protecting the updates,
|
|
+ * @ioprio and @ioprio_class are protected by @lock.
|
|
+ */
|
|
+struct bfqio_cgroup {
|
|
+ struct cgroup_subsys_state css;
|
|
+ bool online;
|
|
+
|
|
+ unsigned short weight, ioprio, ioprio_class;
|
|
+
|
|
+ spinlock_t lock;
|
|
+ struct hlist_head group_data;
|
|
+};
|
|
+#else
|
|
+struct bfq_group {
|
|
+ struct bfq_sched_data sched_data;
|
|
+
|
|
+ struct bfq_queue *async_bfqq[2][IOPRIO_BE_NR];
|
|
+ struct bfq_queue *async_idle_bfqq;
|
|
+};
|
|
+#endif
|
|
+
|
|
+static inline struct bfq_service_tree *
|
|
+bfq_entity_service_tree(struct bfq_entity *entity)
|
|
+{
|
|
+ struct bfq_sched_data *sched_data = entity->sched_data;
|
|
+ unsigned int idx = entity->ioprio_class - 1;
|
|
+
|
|
+ BUG_ON(idx >= BFQ_IOPRIO_CLASSES);
|
|
+ BUG_ON(sched_data == NULL);
|
|
+
|
|
+ return sched_data->service_tree + idx;
|
|
+}
|
|
+
|
|
+static inline struct bfq_queue *bic_to_bfqq(struct bfq_io_cq *bic,
|
|
+ int is_sync)
|
|
+{
|
|
+ return bic->bfqq[!!is_sync];
|
|
+}
|
|
+
|
|
+static inline void bic_set_bfqq(struct bfq_io_cq *bic,
|
|
+ struct bfq_queue *bfqq, int is_sync)
|
|
+{
|
|
+ bic->bfqq[!!is_sync] = bfqq;
|
|
+}
|
|
+
|
|
+static inline struct bfq_data *bic_to_bfqd(struct bfq_io_cq *bic)
|
|
+{
|
|
+ return bic->icq.q->elevator->elevator_data;
|
|
+}
|
|
+
|
|
+/**
|
|
+ * bfq_get_bfqd_locked - get a lock to a bfqd using a RCU protected pointer.
|
|
+ * @ptr: a pointer to a bfqd.
|
|
+ * @flags: storage for the flags to be saved.
|
|
+ *
|
|
+ * This function allows bfqg->bfqd to be protected by the
|
|
+ * queue lock of the bfqd they reference; the pointer is dereferenced
|
|
+ * under RCU, so the storage for bfqd is assured to be safe as long
|
|
+ * as the RCU read side critical section does not end. After the
|
|
+ * bfqd->queue->queue_lock is taken the pointer is rechecked, to be
|
|
+ * sure that no other writer accessed it. If we raced with a writer,
|
|
+ * the function returns NULL, with the queue unlocked, otherwise it
|
|
+ * returns the dereferenced pointer, with the queue locked.
|
|
+ */
|
|
+static inline struct bfq_data *bfq_get_bfqd_locked(void **ptr,
|
|
+ unsigned long *flags)
|
|
+{
|
|
+ struct bfq_data *bfqd;
|
|
+
|
|
+ rcu_read_lock();
|
|
+ bfqd = rcu_dereference(*(struct bfq_data **)ptr);
|
|
+
|
|
+ if (bfqd != NULL) {
|
|
+ spin_lock_irqsave(bfqd->queue->queue_lock, *flags);
|
|
+ if (*ptr == bfqd)
|
|
+ goto out;
|
|
+ spin_unlock_irqrestore(bfqd->queue->queue_lock, *flags);
|
|
+ }
|
|
+
|
|
+ bfqd = NULL;
|
|
+out:
|
|
+ rcu_read_unlock();
|
|
+ return bfqd;
|
|
+}
|
|
+
|
|
+static inline void bfq_put_bfqd_unlock(struct bfq_data *bfqd,
|
|
+ unsigned long *flags)
|
|
+{
|
|
+ spin_unlock_irqrestore(bfqd->queue->queue_lock, *flags);
|
|
+}
|
|
+
|
|
+static void bfq_changed_ioprio(struct bfq_io_cq *bic);
|
|
+static void bfq_put_queue(struct bfq_queue *bfqq);
|
|
+static void bfq_dispatch_insert(struct request_queue *q, struct request *rq);
|
|
+static struct bfq_queue *bfq_get_queue(struct bfq_data *bfqd,
|
|
+ struct bfq_group *bfqg, int is_sync,
|
|
+ struct bfq_io_cq *bic, gfp_t gfp_mask);
|
|
+static void bfq_end_raising_async_queues(struct bfq_data *bfqd,
|
|
+ struct bfq_group *bfqg);
|
|
+static void bfq_put_async_queues(struct bfq_data *bfqd, struct bfq_group *bfqg);
|
|
+static void bfq_exit_bfqq(struct bfq_data *bfqd, struct bfq_queue *bfqq);
|
|
+#endif
|
|
--
|
|
1.8.5.2
|
|
|