2024-03-09 01:46:39 +00:00
|
|
|
import argparse
|
|
|
|
import json
|
2024-03-10 08:51:58 +00:00
|
|
|
import sys
|
2024-03-09 01:46:39 +00:00
|
|
|
from datetime import datetime
|
2024-03-10 08:51:58 +00:00
|
|
|
import numpy as np
|
|
|
|
import matplotlib.pyplot as plt
|
|
|
|
|
|
|
|
from geometry.Geometry import Geometry
|
2024-03-09 01:46:39 +00:00
|
|
|
|
|
|
|
def parse_posix_time(value):
|
|
|
|
try:
|
|
|
|
return int(value)
|
|
|
|
except ValueError:
|
|
|
|
raise argparse.ArgumentTypeError("Invalid POSIX time format")
|
|
|
|
|
|
|
|
def parse_command_line_arguments():
|
|
|
|
parser = argparse.ArgumentParser(description="Process command line arguments.")
|
|
|
|
|
2024-03-10 08:51:58 +00:00
|
|
|
parser.add_argument("json_file", type=str, help="Input JSON file path")
|
2024-03-09 01:46:39 +00:00
|
|
|
parser.add_argument("target_name", type=str, help="Target name")
|
|
|
|
parser.add_argument("--start_time", type=parse_posix_time, help="Optional start time in POSIX seconds")
|
|
|
|
parser.add_argument("--stop_time", type=parse_posix_time, help="Optional stop time in POSIX seconds")
|
|
|
|
|
|
|
|
return parser.parse_args()
|
|
|
|
|
2024-03-10 08:51:58 +00:00
|
|
|
def interpolate_positions(timestamp_vector, truth_timestamp, truth_position):
|
|
|
|
# Convert lists to NumPy arrays for easier manipulation
|
|
|
|
truth_timestamp = np.array(truth_timestamp)
|
|
|
|
truth_position = np.array(truth_position)
|
|
|
|
|
|
|
|
# Interpolate positions for the new timestamp vector
|
|
|
|
interpolated_positions = np.zeros((len(timestamp_vector), truth_position.shape[1]))
|
|
|
|
|
|
|
|
for i in range(truth_position.shape[1]):
|
|
|
|
interpolated_positions[:, i] = np.interp(timestamp_vector, truth_timestamp, truth_position[:, i])
|
|
|
|
|
|
|
|
return interpolated_positions
|
|
|
|
|
2024-03-09 01:46:39 +00:00
|
|
|
def main():
|
|
|
|
|
2024-03-10 08:51:58 +00:00
|
|
|
# input handling
|
2024-03-09 01:46:39 +00:00
|
|
|
args = parse_command_line_arguments()
|
2024-03-10 08:51:58 +00:00
|
|
|
json_data = []
|
|
|
|
with open(args.json_file, 'r') as json_file:
|
|
|
|
for line in json_file:
|
|
|
|
try:
|
|
|
|
json_object = json.loads(line)
|
|
|
|
json_data.append(json_object)
|
|
|
|
except json.JSONDecodeError:
|
|
|
|
print(f"Error decoding JSON from line: {line}")
|
|
|
|
json_data = [item for item in json_data if item]
|
2024-03-09 01:46:39 +00:00
|
|
|
start_time = args.start_time if args.start_time else None
|
|
|
|
stop_time = args.stop_time if args.stop_time else None
|
2024-03-10 08:51:58 +00:00
|
|
|
print("JSON String (Last Non-Empty Data):", json_data[-1])
|
2024-03-09 01:46:39 +00:00
|
|
|
print("Target Name:", args.target_name)
|
|
|
|
print("Start Time:", start_time)
|
|
|
|
print("Stop Time:", stop_time)
|
|
|
|
|
2024-03-10 08:51:58 +00:00
|
|
|
# get LLA coords from first radar
|
|
|
|
radar4_lla = [-34.91041, 138.68924, 210]
|
|
|
|
|
|
|
|
# extract data of interest
|
|
|
|
server = json_data[0][0]["server"]
|
|
|
|
timestamp = []
|
|
|
|
position = {}
|
|
|
|
truth_timestamp = []
|
|
|
|
truth_position = []
|
|
|
|
for item in json_data:
|
|
|
|
|
|
|
|
for method in item:
|
|
|
|
|
|
|
|
if method["server"] != server:
|
|
|
|
continue
|
|
|
|
|
|
|
|
if start_time and method["timestamp_event"]/1000 < start_time:
|
|
|
|
continue
|
|
|
|
|
|
|
|
if stop_time and method["timestamp_event"]/1000 > stop_time:
|
|
|
|
continue
|
|
|
|
|
|
|
|
# store target data
|
|
|
|
method_localisation = method["localisation"]
|
|
|
|
if method_localisation not in position:
|
|
|
|
position[method_localisation] = {}
|
|
|
|
position[method_localisation]["timestamp"] = []
|
|
|
|
position[method_localisation]["detections"] = []
|
|
|
|
else:
|
|
|
|
if args.target_name in method["detections_localised"] and \
|
|
|
|
len(method["detections_localised"][args.target_name]["points"]) > 0:
|
|
|
|
position[method_localisation]["timestamp"].append(
|
|
|
|
method["timestamp_event"]/1000)
|
|
|
|
position[method_localisation]["detections"].append(
|
|
|
|
method["detections_localised"][args.target_name]["points"][0])
|
|
|
|
# covert to ENU
|
|
|
|
x, y, z = Geometry.lla2ecef(
|
|
|
|
position[method_localisation]["detections"][-1][0],
|
|
|
|
position[method_localisation]["detections"][-1][1],
|
|
|
|
position[method_localisation]["detections"][-1][2])
|
|
|
|
x, y, z = Geometry.ecef2enu(x, y, z, radar4_lla[0],
|
|
|
|
radar4_lla[1], radar4_lla[2])
|
|
|
|
if not "detections_enu" in position[method_localisation]:
|
|
|
|
position[method_localisation]["detections_enu"] = []
|
|
|
|
position[method_localisation]["detections_enu"].append([x, y, z])
|
|
|
|
|
|
|
|
# store truth data
|
|
|
|
if args.target_name in method["truth"]:
|
|
|
|
truth_timestamp.append(
|
|
|
|
method["truth"][args.target_name]["timestamp"])
|
|
|
|
truth_position.append([
|
|
|
|
method["truth"][args.target_name]["lat"],
|
|
|
|
method["truth"][args.target_name]["lon"],
|
|
|
|
method["truth"][args.target_name]["alt"]])
|
|
|
|
|
|
|
|
timestamp.append(method["timestamp_event"])
|
|
|
|
|
|
|
|
# remove duplicates in truth data
|
|
|
|
timestamp = list(dict.fromkeys(timestamp))
|
|
|
|
timestamp = [element/1000 for element in timestamp]
|
|
|
|
truth_timestamp_unique = []
|
|
|
|
truth_position_unique = []
|
|
|
|
for t, p in zip(truth_timestamp, truth_position):
|
|
|
|
if t not in truth_timestamp_unique:
|
|
|
|
truth_timestamp_unique.append(t)
|
|
|
|
truth_position_unique.append(p)
|
|
|
|
truth_timestamp = truth_timestamp_unique
|
|
|
|
truth_position = truth_position_unique
|
|
|
|
|
|
|
|
# resample truth to event time (position already sampled correct)
|
|
|
|
for i in reversed(range(len(timestamp))):
|
|
|
|
if timestamp[i] < min(truth_timestamp) or timestamp[i] > max(truth_timestamp):
|
|
|
|
del timestamp[i]
|
|
|
|
truth_position_resampled = interpolate_positions(
|
|
|
|
timestamp, truth_timestamp, truth_position)
|
|
|
|
|
|
|
|
# convert truth to ENU
|
|
|
|
truth_position_resampled_enu = []
|
|
|
|
for pos in truth_position_resampled:
|
|
|
|
x, y, z = Geometry.lla2ecef(pos[0], pos[1], pos[2])
|
|
|
|
truth_position_resampled_enu.append(
|
|
|
|
Geometry.ecef2enu(x, y, z,
|
|
|
|
radar4_lla[0], radar4_lla[1], radar4_lla[2]))
|
|
|
|
|
|
|
|
# plot x, y, z
|
|
|
|
plt.figure(figsize=(5,7))
|
|
|
|
for i in range(3):
|
|
|
|
yaxis_truth = [pos[i] for pos in truth_position_resampled_enu]
|
|
|
|
plt.subplot(3, 1, i+1)
|
|
|
|
plt.plot(timestamp, yaxis_truth, label="ADS-B Truth")
|
|
|
|
for method in position:
|
|
|
|
for i in range(3):
|
|
|
|
yaxis_target = [pos[i] for pos in position[method]["detections_enu"]]
|
|
|
|
plt.subplot(3, 1, i+1)
|
|
|
|
plt.plot(position[method]["timestamp"], yaxis_target, 'x', label=method)
|
|
|
|
plt.xlabel('Timestamp')
|
|
|
|
if i == 0:
|
|
|
|
plt.ylabel('ENU X (m)')
|
|
|
|
if i == 1:
|
|
|
|
plt.ylabel('ENU Y (m)')
|
|
|
|
if i == 2:
|
|
|
|
plt.ylabel('ENU Z (m)')
|
|
|
|
|
|
|
|
plt.subplot(3, 1, 1)
|
|
|
|
plt.legend()
|
|
|
|
plt.tight_layout()
|
|
|
|
plt.savefig('save/plot_accuracy.png', bbox_inches='tight', pad_inches=0.01)
|
|
|
|
|
2024-03-09 01:46:39 +00:00
|
|
|
if __name__ == "__main__":
|
|
|
|
main()
|