- **Ellipse parametric** samples an ellipse (2D) at 0 altitude. Find intersections between 3 or more ellipses such that the distance to each point is under some threshold.
- **Ellipsoid parametric** samples an ellipsoid (3D). Find intersections between 3 or more ellipsoids such that the distance to each point is under some threshold.
- **Spherical intersection** a closed form solution which applies when a common receiver or transmitter are used. As described in [Two Methods for Target Localization in Multistatic Passive Radar](https://ieeexplore.ieee.org/document/6129656).
- The API server and HTML pages are served through a [Flask](http://github.com/pallets/flask) in Python.
- An initial API request with a new set of parameters (algorithms or radar nodes) will add these parameters to a common processing loop. This is so fair comparisons can be made between these parameters on the same input data.
- A set of API parameters will continue to be processed unless there is no API call in some specified time - see *main.py* to update. This allows the latest geolocation to be provided, rather than adding to the processing loop and waiting for the update from the next time increment.
## Future Work
- Implement an association algorithm that is not reliant on ADS-B truth.
- Choose to use detection or track data from each radar.
- Long term plots to show metrics such as 2D location accuracy to ADS-B, number of aircraft tracked, etc.