mirror of
https://github.com/30hours/3lips.git
synced 2024-11-18 12:33:58 +00:00
Lots of progress forgot
This commit is contained in:
parent
33cc3574ee
commit
21c2d549f3
5 changed files with 112 additions and 48 deletions
|
@ -16,7 +16,7 @@ function event_radar() {
|
|||
return;
|
||||
}
|
||||
|
||||
removeEntitiesOlderThanAndFade("detection", 10, 0.5);
|
||||
removeEntitiesOlderThanAndFade("detection", 90, 0.5);
|
||||
|
||||
for (const key in data["detections_localised"]) {
|
||||
if (data["detections_localised"].hasOwnProperty(key)) {
|
||||
|
|
|
@ -101,7 +101,7 @@ class AdsbAssociator:
|
|||
for i in range(len(radar_detections['delay'])):
|
||||
delta_t = (timestamp - radar_detections['timestamp'])/1000
|
||||
delay = (1000*radar_detections['delay'][i] + \
|
||||
(radar_detections['doppler'][i]*(299792458/fc))*delta_t)/1000
|
||||
(-radar_detections['doppler'][i]*(299792458/fc))*delta_t)/1000
|
||||
radar_detections['delay'][i] = delay
|
||||
|
||||
# distance from aircraft to all detections
|
||||
|
|
|
@ -27,7 +27,7 @@ class EllipseParametric:
|
|||
"""
|
||||
|
||||
self.ellipsoids = []
|
||||
self.nSamples = 80
|
||||
self.nSamples = 150
|
||||
self.threshold = 800
|
||||
|
||||
def process(self, assoc_detections, radar_data):
|
||||
|
@ -100,12 +100,40 @@ class EllipseParametric:
|
|||
# if valid_point:
|
||||
# samples_intersect.append(point1)
|
||||
|
||||
# average_point = self.average_points(samples_intersect)
|
||||
# samples_intersect = [average_point]
|
||||
|
||||
min_distance = self.threshold
|
||||
min_point1 = None
|
||||
for point1 in target_samples[target][radar_keys[0]]:
|
||||
valid_point = True
|
||||
distance_from_point1 = [self.threshold]*(len(radar_keys)-1)
|
||||
# loop over each other list
|
||||
for i in range(1, len(radar_keys)):
|
||||
if i > 1 and distance_from_point1[i-1] > self.threshold:
|
||||
valid_point = False
|
||||
break
|
||||
# loop points in other list
|
||||
for point2 in target_samples[target][radar_keys[i]]:
|
||||
distance = Geometry.distance_ecef(point1, point2)
|
||||
if distance < distance_from_point1[i-1]:
|
||||
distance_from_point1[i-1] = distance
|
||||
norm = math.sqrt(sum(x ** 2 for x in distance_from_point1))
|
||||
if valid_point and norm < min_distance:
|
||||
min_distance = norm
|
||||
min_point1 = point1
|
||||
|
||||
if min_point1 is not None:
|
||||
samples_intersect.append(min_point1)
|
||||
else:
|
||||
return output
|
||||
|
||||
# find closest points bruteforce
|
||||
points = list(target_samples[target].values())
|
||||
result_points, result_distance = self.closest_points_bruteforce(points)
|
||||
average_point = self.average_points(result_points)
|
||||
if result_distance < self.threshold:
|
||||
samples_intersect.append(average_point)
|
||||
# points = list(target_samples[target].values())
|
||||
# result_points, result_distance = self.closest_points_bruteforce(points)
|
||||
# average_point = self.average_points(result_points)
|
||||
# if result_distance < self.threshold:
|
||||
# samples_intersect.append(average_point)
|
||||
|
||||
# remove duplicates and convert to LLA
|
||||
output[target] = {}
|
||||
|
@ -166,33 +194,33 @@ class EllipseParametric:
|
|||
def euclidean_distance(self, point1, point2):
|
||||
return np.linalg.norm(np.array(point1) - np.array(point2))
|
||||
|
||||
# def closest_points_bruteforce(self, point_sets):
|
||||
# closest_distance = float('inf')
|
||||
# closest_points = None
|
||||
|
||||
# for combination in itertools.product(*point_sets):
|
||||
# distance = sum(self.euclidean_distance(combination[i], combination[i+1]) for i in range(len(point_sets)-1))
|
||||
# if distance < closest_distance:
|
||||
# closest_distance = distance
|
||||
# closest_points = combination
|
||||
|
||||
# return closest_points, closest_distance
|
||||
|
||||
def closest_points_bruteforce(point_sets):
|
||||
def closest_points_bruteforce(self, point_sets):
|
||||
closest_distance = float('inf')
|
||||
closest_points = None
|
||||
|
||||
def calculate_distance(combination):
|
||||
nonlocal closest_distance, closest_points
|
||||
distance = sum(euclidean_distance(combination[i], combination[i+1]) for i in range(len(point_sets)-1))
|
||||
for combination in itertools.product(*point_sets):
|
||||
distance = sum(self.euclidean_distance(combination[i], combination[i+1]) for i in range(len(point_sets)-1))
|
||||
if distance < closest_distance:
|
||||
closest_distance = distance
|
||||
closest_points = combination
|
||||
|
||||
with ThreadPoolExecutor() as executor:
|
||||
executor.map(calculate_distance, itertools.product(*point_sets))
|
||||
|
||||
return closest_points, closest_distance
|
||||
|
||||
# def closest_points_bruteforce(point_sets):
|
||||
# closest_distance = float('inf')
|
||||
# closest_points = None
|
||||
|
||||
# def calculate_distance(combination):
|
||||
# nonlocal closest_distance, closest_points
|
||||
# distance = sum(euclidean_distance(combination[i], combination[i+1]) for i in range(len(point_sets)-1))
|
||||
# if distance < closest_distance:
|
||||
# closest_distance = distance
|
||||
# closest_points = combination
|
||||
|
||||
# with ThreadPoolExecutor() as executor:
|
||||
# executor.map(calculate_distance, itertools.product(*point_sets))
|
||||
|
||||
# return closest_points, closest_distance
|
||||
|
||||
def average_points(self, points):
|
||||
return [sum(coord) / len(coord) for coord in zip(*points)]
|
|
@ -46,9 +46,11 @@ class SphericalIntersection:
|
|||
print(radar)
|
||||
print(radar_data[radar]["config"])
|
||||
reference_lla = [
|
||||
radar_data[radar]["config"]["location"][self.type]["latitude"],
|
||||
radar_data[radar]["config"]["location"][self.type]["longitude"],
|
||||
radar_data[radar]["config"]["location"][self.type]["altitude"]]
|
||||
radar_data[radar]["config"]["location"][self.not_type]["latitude"],
|
||||
radar_data[radar]["config"]["location"][self.not_type]["longitude"],
|
||||
radar_data[radar]["config"]["location"][self.not_type]["altitude"]]
|
||||
reference_ecef = Geometry.lla2ecef(reference_lla[0],
|
||||
reference_lla[1], reference_lla[2])
|
||||
|
||||
for target in assoc_detections:
|
||||
|
||||
|
@ -58,7 +60,7 @@ class SphericalIntersection:
|
|||
S = np.zeros((nDetections, 3))
|
||||
|
||||
# additional vector
|
||||
z = np.zeros((nDetections, 1))
|
||||
z_vec = np.zeros((nDetections, 1))
|
||||
|
||||
# bistatic range vector r
|
||||
r = np.zeros((nDetections, 1))
|
||||
|
@ -78,38 +80,68 @@ class SphericalIntersection:
|
|||
S[index, :] = [x_enu, y_enu, z_enu]
|
||||
|
||||
# add to z
|
||||
x2, y2, z2 = Geometry.lla2ecef(
|
||||
config['location'][self.not_type]['latitude'],
|
||||
config['location'][self.not_type]['longitude'],
|
||||
config['location'][self.not_type]['altitude'])
|
||||
distance = Geometry.distance_ecef([x, y, z], [x2, y2, z2])
|
||||
z[index, :] = (x**2 + y**2 + z**2 - distance**2)/2
|
||||
distance = Geometry.distance_ecef(
|
||||
[x, y, z], [reference_ecef[0],
|
||||
reference_ecef[1], reference_ecef[2]])
|
||||
R_i = (radar["delay"]*1000) + distance
|
||||
# print('R_i', flush=True)
|
||||
# print(R_i, flush=True)
|
||||
# print(radar["delay"]*1000, flush=True)
|
||||
z_vec[index, :] = (x_enu**2 + y_enu**2 + z_enu**2 - R_i**2)/2
|
||||
|
||||
# add to r
|
||||
r[index, :] = radar["delay"] + distance
|
||||
r[index, :] = R_i
|
||||
|
||||
# print first to check
|
||||
print('start printing SX:', flush=True)
|
||||
print(S, flush=True)
|
||||
print(S.size, flush=True)
|
||||
print(z_vec, flush=True)
|
||||
print(z_vec.size, flush=True)
|
||||
print(r, flush=True)
|
||||
print(r.size, flush=True)
|
||||
|
||||
|
||||
# now compute matrix math
|
||||
S_star = np.linalg.inv(S.T @ S) @ S.T
|
||||
a = S_star @ z
|
||||
a = S_star @ z_vec
|
||||
b = S_star @ r
|
||||
R_t = [0, 0]
|
||||
R_t[0] = (-2*(a.T @ b) - np.sqrt(4*(a.T @ b)**2 - \
|
||||
4*((b.T @ b)-1)*(a.T @ a)))/2*((b.T @ b)-1)
|
||||
R_t[1] = (-2*(a.T @ b) + np.sqrt(4*(a.T @ b)**2 - \
|
||||
4*((b.T @ b)-1)*(a.T @ a)))/2*((b.T @ b)-1)
|
||||
discrimninant = 4*((a.T @ b)**2) - 4*((b.T @ b) - 1)*(a.T @ a)
|
||||
if discriminant >= 0:
|
||||
R_t[0] = (-2*(a.T @ b) - np.sqrt(discriminant))/(2*((b.T @ b)-1))
|
||||
R_t[1] = (-2*(a.T @ b) + np.sqrt(discriminant))/(2*((b.T @ b)-1))
|
||||
else:
|
||||
R_t[0] = np.real((-2*(a.T @ b) - np.sqrt(discriminant + 0j))/(2*((b.T @ b)-1)))
|
||||
R_t[1] = np.real((-2*(a.T @ b) + np.sqrt(discriminant + 0j))/(2*((b.T @ b)-1)))
|
||||
x_t = [0, 0]
|
||||
x_t[0] = S_star @ (z + r*R_t[0])
|
||||
x_t[1] = S_star @ (z + r*R_t[1])
|
||||
x_t[0] = S_star @ (z_vec + r*R_t[0])
|
||||
x_t[1] = S_star @ (z_vec + r*R_t[1])
|
||||
|
||||
# use solution with highest altitude
|
||||
output[target] = {}
|
||||
output[target]["points"] = []
|
||||
x_t_list = [np.squeeze(arr).tolist() for arr in x_t]
|
||||
print('x_t in ENU?')
|
||||
print(x_t_list)
|
||||
|
||||
# convert points back to LLA
|
||||
for index in range(len(x_t_list)):
|
||||
x, y, z = Geometry.enu2ecef(x_t_list[index][0],
|
||||
x_t_list[index][1],
|
||||
x_t_list[index][2],
|
||||
reference_lla[0],
|
||||
reference_lla[1],
|
||||
reference_lla[2])
|
||||
lat, lon, alt = Geometry.ecef2lla(x, y, z)
|
||||
x_t_list[index] = [lat, lon, alt]
|
||||
|
||||
if x_t[0][2] > x_t[1][2]:
|
||||
output[target]["points"].append(x_t[0])
|
||||
output[target]["points"].append(x_t_list[0])
|
||||
else:
|
||||
output[target]["points"].append(x_t[1])
|
||||
output[target]["points"].append(x_t_list[1])
|
||||
|
||||
print('SX points:')
|
||||
print(x_t)
|
||||
print(x_t_list)
|
||||
|
||||
return output
|
|
@ -81,6 +81,10 @@ def main():
|
|||
|
||||
# store target data
|
||||
method_localisation = method["localisation"]
|
||||
|
||||
if method_localisation == "spherical-intersection":
|
||||
continue
|
||||
|
||||
if method_localisation not in position:
|
||||
position[method_localisation] = {}
|
||||
position[method_localisation]["timestamp"] = []
|
||||
|
|
Loading…
Reference in a new issue