Add extrap Delay

This commit is contained in:
30hours 2024-03-11 05:57:37 +00:00
parent 52a537f0c4
commit 33cc3574ee
4 changed files with 77 additions and 22 deletions

View file

@ -62,7 +62,7 @@ class AdsbAssociator:
# associate radar and truth
assoc_detections_radar.append(self.process_1_radar(
radar, radar_data[radar]["detection"],
adsb_detections, timestamp))
adsb_detections, timestamp, radar_data[radar]["config"]["capture"]["fc"]))
# associate detections between radars
output = {}
@ -76,7 +76,7 @@ class AdsbAssociator:
return output
def process_1_radar(self, radar, radar_detections, adsb_detections, timestamp):
def process_1_radar(self, radar, radar_detections, adsb_detections, timestamp, fc):
"""
@brief Associate detections between 1 radar/truth pair.
@ -96,10 +96,13 @@ class AdsbAssociator:
if 'delay' in adsb_detections[aircraft] and len(radar_detections['delay']) >= 1:
# extrapolate delay/Doppler to current time
# delta_t = (timestamp - adsb_detections[aircraft]['timestamp'])/1000
# delay = 1000*adsb_detections[aircraft]['delay'] + \
# extrapolate delay to current time
# TODO extrapolate Doppler too
for i in range(len(radar_detections['delay'])):
delta_t = (timestamp - radar_detections['timestamp'])/1000
delay = (1000*radar_detections['delay'][i] + \
(radar_detections['doppler'][i]*(299792458/fc))*delta_t)/1000
radar_detections['delay'][i] = delay
# distance from aircraft to all detections
closest_point, distance = self.closest_point(

View file

@ -7,6 +7,9 @@ from data.Ellipsoid import Ellipsoid
from algorithm.geometry.Geometry import Geometry
import numpy as np
import math
import itertools
from concurrent.futures import ThreadPoolExecutor
class EllipseParametric:
@ -24,7 +27,7 @@ class EllipseParametric:
"""
self.ellipsoids = []
self.nSamples = 150
self.nSamples = 80
self.threshold = 800
def process(self, assoc_detections, radar_data):
@ -85,17 +88,24 @@ class EllipseParametric:
samples_intersect = []
# loop points in master ellipsoid
for point1 in target_samples[target][radar_keys[0]]:
valid_point = True
# loop over each other list
for i in range(1, len(radar_keys)):
# loop points in other list
if not any(Geometry.distance_ecef(point1, point2) < self.threshold
for point2 in target_samples[target][radar_keys[i]]):
valid_point = False
break
if valid_point:
samples_intersect.append(point1)
# for point1 in target_samples[target][radar_keys[0]]:
# valid_point = True
# # loop over each other list
# for i in range(1, len(radar_keys)):
# # loop points in other list
# if not any(Geometry.distance_ecef(point1, point2) < self.threshold
# for point2 in target_samples[target][radar_keys[i]]):
# valid_point = False
# break
# if valid_point:
# samples_intersect.append(point1)
# find closest points bruteforce
points = list(target_samples[target].values())
result_points, result_distance = self.closest_points_bruteforce(points)
average_point = self.average_points(result_points)
if result_distance < self.threshold:
samples_intersect.append(average_point)
# remove duplicates and convert to LLA
output[target] = {}
@ -152,3 +162,37 @@ class EllipseParametric:
output.append([x, y, z])
return output
def euclidean_distance(self, point1, point2):
return np.linalg.norm(np.array(point1) - np.array(point2))
# def closest_points_bruteforce(self, point_sets):
# closest_distance = float('inf')
# closest_points = None
# for combination in itertools.product(*point_sets):
# distance = sum(self.euclidean_distance(combination[i], combination[i+1]) for i in range(len(point_sets)-1))
# if distance < closest_distance:
# closest_distance = distance
# closest_points = combination
# return closest_points, closest_distance
def closest_points_bruteforce(point_sets):
closest_distance = float('inf')
closest_points = None
def calculate_distance(combination):
nonlocal closest_distance, closest_points
distance = sum(euclidean_distance(combination[i], combination[i+1]) for i in range(len(point_sets)-1))
if distance < closest_distance:
closest_distance = distance
closest_points = combination
with ThreadPoolExecutor() as executor:
executor.map(calculate_distance, itertools.product(*point_sets))
return closest_points, closest_distance
def average_points(self, points):
return [sum(coord) / len(coord) for coord in zip(*points)]

View file

@ -42,10 +42,13 @@ class SphericalIntersection:
# pick first radar rx node as ENU reference (arbitrary)
radar = next(iter(radar_data))
print(radar_data)
print(radar)
print(radar_data[radar]["config"])
reference_lla = [
radar_data[radar]["config"][self.type]["latitude"],
radar_data[radar]["config"][self.type]["longitude"],
radar_data[radar]["config"][self.type]["altitude"]]
radar_data[radar]["config"]["location"][self.type]["latitude"],
radar_data[radar]["config"]["location"][self.type]["longitude"],
radar_data[radar]["config"]["location"][self.type]["altitude"]]
for target in assoc_detections:

View file

@ -38,6 +38,8 @@ saveFile = '/app/save/' + str(int(time.time())) + '.ndjson'
async def event():
start_time = time.time()
global api, save
timestamp = int(time.time()*1000)
api_event = copy.copy(api)
@ -170,12 +172,15 @@ async def event():
points[i] = ([round(lat, 3), round(lon, 3), 0])
ellipsoids[radar["radar"]] = points
stop_time = time.time()
# output data to API
item["timestamp_event"] = timestamp
item["truth"] = truth_adsb[item["adsb"]]
item["detections_associated"] = associated_dets
item["detections_localised"] = localised_dets
item["ellipsoids"] = ellipsoids
item["time"] = stop_time - start_time
# delete old API requests
api_event = [