mirror of
https://github.com/30hours/3lips.git
synced 2024-11-08 12:25:42 +00:00
Plot associate script working
This commit is contained in:
parent
6e1a4ec5d0
commit
52a537f0c4
4 changed files with 214 additions and 31 deletions
|
@ -3,7 +3,6 @@
|
||||||
@author 30hours
|
@author 30hours
|
||||||
"""
|
"""
|
||||||
|
|
||||||
from data.Ellipsoid import Ellipsoid
|
|
||||||
from algorithm.geometry.Geometry import Geometry
|
from algorithm.geometry.Geometry import Geometry
|
||||||
import numpy as np
|
import numpy as np
|
||||||
import math
|
import math
|
||||||
|
@ -23,6 +22,9 @@ class SphericalIntersection:
|
||||||
@brief Constructor for the SphericalIntersection class.
|
@brief Constructor for the SphericalIntersection class.
|
||||||
"""
|
"""
|
||||||
|
|
||||||
|
self.type = "rx"
|
||||||
|
self.not_type = "rx" if self.type == "tx" else "tx"
|
||||||
|
|
||||||
def process(self, assoc_detections, radar_data):
|
def process(self, assoc_detections, radar_data):
|
||||||
|
|
||||||
"""
|
"""
|
||||||
|
@ -38,10 +40,73 @@ class SphericalIntersection:
|
||||||
if not assoc_detections:
|
if not assoc_detections:
|
||||||
return output
|
return output
|
||||||
|
|
||||||
|
# pick first radar rx node as ENU reference (arbitrary)
|
||||||
|
radar = next(iter(radar_data))
|
||||||
|
reference_lla = [
|
||||||
|
radar_data[radar]["config"][self.type]["latitude"],
|
||||||
|
radar_data[radar]["config"][self.type]["longitude"],
|
||||||
|
radar_data[radar]["config"][self.type]["altitude"]]
|
||||||
|
|
||||||
for target in assoc_detections:
|
for target in assoc_detections:
|
||||||
|
|
||||||
print(assoc_detections)
|
nDetections = len(assoc_detections[target])
|
||||||
#nDetections = assoc_detections
|
|
||||||
#S = np.zeros()
|
|
||||||
|
|
||||||
|
# matrix of positions of non-constant node
|
||||||
|
S = np.zeros((nDetections, 3))
|
||||||
|
|
||||||
|
# additional vector
|
||||||
|
z = np.zeros((nDetections, 1))
|
||||||
|
|
||||||
|
# bistatic range vector r
|
||||||
|
r = np.zeros((nDetections, 1))
|
||||||
|
|
||||||
|
for index, radar in enumerate(assoc_detections[target]):
|
||||||
|
|
||||||
|
# convert position to ENU and add to S
|
||||||
|
config = radar_data[radar["radar"]]["config"]
|
||||||
|
x, y, z = Geometry.lla2ecef(
|
||||||
|
config['location'][self.type]['latitude'],
|
||||||
|
config['location'][self.type]['longitude'],
|
||||||
|
config['location'][self.type]['altitude'])
|
||||||
|
x_enu, y_enu, z_enu = Geometry.ecef2enu(x, y, z,
|
||||||
|
reference_lla[0],
|
||||||
|
reference_lla[1],
|
||||||
|
reference_lla[2])
|
||||||
|
S[index, :] = [x_enu, y_enu, z_enu]
|
||||||
|
|
||||||
|
# add to z
|
||||||
|
x2, y2, z2 = Geometry.lla2ecef(
|
||||||
|
config['location'][self.not_type]['latitude'],
|
||||||
|
config['location'][self.not_type]['longitude'],
|
||||||
|
config['location'][self.not_type]['altitude'])
|
||||||
|
distance = Geometry.distance_ecef([x, y, z], [x2, y2, z2])
|
||||||
|
z[index, :] = (x**2 + y**2 + z**2 - distance**2)/2
|
||||||
|
|
||||||
|
# add to r
|
||||||
|
r[index, :] = radar["delay"] + distance
|
||||||
|
|
||||||
|
# now compute matrix math
|
||||||
|
S_star = np.linalg.inv(S.T @ S) @ S.T
|
||||||
|
a = S_star @ z
|
||||||
|
b = S_star @ r
|
||||||
|
R_t = [0, 0]
|
||||||
|
R_t[0] = (-2*(a.T @ b) - np.sqrt(4*(a.T @ b)**2 - \
|
||||||
|
4*((b.T @ b)-1)*(a.T @ a)))/2*((b.T @ b)-1)
|
||||||
|
R_t[1] = (-2*(a.T @ b) + np.sqrt(4*(a.T @ b)**2 - \
|
||||||
|
4*((b.T @ b)-1)*(a.T @ a)))/2*((b.T @ b)-1)
|
||||||
|
x_t = [0, 0]
|
||||||
|
x_t[0] = S_star @ (z + r*R_t[0])
|
||||||
|
x_t[1] = S_star @ (z + r*R_t[1])
|
||||||
|
|
||||||
|
# use solution with highest altitude
|
||||||
|
output[target] = {}
|
||||||
|
output[target]["points"] = []
|
||||||
|
if x_t[0][2] > x_t[1][2]:
|
||||||
|
output[target]["points"].append(x_t[0])
|
||||||
|
else:
|
||||||
|
output[target]["points"].append(x_t[1])
|
||||||
|
|
||||||
|
print('SX points:')
|
||||||
|
print(x_t)
|
||||||
|
|
||||||
return output
|
return output
|
|
@ -141,32 +141,34 @@ async def event():
|
||||||
|
|
||||||
# show ellipsoids of associated detections for 1 target
|
# show ellipsoids of associated detections for 1 target
|
||||||
ellipsoids = {}
|
ellipsoids = {}
|
||||||
if associated_dets_2_radars:
|
if item["localisation"] == "ellipse-parametric" or \
|
||||||
# get first target key
|
item["localisation"] == "ellipsoid-parametric":
|
||||||
key = next(iter(associated_dets_2_radars))
|
if associated_dets_2_radars:
|
||||||
ellipsoid_radars = []
|
# get first target key
|
||||||
for radar in associated_dets_2_radars[key]:
|
key = next(iter(associated_dets_2_radars))
|
||||||
ellipsoid_radars.append(radar["radar"])
|
ellipsoid_radars = []
|
||||||
x_tx, y_tx, z_tx = Geometry.lla2ecef(
|
for radar in associated_dets_2_radars[key]:
|
||||||
radar_dict_item[radar["radar"]]["config"]['location']['tx']['latitude'],
|
ellipsoid_radars.append(radar["radar"])
|
||||||
radar_dict_item[radar["radar"]]["config"]['location']['tx']['longitude'],
|
x_tx, y_tx, z_tx = Geometry.lla2ecef(
|
||||||
radar_dict_item[radar["radar"]]["config"]['location']['tx']['altitude']
|
radar_dict_item[radar["radar"]]["config"]['location']['tx']['latitude'],
|
||||||
)
|
radar_dict_item[radar["radar"]]["config"]['location']['tx']['longitude'],
|
||||||
x_rx, y_rx, z_rx = Geometry.lla2ecef(
|
radar_dict_item[radar["radar"]]["config"]['location']['tx']['altitude']
|
||||||
radar_dict_item[radar["radar"]]["config"]['location']['rx']['latitude'],
|
)
|
||||||
radar_dict_item[radar["radar"]]["config"]['location']['rx']['longitude'],
|
x_rx, y_rx, z_rx = Geometry.lla2ecef(
|
||||||
radar_dict_item[radar["radar"]]["config"]['location']['rx']['altitude']
|
radar_dict_item[radar["radar"]]["config"]['location']['rx']['latitude'],
|
||||||
)
|
radar_dict_item[radar["radar"]]["config"]['location']['rx']['longitude'],
|
||||||
ellipsoid = Ellipsoid(
|
radar_dict_item[radar["radar"]]["config"]['location']['rx']['altitude']
|
||||||
[x_tx, y_tx, z_tx],
|
)
|
||||||
[x_rx, y_rx, z_rx],
|
ellipsoid = Ellipsoid(
|
||||||
radar["radar"]
|
[x_tx, y_tx, z_tx],
|
||||||
)
|
[x_rx, y_rx, z_rx],
|
||||||
points = localisation.sample(ellipsoid, radar["delay"]*1000, 50)
|
radar["radar"]
|
||||||
for i in range(len(points)):
|
)
|
||||||
lat, lon, alt = Geometry.ecef2lla(points[i][0], points[i][1], points[i][2])
|
points = localisation.sample(ellipsoid, radar["delay"]*1000, 50)
|
||||||
points[i] = ([round(lat, 3), round(lon, 3), 0])
|
for i in range(len(points)):
|
||||||
ellipsoids[radar["radar"]] = points
|
lat, lon, alt = Geometry.ecef2lla(points[i][0], points[i][1], points[i][2])
|
||||||
|
points[i] = ([round(lat, 3), round(lon, 3), 0])
|
||||||
|
ellipsoids[radar["radar"]] = points
|
||||||
|
|
||||||
# output data to API
|
# output data to API
|
||||||
item["timestamp_event"] = timestamp
|
item["timestamp_event"] = timestamp
|
||||||
|
|
|
@ -63,6 +63,7 @@ def main():
|
||||||
server = json_data[0][0]["server"]
|
server = json_data[0][0]["server"]
|
||||||
timestamp = []
|
timestamp = []
|
||||||
position = {}
|
position = {}
|
||||||
|
detected = {}
|
||||||
truth_timestamp = []
|
truth_timestamp = []
|
||||||
truth_position = []
|
truth_position = []
|
||||||
for item in json_data:
|
for item in json_data:
|
||||||
|
@ -162,7 +163,8 @@ def main():
|
||||||
plt.subplot(3, 1, 1)
|
plt.subplot(3, 1, 1)
|
||||||
plt.legend()
|
plt.legend()
|
||||||
plt.tight_layout()
|
plt.tight_layout()
|
||||||
plt.savefig('save/plot_accuracy.png', bbox_inches='tight', pad_inches=0.01)
|
filename = 'plot_accuracy_' + args.target_name + '.png'
|
||||||
|
plt.savefig('save/' + filename, bbox_inches='tight', pad_inches=0.01)
|
||||||
|
|
||||||
if __name__ == "__main__":
|
if __name__ == "__main__":
|
||||||
main()
|
main()
|
||||||
|
|
114
script/plot_associate.py
Normal file
114
script/plot_associate.py
Normal file
|
@ -0,0 +1,114 @@
|
||||||
|
import argparse
|
||||||
|
import json
|
||||||
|
import sys
|
||||||
|
from datetime import datetime
|
||||||
|
import numpy as np
|
||||||
|
import matplotlib.pyplot as plt
|
||||||
|
|
||||||
|
from geometry.Geometry import Geometry
|
||||||
|
|
||||||
|
def parse_posix_time(value):
|
||||||
|
try:
|
||||||
|
return int(value)
|
||||||
|
except ValueError:
|
||||||
|
raise argparse.ArgumentTypeError("Invalid POSIX time format")
|
||||||
|
|
||||||
|
def parse_command_line_arguments():
|
||||||
|
parser = argparse.ArgumentParser(description="Process command line arguments.")
|
||||||
|
|
||||||
|
parser.add_argument("json_file", type=str, help="Input JSON file path")
|
||||||
|
parser.add_argument("target_name", type=str, help="Target name")
|
||||||
|
parser.add_argument("--start_time", type=parse_posix_time, help="Optional start time in POSIX seconds")
|
||||||
|
parser.add_argument("--stop_time", type=parse_posix_time, help="Optional stop time in POSIX seconds")
|
||||||
|
|
||||||
|
return parser.parse_args()
|
||||||
|
|
||||||
|
def main():
|
||||||
|
|
||||||
|
# input handling
|
||||||
|
args = parse_command_line_arguments()
|
||||||
|
json_data = []
|
||||||
|
with open(args.json_file, 'r') as json_file:
|
||||||
|
for line in json_file:
|
||||||
|
try:
|
||||||
|
json_object = json.loads(line)
|
||||||
|
json_data.append(json_object)
|
||||||
|
except json.JSONDecodeError:
|
||||||
|
print(f"Error decoding JSON from line: {line}")
|
||||||
|
json_data = [item for item in json_data if item]
|
||||||
|
start_time = args.start_time if args.start_time else None
|
||||||
|
stop_time = args.stop_time if args.stop_time else None
|
||||||
|
print("JSON String (Last Non-Empty Data):", json_data[-1])
|
||||||
|
print("Target Name:", args.target_name)
|
||||||
|
print("Start Time:", start_time)
|
||||||
|
print("Stop Time:", stop_time)
|
||||||
|
|
||||||
|
# extract data of interest
|
||||||
|
server = json_data[0][0]["server"]
|
||||||
|
timestamp = []
|
||||||
|
associated = {}
|
||||||
|
for item in json_data:
|
||||||
|
|
||||||
|
first_result = item[0]
|
||||||
|
|
||||||
|
if first_result["server"] != server:
|
||||||
|
print('error')
|
||||||
|
sys.exit(-1)
|
||||||
|
|
||||||
|
if start_time and first_result["timestamp_event"]/1000 < start_time:
|
||||||
|
continue
|
||||||
|
|
||||||
|
if stop_time and first_result["timestamp_event"]/1000 > stop_time:
|
||||||
|
continue
|
||||||
|
|
||||||
|
# store association data
|
||||||
|
if "detections_associated" in first_result:
|
||||||
|
|
||||||
|
if args.target_name in first_result["detections_associated"]:
|
||||||
|
|
||||||
|
for radar in first_result["detections_associated"][args.target_name]:
|
||||||
|
|
||||||
|
if radar['radar'] not in associated:
|
||||||
|
associated[radar['radar']] = []
|
||||||
|
else:
|
||||||
|
associated[radar['radar']].append(first_result["timestamp_event"])
|
||||||
|
|
||||||
|
timestamp.append(first_result["timestamp_event"])
|
||||||
|
|
||||||
|
# data massaging
|
||||||
|
timestamp = list(dict.fromkeys(timestamp))
|
||||||
|
associated = dict(sorted(associated.items(), key=lambda x: x[0]))
|
||||||
|
radars = list(associated.keys())
|
||||||
|
radar_label = []
|
||||||
|
for radar in radars:
|
||||||
|
radar_label.append(radar.split('.', 1)[0])
|
||||||
|
|
||||||
|
# get start and stop times from data
|
||||||
|
start_time = min(min(arr) for arr in associated.values())
|
||||||
|
stop_time = max(max(arr) for arr in associated.values())
|
||||||
|
timestamp = [value for value in timestamp if value >= start_time]
|
||||||
|
timestamp = [value for value in timestamp if value <= stop_time]
|
||||||
|
|
||||||
|
print(associated)
|
||||||
|
|
||||||
|
data = []
|
||||||
|
for radar in radars:
|
||||||
|
result = [1 if value in associated[radar] else 0 for value in timestamp]
|
||||||
|
data.append(result)
|
||||||
|
|
||||||
|
print(data)
|
||||||
|
|
||||||
|
# plot x, y, z
|
||||||
|
plt.figure(figsize=(8,4))
|
||||||
|
img = plt.imshow(data, aspect='auto', interpolation='none')
|
||||||
|
y_extent = plt.gca().get_ylim()
|
||||||
|
img.set_extent([start_time/1000, stop_time/1000, y_extent[1], y_extent[0]])
|
||||||
|
plt.yticks(np.arange(len(radar_label)), radar_label, rotation='vertical')
|
||||||
|
plt.xlabel('Timestamp')
|
||||||
|
plt.ylabel('Radar')
|
||||||
|
plt.tight_layout()
|
||||||
|
filename = 'plot_associate_' + args.target_name + '.png'
|
||||||
|
plt.savefig('save/' + filename, bbox_inches='tight', pad_inches=0.01)
|
||||||
|
|
||||||
|
if __name__ == "__main__":
|
||||||
|
main()
|
Loading…
Reference in a new issue