3lips/script/plot_accuracy.py
2024-03-14 03:40:06 +00:00

216 lines
8 KiB
Python

import argparse
import json
import sys
from datetime import datetime
import numpy as np
import matplotlib.pyplot as plt
from geometry.Geometry import Geometry
def parse_posix_time(value):
try:
return int(value)
except ValueError:
raise argparse.ArgumentTypeError("Invalid POSIX time format")
def parse_command_line_arguments():
parser = argparse.ArgumentParser(description="Process command line arguments.")
parser.add_argument("json_file", type=str, help="Input JSON file path")
parser.add_argument("target_name", type=str, help="Target name")
parser.add_argument("--start_time", type=parse_posix_time, help="Optional start time in POSIX seconds")
parser.add_argument("--stop_time", type=parse_posix_time, help="Optional stop time in POSIX seconds")
return parser.parse_args()
def interpolate_positions(timestamp_vector, truth_timestamp, truth_position):
# Convert lists to NumPy arrays for easier manipulation
truth_timestamp = np.array(truth_timestamp)
truth_position = np.array(truth_position)
# Interpolate positions for the new timestamp vector
interpolated_positions = np.zeros((len(timestamp_vector), truth_position.shape[1]))
for i in range(truth_position.shape[1]):
interpolated_positions[:, i] = np.interp(timestamp_vector, truth_timestamp, truth_position[:, i])
return interpolated_positions
def calculate_rmse(actual_values, predicted_values):
# Convert lists to NumPy arrays for easy calculations
actual_values = np.array(actual_values)
predicted_values = np.array(predicted_values)
# Calculate the squared differences
squared_diff = (actual_values - predicted_values) ** 2
# Calculate the mean squared error
mean_squared_error = np.mean(squared_diff)
# Calculate the root mean squared error
rmse = np.sqrt(mean_squared_error)
return rmse
def main():
# input handling
args = parse_command_line_arguments()
json_data = []
with open(args.json_file, 'r') as json_file:
for line in json_file:
try:
json_object = json.loads(line)
json_data.append(json_object)
except json.JSONDecodeError:
print(f"Error decoding JSON from line: {line}")
json_data = [item for item in json_data if item]
start_time = args.start_time if args.start_time else None
stop_time = args.stop_time if args.stop_time else None
print("JSON String (Last Non-Empty Data):", json_data[-1])
print("Target Name:", args.target_name)
print("Start Time:", start_time)
print("Stop Time:", stop_time)
# get LLA coords from first radar
radar4_lla = [-34.91041, 138.68924, 210]
# extract data of interest
server = json_data[0][0]["server"]
timestamp = []
position = {}
detected = {}
truth_timestamp = []
truth_position = []
for item in json_data:
for method in item:
if method["server"] != server:
continue
if start_time and method["timestamp_event"]/1000 < start_time:
continue
if stop_time and method["timestamp_event"]/1000 > stop_time:
continue
# store target data
method_localisation = method["localisation"]
# override skip a method
#if method_localisation == "spherical-intersection":
#continue
if method_localisation not in position:
position[method_localisation] = {}
position[method_localisation]["timestamp"] = []
position[method_localisation]["detections"] = []
else:
if args.target_name in method["detections_localised"] and \
len(method["detections_localised"][args.target_name]["points"]) > 0:
position[method_localisation]["timestamp"].append(
method["timestamp_event"]/1000)
position[method_localisation]["detections"].append(
method["detections_localised"][args.target_name]["points"][0])
# covert to ENU
x, y, z = Geometry.lla2ecef(
position[method_localisation]["detections"][-1][0],
position[method_localisation]["detections"][-1][1],
position[method_localisation]["detections"][-1][2])
x, y, z = Geometry.ecef2enu(x, y, z, radar4_lla[0],
radar4_lla[1], radar4_lla[2])
if not "detections_enu" in position[method_localisation]:
position[method_localisation]["detections_enu"] = []
position[method_localisation]["detections_enu"].append([x, y, z])
# store truth data
if args.target_name in method["truth"]:
truth_timestamp.append(
method["truth"][args.target_name]["timestamp"])
truth_position.append([
method["truth"][args.target_name]["lat"],
method["truth"][args.target_name]["lon"],
method["truth"][args.target_name]["alt"]])
timestamp.append(method["timestamp_event"])
# remove duplicates in truth data
timestamp = list(dict.fromkeys(timestamp))
timestamp = [element/1000 for element in timestamp]
truth_timestamp_unique = []
truth_position_unique = []
for t, p in zip(truth_timestamp, truth_position):
if t not in truth_timestamp_unique:
truth_timestamp_unique.append(t)
truth_position_unique.append(p)
truth_timestamp = truth_timestamp_unique
truth_position = truth_position_unique
# resample truth to event time (position already sampled correct)
for i in reversed(range(len(timestamp))):
if timestamp[i] < min(truth_timestamp) or timestamp[i] > max(truth_timestamp):
del timestamp[i]
truth_position_resampled = interpolate_positions(
timestamp, truth_timestamp, truth_position)
# convert truth to ENU
truth_position_resampled_enu = []
for pos in truth_position_resampled:
x, y, z = Geometry.lla2ecef(pos[0], pos[1], pos[2])
truth_position_resampled_enu.append(
Geometry.ecef2enu(x, y, z,
radar4_lla[0], radar4_lla[1], radar4_lla[2]))
# plot x, y, z
#plt.figure(figsize=(5,7))
fig, axes = plt.subplots(3, 1, figsize=(5, 7), sharex=True)
for i in range(3):
yaxis_truth = [pos[i] for pos in truth_position_resampled_enu]
plt.subplot(3, 1, i+1)
plt.plot(timestamp, yaxis_truth, label="ADS-B Truth")
for method in position:
print(position[method])
if "detections_enu" not in position[method]:
continue
for i in range(3):
print(position)
yaxis_target = [pos[i] for pos in position[method]["detections_enu"]]
plt.subplot(3, 1, i+1)
plt.plot(position[method]["timestamp"], yaxis_target, 'x', label=method)
plt.xlabel('Timestamp')
if i == 0:
plt.ylabel('ENU X (m)')
if i == 1:
plt.ylabel('ENU Y (m)')
if i == 2:
plt.ylabel('ENU Z (m)')
plt.subplot(3, 1, 1)
plt.legend()
plt.tight_layout()
filename = 'plot_accuracy_' + args.target_name + '.png'
plt.savefig('save/' + filename, bbox_inches='tight', pad_inches=0.01)
# save tabular data
table = {}
for method in position:
if "detections_enu" not in position[method]:
continue
table[method] = {}
for i in range(3):
yaxis_truth = np.array([pos[i] for pos in truth_position_resampled_enu])
matching_indices = np.isin(np.array(timestamp), np.array(position[method]["timestamp"]))
yaxis_truth_target = yaxis_truth[matching_indices]
yaxis_target = [pos[i] for pos in position[method]["detections_enu"]]
table[method][str(i)] = calculate_rmse(yaxis_target, yaxis_truth_target)
print('test')
print(yaxis_target)
print(yaxis_truth_target)
print(table)
if __name__ == "__main__":
main()