
BLGW | driver development guide
. .

Ikatu
2016-10-10

BLGW | DRIVER DEVELOPMENT GUIDE 2
2016-10-10

Contents
. .

1 Introduction 6

1.1 Glossary . 6

2 Driver structure 8

2.1 Representation of resources . 9

2.2 Specification section . 10

2.3 Functionality section . 10

3 Driver specification 12

3.1 Generic field . 12

3.1.1 Generic field examples . 13

3.2 Generic field builders . 14

3.2.1 stringArgument . 14

3.2.2 stringArgumentRegEx . 14

3.2.3 stringArgumentMinMax . 15

3.2.4 roStringArgument . 15

3.2.5 numericArgument . 15

3.2.6 roNumericArgument . 16

3.2.7 passwordArgument . 16

3.2.8 boolArgument . 17

BLGW | DRIVER DEVELOPMENT GUIDE 3
2016-10-10

3.2.9 floatArgument . 17

3.2.10 floatArgumentMinMax . 17

3.2.11 enumArgument . 18

3.2.12 temperatureArgument . 18

3.3 resource_types . 18

3.3.1 resource_type . 19

3.4 driver_label . 22

3.5 driver_help . 23

3.6 driver_channels . 23

3.6.1 TCP constructor . 24

3.6.2 RS232 constructor . 24

3.6.3 CUSTOM constructor . 26

3.7 driver_load_system_help . 26

3.8 driver_load_file_help . 26

3.9 Specification example . 27

4 Driver functionality 30

4.1 process . 30

4.2 executeCommand . 33

4.3 onResourceDelete . 34

4.4 onResourceUpdate . 34

4.5 onResourceAdd . 35

BLGW | DRIVER DEVELOPMENT GUIDE 4
2016-10-10

4.6 Tools . 35

4.6.1 The driver table . 35

4.6.2 The channel table . 36

4.6.3 The CONST table . 38

4.6.4 fireEvent . 38

4.6.5 setResourceState . 39

4.6.6 monitorEvent . 39

4.6.7 readResource . 39

4.6.8 readAllResources . 40

4.6.9 Log . 40

4.6.10 utils . 40

4.7 resource Lua instance . 41

4.8 resource state Lua instance . 41

4.9 Advanced features . 42

4.9.1 monitorEvent generalization . 43

4.9.2 fireEvent . 43

4.9.3 setResourceState generalization . 44

4.9.4 Load resources . 44

4.9.5 Driver for systems providing Rest API for integration 52

5 Standard Resoure Types 62

5.1 Glossary . 62

BLGW | DRIVER DEVELOPMENT GUIDE 5
2016-10-10

5.2 Standard resource types . 62

5.2.1 Motivation and background . 62

5.2.2 Defined SRTs . 63

5.2.3 State, commands and events . 64

5.2.4 Mandatory functionality . 64

5.3 Identification of a command or event . 64

5.4 BUTTON type . 65

5.5 DIMMER type . 66

5.6 SHADE type . 67

5.7 THERMOSTAT_1SP type . 68

5.8 THERMOSTAT_2SP type . 69

5.9 GPIO type . 70

5.10 AV_RENDERER type . 70

BLGW | DRIVER DEVELOPMENT GUIDE 6
2016-10-10

1 | Introduction
. .

Beolink Gateway (BLGW) provides connectivity with third party home automation systems.

Each system is different in the way it represents hardware and software resources (such as dim-
mers, sensors, actuators, keypads, variables), and also in the way it represents activity on those
resources (for example, a button press).

Moreover, the actual communications protocol for interacting with external controllers is specific
to each system brand or model.

The software inside BLGW that provides support for each third party system is called a driver.

In general, a driver will:

• Implement the communication protocol for interacting with the (third party) system.

• Provide an abstraction of elements in the system, and present them as standardized re-
sources in BLGW.

• Provide all necessary configuration settings for the user, such as network addresses or au-
thentication.

Most drivers in BLGW are written in the Lua programming language.

This document specifies the Lua interface provided by BLGW for the development of drivers, and
instructions on how to add new Lua drivers to BLGW.

1.1 | Glossary

Lua A programming language which is well suited for extending other software. http://www.
lua.org/manual/5.2/

Lua script A text file containing a Lua program.

System A third party system to be supported by BLGW.

Driver Software inside BLGW to communicate with a particular system.

Channel A channel is an abstraction of a connection to a system. The supported connections are
TCP and RS232, and for connectionless protocols there is a special channel named CUSTOM.

http://www.lua.org/manual/5.2/
http://www.lua.org/manual/5.2/

BLGW | DRIVER DEVELOPMENT GUIDE 7
2016-10-10

Resource A physical or logic element on the system installation, that will be represented in BLGW.
Examples are: buttons, dimmers, shades, switches.

Resource type A specification for a resource. A driver must define one resource type for each
kind of resource it supports. Whenever possible, a resource type should be mapped to a
standard resource type, extending it as needed.

Standard resource type (SRT) One of a set of predefined resource types (for example, a button,
or a dimmer). Standard resource types can be displayed on BLGW user interfaces. Whenever
possible, they should be taken as a template for new resource types. This compatibility
between resources for different drivers allows for generic programming, where an action
can apply to many resources regardless of the underlying third party system.

Command An action performed by BLGW on a resource.

Event An external action on a resource, as detected by BLGW.

Monitoring Registering all events in order to assist identifying resources on a system.

BLGW | DRIVER DEVELOPMENT GUIDE 8
2016-10-10

2 | Driver structure
. .

A Lua driver consists of a single Lua script with two main parts:

Specification Settings and resource definitions.

Functionality Implementation of the protocols for interacting with the external system.

The following is a minimum example of a Lua driver that supports buttons with press and release
commands and events. The protocol is very simple, with commands of the form P123 and R123,
where 123 is the button address.

The specification section defines the driver label, help, connection channels, address format, and
resource types.

1 driver_label= "Simple system for demo"
2 driver_help= "Simple system help"
3 driver_channels= {
4 TCP(2001, "192.168.1.10", "Ethernet", "TCP channel help")
5 }
6

7 resource_types= {
8 ["Simple button"]= {
9 standardResourceType= "BUTTON",

10 address= stringArgument("address", "0"),
11 events= { PRESS= {}, RELEASE= {} },
12 commands= { PRESS= {}, RELEASE= {} }
13 }
14 }

The functionality has two main methods: process reads the channel for incoming notifications and
fires a BLGW event, and executeCommand is called by BLGW to send commands to the system.

1 local function processMessage(msg)
2 local command= msg:sub(1,1)
3 if command == "P" or command == "R" then
4 local address= msg:sub(2,#msg-2)
5 if command == "P" then
6 fireEvent("PRESS", "Simple button", address)
7 elseif command == "R" then
8 fireEvent("RELEASE", "Simple button", address)

BLGW | DRIVER DEVELOPMENT GUIDE 9
2016-10-10

9 end
10 end
11 end
12

13 function process()
14 Trace("process starting")
15 if channel.status() then
16 driver.setOnline()
17 end
18 while channel.status() do
19 local msgError, msg = channel.readUntil("\r\n")
20 if msgError == CONST.OK then
21 processMessage(msg)
22 end
23 end
24 channel.retry("Connection failed, retrying in 10 seconds", 10)
25 driver.setError()
26 return CONST.HW_ERROR
27 end
28

29 function executeCommand(command, resource, commandArgs)
30 local msg
31 if "PRESS" == command then
32 msg= "P" .. resource.address .. "\r\n"
33 elseif "RELEASE" == command then
34 msg= "R" .. resource.address .. "\r\n"
35 end
36 local err= channel.write(msg)
37 if err ~= CONST.OK then
38 Error("Failed to execute command")
39 end
40 end

2.1 | Representation of resources

A resource is any addressable element on the external system, such as a button, status LED or
dimmer.

BLGW defines Standard Resource Types (SRT) which are a set of top level resource types with a
well defined minimum functionality plus some optional extra functionality.

For example, a standard button is identified by the name BUTTON, and must at least support a
PRESS command. Extra functionality such as RELEASE and HOLD events and commands, PRESS
event or button LED status, are optional.

Individual resources of the same type on a system are identified by an address, which is represent-
ed as a single printable string. This printable string can be viewed and edited by the user.

BLGW | DRIVER DEVELOPMENT GUIDE 10
2016-10-10

The driver must be able to map between the string representation of an address and the actual
protocol messages.

For example, a button may be identified by a keypad address 5 plus a button number 2. The ad-
dress may be of the form "5,2", but the driver will have to parse and generate protocol messages
of the form "PRESS,KPD 05,BTN 02".

The specification section of the Lua driver will contain a structure to represent supported resource
types with their address format.

2.2 | Specification section

The mapping of BLGW resources to physical resources requires deciding which SRT to use for each
type of resource, and a way of encoding all the data necessary to identify the resource into a
single string representation (the address).

This is specified in the resource_types structure.

The driver must also define a driver_label which identifies the driver and is the name shown to the
user, the driver_help with all the general help information for the driver (everything not fitting any
inline help field), and the communications channels as a driver_channels structure.

The mentioned resource_types structure, driver_channels structure, driver_label and driver_help
conform the driver specification.

The driver specification is loaded first so that BLGW can offer the driver to the user during setup.

The section Driver specification explains in detail each of the variables and structures needed for a
driver.

2.3 | Functionality section

The functionality of the driver is defined by a set of predefined functions.

When a command is executed on a resource, BLGW calls the executeCommand function.

When the active channel opens a connection to the third party system, it executes process. The
process function has to establish a connection with the external system, and read all channel input
to check for incoming events or state updates.

BLGW | DRIVER DEVELOPMENT GUIDE 11
2016-10-10

The driver can call a set of functions to tell BLGW of an incoming event or state update on a
resource.

Also, to keep resource states synchronized with the actual physical resources, BLGW notifies the
driver by executing onResourceUpdate, onResourceAdd or onResourceDelete when a resource is
respectively updated, added or deleted during setup.

There is no need to return from process as long as the connection with the system is up. But for
all other functions it is mandatory to return immediately.

BLGW | DRIVER DEVELOPMENT GUIDE 12
2016-10-10

3 | Driver specification
. .

This section describes the structures that a driver must define.

The first subsection describes a structure named Generic field, which is used throughout the spec-
ification.

Following subsections describe each of the required variables; then the last subsection gives an
example specification.

3.1 | Generic field

This section is for reference only, in order to provide a deeper understanding of how parameters
are represented internally.

A generic field is a table that specifies a variable, including how to present it to the user and how
to validate user input.

There is no need to work directly with this structure; constructors are given for each specific
complex field.

The structure of a generic field is as follows:

• name: A string that identifies the field, for custom fields it must begin with underscore ("_").

• type: One of password, string, int, float, enum or temperature.

• label: A string to show on the UI.

• default: The default value of the field.

• validation: Table with validation data to be used by the UI:

– min: Only for numeric types, provides lower limit to be used on validation.

– max: Only for numeric types, provides upper limit to be used on validation.

– regex: Only for string or password types, a valid regular expression to be used on
validation.

– read_only: Valid for any type, a boolean indicating the field cannot be modified (when
true).

– hidden: A boolean indicating the field is not visible in the UI.

BLGW | DRIVER DEVELOPMENT GUIDE 13
2016-10-10

– disallow_empty: A boolean indicating whether or not the field can be empty, defaults
to false so if empty is a valid value it should be set to true.

– transient: A boolean indicating whether or not the field should be persisted or not, if
not its value will be lost after a reboot and when saving and loading the configuration
(for example when selecting a previous revision).

– units: Only for temperature type, indicates the temperature units for the field.

• values: List with the possible values for enum type.

• context_help: A string to show as context help on the UI.

3.1.1 Generic field examples

1 local someGenericFields= {
2 myString= {
3 name= "my string",
4 type= "string",
5 label= "my string label",
6 default= "12",
7 validation= { regex= "[0-9]*" },
8 context_help= "Please insert a number"
9 },

10 myEnum= {
11 name= "my enum",
12 type= "enum",
13 label= "my enum label",
14 default= "8",
15 values= { "first value", "8", "other one" },
16 context_help= "Select one of them"
17 }
18 }

When building a generic field with the following call to the stringArgumentRegEx constructor:

1 local myfield= stringArgumentRegEx("_thestring", "defaultval", ".*",
2 { context_help="myhelp", hidden= true,
3 read_only=true, transient= true,
4 disallow_empty= true})

It is equivalent to:

1 local myfield= {
2 name= "_thestring",

BLGW | DRIVER DEVELOPMENT GUIDE 14
2016-10-10

3 label= "_thestring",
4 default= "defaultval",
5 context_help= "myhelp",
6 type= "string",
7 validation= {
8 hidden= "true",
9 disallow_empty= "true",

10 transient= "true",
11 read_only= "true",
12 regex= ".*"
13 }
14 }

3.2 | Generic field builders

3.2.1 stringArgument

Returns a generic field for a string. It is defined as function stringArgument(name,
default_value, optionalArgs) where:

• name: generic field name.

• default_value: generic field default.

• optionalArgs: Table with more data for the the generic field, could be not present or
empty. Accepts context_help , hidden, disallow_empty, transient and read_only.

3.2.2 stringArgumentRegEx

Returns a generic field for a string with a regexp for validation. It is defined as function
stringArgumentRegEx(name, default_value, re, optionalArgs) where:

• name: generic field name.

• default_value: generic field default.

• re: generic field validation.regex.

• optionalArgs: Table with more data for the the generic field, could be not present or
empty. Accepts context_help , hidden, disallow_empty, transient and read_only.

BLGW | DRIVER DEVELOPMENT GUIDE 15
2016-10-10

3.2.3 stringArgumentMinMax

Returns a generic field for a string with given minimum and maximum length. It is defined as
function stringArgumentMinMax(name, default_value, min_len, max_len, optionalArgs)
where:

• name: generic field name.

• default_value: generic field default.

• min_len: Minimum acceptable length for the attribute.

• max_len: Maximum acceptable length for the attribute.

• optionalArgs: Table with more data for the the generic field, could be not present or
empty. Accepts context_help , hidden, disallow_empty, transient and read_only.

3.2.4 roStringArgument

Returns a generic field for a read only string. It is defined as function roStringArgument(
name, default_value, optionalArgs) where:

• name: generic field name.

• default_value: generic field default.

• optionalArgs: Table with more data for the the generic field, could be not present or
empty. Accepts context_help , hidden, disallow_empty and transient.

Calling roStringArgument(name, default, {}) is the same as calling stringArgument(name,
default, {read_only=true}).

3.2.5 numericArgument

Returns a generic field for a number with a given valid interval. It is defined as function
numericArgument(name, default_value, min_val, max_val, optionalArgs) where:

• name: generic field name.

• default_value: generic field default.

BLGW | DRIVER DEVELOPMENT GUIDE 16
2016-10-10

• min_val: Minimum acceptable value for the attribute.

• max_val: Maximum acceptable value for the attribute.

• optionalArgs: Table with more data for the the generic field, could be not present or
empty. Accepts context_help , hidden, disallow_empty, transient and read_only.

3.2.6 roNumericArgument

Returns a generic field for a read only number. It is defined as function roNumericArgument(
name, default_value, optionalArgs) where:

• name: generic field name.

• default_value: generic field default.

• optionalArgs: Table with more data for the the generic field, could be not present or
empty. Accepts context_help , hidden, disallow_empty and transient.

Calling roNumericArgument(name, default, {}) is the same as calling numericArgument(name,
default, {read_only=true}).

3.2.7 passwordArgument

NOTE: remove this or add support to Model and the UI Returns a generic field for a password
given minimum and maximum acceptable lengths; for future use as by now it is handled as a simple
string (including the UI). It is defined as function passwordArgument(name, default_value,
min_len, max_len, optionalArgs) where:

• name: generic field name.

• default_value: generic field default.

• min_len: Minimum acceptable length for the attribute.

• max_len: Maximum acceptable length for the attribute.

• optionalArgs: Table with more data for the the generic field, could be not present or
empty. Accepts context_help , hidden, disallow_empty, transient and read_only.

BLGW | DRIVER DEVELOPMENT GUIDE 17
2016-10-10

3.2.8 boolArgument

Returns a generic field for a boolean argument. It is defined as function boolArgument(name,
default_value, optionalArgs) where:

• name: generic field name.

• default_value: generic field default.

• optionalArgs: Table with more data for the the generic field, could be not present or
empty. Accepts context_help , hidden, disallow_empty, transient and read_only.

3.2.9 floatArgument

Returns a generic field for a float argument. It is defined as function floatArgument(name,
default_value, optionalArgs) where:

• name: generic field name.

• default_value: generic field default.

• optionalArgs: Table with more data for the the generic field, could be not present or
empty. Accepts context_help , hidden, disallow_empty, transient and read_only.

3.2.10 floatArgumentMinMax

Returns a generic field for a float argument with a given minimal and maximal values. It
is defined as function floatArgumentMinMax(name, default_value, min_val, max_val,
optionalArgs) where:

• name: generic field name.

• default_value: generic field default.

• min_val: Minimum acceptable value for the attribute.

• max_val: Maximum acceptable value for the attribute.

• optionalArgs: Table with more data for the the generic field, could be not present or
empty. Accepts context_help , hidden, disallow_empty, transient and read_only.

BLGW | DRIVER DEVELOPMENT GUIDE 18
2016-10-10

3.2.11 enumArgument

Returns a generic field for an enumerated argument. It is defined as function enumArgument (
name, vals, default_value, validation, optionalArgs) where:

• name: generic field name.

• vals: The list of valid values for the argument.

• default_value: generic field default.

• validation: generic field validation, for read_only.

• optionalArgs: Table with more data for the the generic field, could be not present or
empty. Accepts context_help , hidden, disallow_empty, transient and read_only.

3.2.12 temperatureArgument

Returns a generic field for a temperature argument. It is defined as function temperatureArgument(
name, units, default, optionalArgs) where:

• name: generic field name.

• units: Units for the temperature argument, can be "C" or "F" for Celsius or Fahrenheit
respectively.

• default: generic field default.

• optionalArgs: Table with more data for the the generic field, could be not present or
empty. Accepts context_help , hidden, disallow_empty, transient and read_only.

3.3 | resource_types

resource_types variable must be a structure containing all the resource types the driver intend-
s to handle, each should follow an SRT and specify its address, commands, events and states
according to the SRT.

As specified in the SRT section there could be cases in which a resource in the third party system
has no equivalent in BLGW (no SRT maps naturally), that being the case a non standard resource
type can be used. Also in some cases there are resources which map naturally to an SRT but need
to define some behaviour not defined in the SRT, for example a button on a third party system

BLGW | DRIVER DEVELOPMENT GUIDE 19
2016-10-10

which can handle a "multi tap" event. For those cases it is possible to define a resource type
matching an SRT with a non standard functionality, as long as it defines all mandatory fields for
the SRT it can define non standard commands, events and states. Non standard names must begin
with an underscore (_) or will be rejected by BLGW.

The Lua driver must define a global variable named resource_types as a table which keys are
strings that globally identify the resource type and its corresponding values are the specification
for the resource type. For example being simpleButtonType and LEDButtonType variables con-
taining the resource_type for "Button" and "LED button" respectively:

1 resource_types= {
2 Button = simpleButtonType,
3 ["LED button"] = LEDButtonType
4 }

3.3.1 resource_type

The values of the resource_types table are tables containing the following fileds:

• standardResourceType: The name of the SRT this resource type intends to extend (e.g.
"BUTTON", see the SRT documentation). If begins with an underscore it will be treated as a
non standard resource type, meaning among other things that those resources will not have
an UI representation.

• address: generic field that specifies the address format for the resource type, a way of
checking its validity (typically a regular expression) and contextual help. Its name must be
address and its type string.

• events: Table of events of the resource type.

• commands: Table of commands of the resource type.

• states: Table of states of the resource type.

• context_help: Contextual help of the resource type.

The driver should be able to identify resources given their name (key on the resource_types table)
and address. Also when an event occurs on the third party system which the driver intends to
handle, the driver needs to be able to build the address of the corresponding resource to notice
BLGW.

For example lets define simpleButtonType used in the example in resource_types assuming this
kind of resource is addressed by two decimal digits.

BLGW | DRIVER DEVELOPMENT GUIDE 20
2016-10-10

1 simpleButtonType= {
2 standardResourceType= "BUTTON",
3 address= stringArgumentRegEx("address", "00", "[0-9]",
4 {context_help= "Two digits address, e.g. 01" }),
5 events= simpleButtonEvents,
6 commands= simpleButtonCommands,
7 states= simpleButtonStates,
8 context_help= "This is a Button."
9 }

Notice the use of stringArgumentRegEx in order to simplify the code, the same could be done
directly as follows:

1 simpleButtonType= {
2 standardResourceType= "BUTTON",
3 address= {
4 name= "address",
5 type= "string",
6 default= "00",
7 validation= { regex= "[0-9]" },
8 context_help= "Two digits address, e.g. 01"
9 },

10 events= simpleButtonEvents,
11 commands= simpleButtonCommands,
12 states= simpleButtonStates,
13 context_help= "This is a Button."
14 }

3.3.1.1 commands Commands define the things that can be done from BLGW on the third
party system for the corresponding resource. Standard commands are used on the UI and macros,
non standard ones are only used on macros.

For each resource type a table of commands must be provided in which keys are the command
names according to the standard e.g. PRESS or a non standard name which must begin with an
underscore e.g. "_MULTI TAP", and values are tables with the following data:

• context_help: Context help of the command.

• arguments: A table with the command arguments as generic fields according to the SRT
specification for the command, non standard arguments name must begin with an under-
score.

An example of commands for the resource type "Button" of the previous example could be:

BLGW | DRIVER DEVELOPMENT GUIDE 21
2016-10-10

1 simpleButtonCommands= {
2 PRESS= { context_help= "Single button press". }
3 }

A bit more complex example implementing a resource type for the SRT "DIMMER" to present a
command containing an argument follows:

1 resource_types= {
2 ["simple dimmer"]= {
3 standardResourceType= "DIMMER",
4 address= stringArgumentRegEx("address", "00", "[0-9]"),
5 commands= {
6 SET= {
7 context_help= "Set the dimmer level.",
8 arguments= { numericArgument("LEVEL", 0, 0, 100,
9 { context_help= "The level of the dimmer (percentage)" }) }

10 }
11 },
12 states= simpleDimmerStates
13 }
14 }

3.3.1.2 events Events by opposition of commands define things that happen in the third party
system for the corresponding resource and are intended to be handled in BLGW. The same way as
commands, for each resource type a table of events must be provided in which keys are the event
names according to the standard e.g. PRESS or a non standard name wich must begin with an
underscore e.g. "_MULTI TAP", and values are tables with the following data:

• context_help: Context help of the event.

• arguments: A table with the event arguments as generic fields according to the SRT speci-
fication for the event, non standard arguments name must begin with an underscore.

An example of events for the resource type "Button" of the previous example could be:

1 simpleButtonEvents= {
2 PRESS= { context_help= "Single button press". }
3 }

Events and commands respond to the very same structure so in some cases code can be reused as
in the following example:

BLGW | DRIVER DEVELOPMENT GUIDE 22
2016-10-10

1 simpleButtonActions= {
2 PRESS= { context_help= "Single button press". }
3 }
4 resource_types= {
5 ["simple button"]= {
6 standardResourceType= "BUTTON",
7 address= stringArgumentRegEx("address", "00", "[0-9]",
8 {context_help= "Two digits address, e.g. 01" }),
9 events= simpleButtonActions,

10 commands= simpleButtonActions,
11 states= simpleButtonStates,
12 context_help= "This is a Button."
13 }

3.3.1.3 states Resource types could define state variables, which if defined must be kept syn-
chronized with the third party system at any time (specially for standard resource types as loosing
sync could result in a bad end user experience). The states field on the resource type is a list of
generic fields, each defining a state variable intended to be handled on the resource. States of a
resource type must follow the SRT for the resource type, and non standard state variables must be
named beginning with an underscore.

A typical example of resource with state is a dimmer with feedback as shown in the following
example (extending the example presented for command with arguments):

1 resource_types= {
2 ["simple dimmer"]= {
3 standardResourceType= "DIMMER",
4 address= stringArgumentRegEx("address", "00", "[0-9]"),
5 commands= {
6 SET= {
7 context_help= "Set the dimmer level.",
8 arguments= { numericArgument("LEVEL", 0, 0, 100,
9 { context_help= "The level of the dimmer

(percentage)" }) }↪→

10 }
11 },
12 states= { numericArgument("LEVEL", 0, 0, 100) }
13 }
14 }

3.4 | driver_label

The driver_label is a simple string to identify the system within BLGW, it is shown to the user
during setup, and must be descriptive of the supported third party systems.

BLGW | DRIVER DEVELOPMENT GUIDE 23
2016-10-10

3.5 | driver_help

The driver_help is a simple string in Markdown language with the complete help information to
allow an installer to make it work only by reading it and the inline help included in the driver (the
context_help field present in many structures in the specification).

For example:

1 driver_help= [[
2 My driver help
3 ===============
4 This is the help for the driver in markdown language.
5

6 ---------
7

8 1. For code examples use ‘local var= 1‘
9 2. There is __bold__ and **bold**, _italic_ and *italic*.

10

11 ## Also
12 * bullets
13 * without
14 * numbers
15

16 And for a [link to google](http://google.com)
17]]

3.6 | driver_channels

The driver_channels is a list (a number indexed Lua table) containing the specification for all
channels which could be used to connect to the third party system using the same protocol (the
one used on the driver), or with minor diferences.

Three types of channel can be defined: RS232, TCP and CUSTOM, but more than one channel can
be defined for each type.

For example, Lutron Homeworks Interactive provides integration through RS232 and TCP using
the same protocol but with a different end of line mark. So in order to provide correct integration,
RS232 and TCP channels should be defined, but an extra TCP channel can be provided to support
RS232 over Ethernet, which will use the RS232 line ending.

All channel types defined here will be available for the user to choose from, and the one selected
can be retrieved during runtime (see Driver functionality) and is referred to as the active channel.

BLGW | DRIVER DEVELOPMENT GUIDE 24
2016-10-10

Each channel type is described using a complex opaque table which can be built using the follow-
ing constructors:

3.6.1 TCP constructor

Constructs a TCP channel to be used on driver_channels. It is a function defined as

1 function TCP(port, ip, name, help, args)

Which returns a structure valid for driver_channels table where:

• port is the default value for the TCP port to use in the connection,

• ip is the default value for the IP or hostname to connect to.

• name is the name of the channel, which is also displayed on the UI.

• args is a list (a Lua table) of generic fields with arguments, mostly for user defined param-
eters (e.g. login or password), plus eventually timeBetweenMessages, which is a numeric
argument to set a minimum time in microseconds between outgoing messages (command-
s), in case the third party system has any time constraints on processing messages. User
defined argument names must begin with underscore (_) or will be rejected.

For example:

1 TCP(23, "192.168.1.3", "Direct Ethernet connection",
2 "Direct Ethernet connection for our system",{
3 stringArgumentMinMax("_login", "admin", 1, 10,
4 { context_help = "User name for the system (factory default is

admin)"}),↪→

5 passwordArgument("_password", "admin", 1, 15,
6 { context_help = "Password for the system (factory default is

admin)" })↪→

7 })

3.6.2 RS232 constructor

Constructs an RS232 channel to be used on driver_channels.

It is a function defined as:

BLGW | DRIVER DEVELOPMENT GUIDE 25
2016-10-10

1 function rs232(pname, ptype, plabel, help, args)

Where:

• pname: Name for the channel.

• ptype: Type of the channel, only "rs232" allowed.

• plabel: Label for the channel.

• help: Help for the channel.

• args: A list (a Lua table) of generic fields, mostly for user defined parameters (e.g. login
or password), plus eventually timeBetweenMessages, which is a numeric argument to set a
minimum time in microseconds between outgoing messages (commands), in case the third
party system has any time constraints on processing messages. And also to change the
default value for one of the default arguments (to do this just define them with the intended
values). User defined argument names must begin with underscore (_) or will be rejected.

For example:

1 rs232("RS232", "rs232", "RS232 channel", "Direct connection through RS232",{
2 stringArgumentMinMax("_login", "admin", 1, 10,
3 { context_help = "User name for the system (factory default

is admin)"}),↪→

4 passwordArgument("_password", "admin", 1, 15,
5 { context_help = "Password for the system (factory default is admin)" })}
6)

3.6.2.1 RS232 Default arguments The default RS232 arguments are:

• dataBits: read only numeric argument for data bits, defaults to 8.

• stopBits: read only numeric argument stop bits, defaults to 1.

• baudRate: enum argument for baud rate, defined with the values {9600, 19200, 38400,
57600, 115200} and 9600 as default.

• parity: enum argument for parity, defined with the values "Odd", "Even" and "None",
using "None" as default.

• inputMode: enum argument for input modes, defined with the values "Canonical" and
"Raw", "Raw" as default.

• fcMode: enum argument for flow control, defined with the values "None", "Soft" and
"Hard", "None" as default.

BLGW | DRIVER DEVELOPMENT GUIDE 26
2016-10-10

3.6.3 CUSTOM constructor

Constructs a custom channel to be used on driver_channels. It’s a function defined as

1 function CUSTOM(name, help, args)

Which returns a structure valid for driver_channels table where:

• name is the name of the channel, which identifies it and is displayed on the UI.

• help is the help to display on the UI for the channel.

• args is a list (a Lua table) of generic fields with user defined arguments (e.g. login or
password). User defined argument names must begin with underscore (_) or will be rejected.

This channel is intended to be used to integrate with systems based on a Rest API using URL
functions instead of channel based ones.

For example:

1 CUSTOM("my connection", "help about this connection",
2 {stringArgument("_baseurl", "http://192.168.1.1/")})

3.7 | driver_load_system_help

The driver_load_system_help global variable, if defined, means the driver is capable of loading
resources from the system. Also its value is used as inline help on the UI for the load resources
from system functionality.

When a driver defines this varialbe, it must provide an implementation for the requestResources
function.

3.8 | driver_load_file_help

The driver_load_file_help global variable, if defined, means the driver is capable of loading
resources from a file. Also its value is used as inline help on the UI for the load resources from file
functionality.

BLGW | DRIVER DEVELOPMENT GUIDE 27
2016-10-10

When a driver defines this varialbe, it must provide an implementation for the parseResources
function.

3.9 | Specification example

Following is a simple specification example with two resource types: Button and Led. Button as a
standard "BUTTON" and Led as a "GPIO". The example provides a basic specification which could
be used to manage buttons and LEDs on a Lutron Radio Ra 2 system.

1 driver_label= "example label"
2 driver_help= [[
3 example driver
4 ==============
5

6 This driver supports communication with Lutron Radio RA2.
7

8 Connection to a Radio RA2 system
9 --------------------------------

10

11 Communication with Radio RA2 is done via the Radio RA2 Main Repeater,
12 which allows interaction with the system via 100 programmable virtual
13 buttons (*phantom buttons*).
14

15 Connection settings consist of: IP address of the Main
16 Repeater (default: 192.168.1.50), login (default: lutron), password
17 (default: integration) and telnet IP port (default: 23).
18

19 Resources
20 ------------------
21

22 The supported resource types are:
23

24 + **Button**: a keypad or control unit button.
25 + **LED**: a single LED used for status.
26

27 Resource address format
28 -----------------------
29

30 Resource addresses use *Integration ID* which by default is a
31 number, but can also be a user defined string; and a sub-address called
32 *Component Number*.
33

34 ## Availability of events and commands
35

36 Lutron supports a lot of different hardware models and combinations.
37

38 Not all hardware setups support the whole set of events and commands.
39

40 Check the Lutron documentation (*Lutron Integration Protocol*), or use
41 the monitoring facilities in BLGW to verify that the hardware actually

BLGW | DRIVER DEVELOPMENT GUIDE 28
2016-10-10

42 supports a command or event type.
43

44 A typical example is the ‘_MULTI TAP‘ event, which is available on a
45 limited combination of Lutron hardware.
46

47 Events
48 ---------------
49 + Button
50 - **PRESS**
51 - **RELEASE**
52 - **HOLD**
53 - **_MULTI TAP**: Pressing on the button repeatedly
54 - **_HOLD RELEASE**: Releasing a button after a long press (HOLD)
55

56 Commands
57 -----------------
58 + Button
59 - **PRESS**
60 - **RELEASE**
61 - **HOLD**
62 - **_MULTI TAP**: Pressing on the button repeatedly
63 - **_HOLD RELEASE**: Releasing a button after a long press (HOLD)
64

65 Resource State
66 --------------
67 + LED
68 - **_STATE**: The state of the LED (0 means OFF and 1 ON)
69

70]]
71

72 local TCP_arguments= {
73 stringArgumentMinMax("_login", "lutron", 1, 10,
74 { context_help= "User name for the lutron system (factory default is

lutron)"}),↪→

75 passwordArgument("_password", "integration", 1, 15,
76 { context_help= "Password for the lutron system (factory default is

integration)"})↪→

77 }
78

79 driver_channels= {
80 TCP(23, "192.168.42.27", "example direct Ethernet connection",
81 "Direct Ethernet connection for driver development example", TCP_arguments),
82 }
83

84 local buttonActions= {
85 PRESS= {},
86 RELEASE= {},
87 HOLD= {},
88 ["_MULTI TAP"]= { context_help= "Pressing and releasing the button multiple times" },
89 ["_HOLD RELEASE"]= { context_help= "Releasing a button after a long press (HOLD)" }
90 }
91

92 -- positive number without zeros on the left
93 local positiveNumber= "\\([0-9]\\|[1-9][0-9]*\\)"
94

95 local theAddress= stringArgumentRegEx(
96 "address", "0,0", positiveNumber .. "," .. positiveNumber,

BLGW | DRIVER DEVELOPMENT GUIDE 29
2016-10-10

97 { context_help= "Integration ID, Component Number (e.g. \"1,1\" or \"myIID,28\")" }
98)
99

100 resource_types= {
101 Button= {
102 standardResourceType= "BUTTON",
103 address= theAddress,
104 events= buttonActions,
105 commands= buttonActions
106 },
107

108 Led= {
109 standardResourceType= "GPIO",
110 address= theAddress,
111 states= { enumArgument("STATE", {0,1}, 0) }
112 }
113 }

BLGW | DRIVER DEVELOPMENT GUIDE 30
2016-10-10

4 | Driver functionality
. .

Once a specification is provided, the driver must implement some functions in order to interact
with the third party system. Commands executed on the BLGW will result in calls to executeCom-
mand function, which the driver must implement. The driver also needs to implement the process
function to connect to the third party system using the active channel, detect events and notify
BLGW. Also onResourceAdd, onResourceDelete and onResourceUpdate should be implemented
to take action when a resource is added, removed or updated during BLGW setup.

4.1 | process

This is the main function that provides functionality to the driver. It is called whenever an active
channel is selected an its corresponding port is succesfully opened.

It should use the provided API to:

1. Setup a connection to the driver, handling authentication if needed. On success, set the
driver connection state accordingly.

2. Request all the handled resource states to the third party system.

3. While the active channel is connected, wait for incoming messages. When a message arrives
corresponding to events or updates on state variables, report to BLGW through fireEvent,
setResourceState or monitorEvent.

If the connection fails for any reason, the process function should return providing the value
of CONST which best fits the case. It will be called again immediately or after some seconds
depending on the returned value, unless the driver previously called channel.retry in which case
the call will be delayed the requested time.

Follows a commented process function for the example specification given above.

1. Wait for a message indicating the third party system is expecting the login name and return
after asking the system to retry in 10 seconds if the message does not arrive.

1 local res= channel.waitFor("login: ",1)
2 if res ~= CONST.OK then
3 channel.retry("Error while connecting to driver example system, it is not asking "..↪→
4 "for login name; please check you are using the correct IP address.",

10)↪→

BLGW | DRIVER DEVELOPMENT GUIDE 31
2016-10-10

5 return CONST.TIMEOUT
6 end

2. Send the login name, wait until the system asks for password and send it.

1 local messageToSend= channel.attributes("_login\r\n")
2

3 local ret= channel.write(messageToSend)
4 if ret ~= CONST.OK then
5 return CONST.INVALID_CREDENTIALS
6 end
7

8 ret= channel.waitFor("password:",1);
9 if ret ~= CONST.OK then

10 channel.retry("Error while connecting to QS, system is not asking "
11 .. "for password, please check you are using the correct IP address.", 10)
12 return CONST.TIMEOUT
13 end
14

15 messageToSend= channel.attributes("_password\r\n")
16

17 ret= channel.write(messageToSend)
18 if ret ~= CONST.OK then
19 return CONST.INVALID_CREDENTIALS
20 end

3. Set the driver connection state to online and send some initialization messages (in this ex-
ample, setting up the Lutron system to report everything that happens).

1 driver.setOnline()
2

3 channel.write("#MONITORING,255,1\r\n") -- all on but prompt and reply state
4 channel.write("#MONITORING,11,1\r\n") -- reply state on
5 channel.write("#MONITORING,1,2\r\n") -- diagnostic off
6 channel.write("#MONITORING,12,2\r\n") -- prompt off

Second step: request state of all resources (all resources with defined states, in our case only
LEDs):

1 for res in readAllResources("Led") do
2 getState(res)
3 end

Where getState is defined as follows:

1 local function getState(resource)
2 if resource.typeId == "Led" then
3 local iid, cn, ledcn= split(",", resource.address)

BLGW | DRIVER DEVELOPMENT GUIDE 32
2016-10-10

4 local msg= "?DEVICE," .. iid .."," .. cn .. ",9\r\n"
5 Debug("getState: sending: " .. msg)
6 local err= channel.write(msg)
7 if err ~= CONST.OK then
8 Error("getLedState: error trying to Get led state")
9 end

10 end
11 end

Finally the third step: While the connection is up and with the help of Lua string functions, we
parse the received messages and call BLGW when corresponds.

1 while channel.status() do
2 local err,msg= CONST.OK, ""
3

4 repeat
5 err, msg = channel.readUntil("\r\n", 10)
6 if err == CONST.TIMEOUT then
7 channel.write("\r\n") -- keepalive
8 end
9 until err ~= CONST.TIMEOUT

10

11 if err ~= CONST.OK or msg == "" then
12 if err ~= CONST.OK then
13 Trace("readUntil failed")
14 else
15 Trace("received empty message")
16 end
17 if err ~= CONST.TIMEOUT then
18 return CONST.HW_ERROR
19 else
20 return CONST.OK
21 end
22 end
23

24 local parsedCmd, iid, p1, p2, p3, p4, p5, p6= split(",", msg)
25 parsedCmd= string.gmatch(parsedCmd, ".*~(%a+)")()
26

27 if parsedCmd then
28 Debug("parsed cmd: " .. parsedCmd)
29 parsedCmd= parsedCmd:upper()
30 end
31

32 if parsedCmd == "DEVICE" then
33 local cn, cmd, ledState= p1, tonumber(p2), tonumber(p3)
34

35 if cmd ~= nil then
36 local address= unsplit(",",iid,cn)
37

38 if cmd == 3 or cmd == 4 or cmd == 5 or cmd == 6 or cmd == 32 then
39 fireEvent(numToCommand(cmd), "Button", address)
40 elseif cmd == 9 then -- LED
41 if ledState and ledState ~= 0 then

BLGW | DRIVER DEVELOPMENT GUIDE 33
2016-10-10

42 ledState= 1
43 else
44 ledState= 0
45 end
46

47 setResourceState("Led", address, { STATE = ledState })
48 end
49 end
50 end
51 end

Where numToCommand is defined as follows:

1 local function numToCommand(cmd)
2 if cmd == 3 then -- PRESS
3 return "PRESS"
4 elseif cmd == 4 then -- RELEASE
5 return "RELEASE"
6 elseif cmd == 5 then -- HOLD
7 return "HOLD"
8 elseif cmd == 6 then -- MULTI TAP
9 return "_MULTI TAP"

10 elseif cmd == 32 then -- HOLD RELEASE
11 return "_HOLD RELEASE"
12 elseif cmd == 9 then -- LED
13 return "_LED"
14 end
15 end

4.2 | executeCommand

This function is executed whenever a macro or a user from the UI executes a command on a
resource. The function prototype must be:

1 function executeCommand(command, resource, commandArgs)

Where:

• command is the name of the command being executed, e.g. "PRESS".

• resource is the resource on which the command is being executed.

• commandArgs is a table containing all the arguments of the command, keys in the table
being argument names and their associated values the argument values.

BLGW | DRIVER DEVELOPMENT GUIDE 34
2016-10-10

Remember this function must return as soon as possible, commands taking too long to execute
result in bad user experience and unexpected behaviour on macro programming. On our example,
the executeCommand implementation would be:

1 function executeCommand(command, resource, commandArgs)
2 Trace("Command executed: " .. command)
3 if commandNumbers[command] then
4 local iid, cn, lcn = split(",", resource.address)
5 local cmd= commandNumbers[command]
6 if resource.typeId == "Button" then -- our only resource type with comands.
7 local err= channel.write("#DEVICE," .. unsplit(",",iid, cn) .. "," .. cmd .. "\r\n")
8 if err ~= CONST.OK then
9 Error("error! on execute command")

10 end
11 end
12 end
13 end

Where commandNumbers is defined as:

1 local commandNumbers= { PRESS = 3, RELEASE = 4, HOLD = 5,
2 ["_MULTI TAP"] = 6, ["_HOLD RELEASE"] = 32, SET= 1 }

4.3 | onResourceDelete

This function is called whenever a resource of the system is deleted. It must be defined as
function onResourceDelete(resource) where resource is the resource that was deleted. In
our example there is not much to be done so we only log a message:

1 function onResourceDelete(resource)
2 Trace("Resource was deleted")
3 end

4.4 | onResourceUpdate

This function is called whenever a resource of the system is updated. It must be defined as
function onResourceUpdate(resource) where resource is the resource that was updated.
Following the example when a resource is updated we should request its state as follows:

BLGW | DRIVER DEVELOPMENT GUIDE 35
2016-10-10

1 function onResourceUpdate(resource)
2 Trace("Resource was updated")
3 getState(resource)
4 end

4.5 | onResourceAdd

This function is called whenever a resource of the system is added. It must be defined as function
onResourceAdd(resource) where resource is the resource that was added. For the example
we do the very same as in onResourceUpdate:

1 function onResourceAdd(resource)
2 Trace("a resource was added")
3 getState(resource)
4 end

4.6 | Tools

4.6.1 The driver table

Provides functions to set the driver connection state, which is shown to the user as colored icons.

4.6.1.1 driver.setOffline() Sets the system connection state to Offline.

4.6.1.2 driver.setConnecting() Sets the system connection state to Connecting.

4.6.1.3 driver.setConnected() Sets the system connection state to Connected.

4.6.1.4 driver.setOnline() Sets the system connection state to Online.

4.6.1.5 driver.setError() Sets the system connection state to Error.

BLGW | DRIVER DEVELOPMENT GUIDE 36
2016-10-10

4.6.2 The channel table

Provides functions to comunicate with the third party system through the active channel.

4.6.2.1 channel.type() Retrieves the active channel type.

4.6.2.2 channel.waitFor() Opens the active channel port if not already open, and consumes
the input until the given message arrives or a given timeout is reached. Is defined as function
waitFor(expectedString, timeout) where:

• expectedString: The expected message.

• timeout: The timeout, 0 or nil means forever (waitFor(expectedString) is the same as
waitFor(expectedString, 0)) .

It returns CONST.OK if the expected message arrives within the timeout, CONST.TIMEOUT if timed
out and CONST.PORT_CLOSED if the connection failed. Even if a timeout argument was not given
or 0, the function may return a timeout.

4.6.2.3 channel.retry() Logs a message and saves a timeout so the next time process returns
(intended for an immediate return) it will sleep the given timeout before calling again. The process
function may be called sooner, e.g. if the active channel settings change. It is defined as function
retry(logMessage, timeout) where:

• logMessage: The message to log.

• timeout: The time to sleep before calling process again.

process function must return immediately after calling channel.retry. If process function
returns without calling channel.retry it will be called immediately in case it returned CONST.OK,
or after up to a minute for other return values; also a predefined message will be logged informing
the error and the timeout before the retry.

4.6.2.4 channel.write() Appends a message to the send queue; it will be dispatched im-
mediately or not depending on the argument timeBetweenMessages of the active channel (see
driver_channels). It is defined as function write(message) where:

BLGW | DRIVER DEVELOPMENT GUIDE 37
2016-10-10

• message: The message to send.

Its return value can be safely ignored as it returns always CONST.OK (for backward compatibility
reasons).

4.6.2.5 channel.status() Returns true if the active channel is connected, false otherwise.

4.6.2.6 channel.readUntil() Stores all input from the active channel until it reads a given
string or reaches a certain timeout. If the given string arrives, it returns all the read data including
the ending string. It is defined as function readUntil(s, timeout) where

• s: The string to wait for.

• timeout: The timeout, if not present or 0 it is set to infinity.

Returns two values <r_1,r_2> where r_1 is the return code and r_2 the message read (if
r_1 is CONST.OK), r_1 is CONST.OK if read OK, CONST.TIMEOUT if a timeout was reached and
CONST.PORT_CLOSED otherwise. Even when a timeout is not given, CONST.TIMEOUT may be re-
turned.

4.6.2.7 channel.attributes() Retrieves an attribute of the active channel. It is defined as
function attributes(name) where:

• name: The attribute name.

And returns the value of the attribute.

4.6.2.8 channel.writeHex() Appends a message given as a list of bytes to the send queue; it
will be dispatched immediately or not depending on the argument timeBetweenMessages of the
active channel (see driver_channels). It is defined as function writeHex(hexMsg) where:

• hexMsg: Message to send as a list of bytes.

Its return value can be safely ignored as it returns always CONST.OK (for backward compatibility
reasons).

BLGW | DRIVER DEVELOPMENT GUIDE 38
2016-10-10

4.6.2.9 channel.setAttribute() Sets a signle attribute of the active channel given its name. It
is defined as function setAttribute(name, value) where:

• name: The attribute name.

• value: The value to set the attribute to.

4.6.3 The CONST table

Constant values to return from process and returned by some functions.

• OK: Everything is OK.

• HW_ERROR: Unspecified error on the third party system/channel.

• INVALID_CREDENTIALS: Failed authentication in the third party system.

• TIMEOUT: Connection timed out.

• PORT_CLOSED: Connection port was closed.

• CONNECTED: Connection OK.

• POLLING: Indicates the caller to call again (used on process for rest polling).

4.6.4 fireEvent

Fires an event on a specific resource. If resource does not exist, a generic monitor event is gen-
erated so that it can be captured and assigned to a new resource. It is defined as function
fireEvent(event, resourceType, address) where:

• event: Event name, e.g. "PRESS".

• resourceType: Resource type (key in resource_types).

• address: The resource address string, e.g. "1,2".

For example to fire a "PRESS" event on a resource type named "simple button":

1 fireEvent("PRESS", "simple button", "1")

BLGW | DRIVER DEVELOPMENT GUIDE 39
2016-10-10

4.6.5 setResourceState

Sets a resource state or generates a corresponding monitor event if the resource does not exist. It
is defined as function setResourceState(resourceType, address, arguments) where:

• resourceType: Resource type (key in resource_types).

• address: The resource address, e.g. "0:1:3".

• arguments: Key-value list for arguments specified in resource_types[resourceType].states
(see resource_types).

If it finds a resource matching resourceType and address, it updates the corresponding state.
In other case it generates a monitor event containing all the information. Updating the state of a
resource to its same current state will not result in a state update event in BLGW. For example, for
a resource type named "LED button" which accepts numbers as addresss, a call to update its state
variable "STATE" to 1 should be:

1 setResourceState("LED button", "1", { STATE = 1 })

4.6.6 monitorEvent

Generates a monitor event. It is defined as function monitorEvent(message, resourceType,
arguments) where:

• resourceType is the resource type.

• arguments is a table containing data to attach to the monitor event, in most cases only the
resource address.

4.6.7 readResource

Returns a resource given its type and address. It is defined as function readResource(type,
addr) where:

• type: The resource type.

• addr: The resource address string.

BLGW | DRIVER DEVELOPMENT GUIDE 40
2016-10-10

4.6.8 readAllResources

Lua iterator over all the resources of a given resource type. It is defined as function
readAllResources(type) where type is the resource type. It returns a resource on each it-
eration. For example, to iterate over all resources of type "my type" and call some function on
each:

1 for resource in readAllResources("my type") do
2 doSomething(resource)
3 end

4.6.9 Log

There are functions to log messages to the system log. All of them accept a message to log and
optionally a boolean to indicate whether the message should be shown to the end user or not
(defaults to true if not present). Each one is named after the log level it generates as follows:

• function Fatal(message, user) Fatal level log message.

• function Error(message, user) Error level log message.

• function Warn(message, user) Warnning level log message.

• function Info(message, user) Info level log message.

• function Debug(message, user) Debug level log message.

• function Trace(message, user) Trace level log message.

4.6.10 utils

4.6.10.1 tableConcat Helper function to concatenate tables, defined as:

1 function tableConcat(t_1, ..., t_n)

Where:

• t_i: Is the table to concatenate in the position i.

Returns the table resulting of the concatenation of all the t_i sequentially.

BLGW | DRIVER DEVELOPMENT GUIDE 41
2016-10-10

4.6.10.2 map Returns a table containing the elements of a given table, evaluated through a
given funciton. It is defined as function map (f , values) where:

• f: The function to map.

• values: The table which elements are intended to be evaluated.

4.6.10.3 listMap Receives a funciton and a list of elements and returns the list of elements
evaluated through the function. It is defined as:

1 function listMap(f, e_1, ..., e_n)

Where:

• f: the function to map.

Returns all the received elements evaluated through the function f.

4.7 | resource Lua instance

• Table with the following attributes:

– typeId: Resource type label (see resource_type).

– ID: Resource numeric id as a string.

– name: Resource name (see resource_type).

– states: Resource states (see resource state Lua instance).

– address: Resource address.

4.8 | resource state Lua instance

• Table with a (key,value) for each state variable of a resource (key is the name, value the
state).

BLGW | DRIVER DEVELOPMENT GUIDE 42
2016-10-10

4.9 | Advanced features

Ideally defining a specification results in a perfect mapping between the third party system and
BLGW resources, but it may not be always the case.

A common example that fails to map perfectly is one in which the third party system has two kinds
of button, with and without LED.

And when the third party sends an event notifying a button was pressed, there is no way to tell
if the pressed button has an LED or not. In other words, both types of buttons are addressed the
same way in the third party system.

In this case, the best way is to define two resource types: a button with state, and a button
without state. Then let the installer decide whether the button has an LED or not by choosing the
correct type.

To facilitate this there is a way to monitor events for multiple resource types and an address
corresponding to each resource type, so that when a button is pressed in our example system,
a monitor event can be generated for both types. The installer, through the capture interface,
should notice that a button was pressed and it is a "button" or a "button with LED".

To generate this special (multi type) monitor event, a monitorEvent generalization is provided.

Also, when inside process a message is received from the third party system notifying a press on
a button on the example mentioned, the driver should check whether there exists a resource of
both types and if not, generate the monitor event.

To avoid that repeated code the fireEvent does both, fires an event if the resource exists, and if
not, it generates the corresponding monitor event.

Now for this to work in the case of multiple possible resource types and addresses, a generalization
of fireEvent is provided.

For the analogous case in which a resource state update is intended instead of firing an event, a
generalization of setResourceState is provided.

Some third party systems provide, as a way to mitigate the ambiguity of the event messages, a
functionality to list all the defined resources on the system. This functionality could be available
directly through the integration protocol or by an export of their programming tool. BeoLink
Gateway provides Load resources in order for a driver to be able to take profit of this kind of
functionality, by importing both kinds of export and using the information within the capture and
listing the imported resources for "one click" add in the UI.

BLGW | DRIVER DEVELOPMENT GUIDE 43
2016-10-10

4.9.1 monitorEvent generalization

Generates a monitor event. It is defined as:

1 function monitorEvent(message,
2 resourceType_1, arguments_1,
3 ...,
4 resourceType_n, arguments_n)

Where:

• resourceType_i is the resource type of the ith resource.

• arguments_i is a table containing data to attach to the monitor event (in practice only the
resource address) for the ith resource.

4.9.2 fireEvent

Fires an event on a resource or generates a corresponding monitor event if no resource is found
which matches the given data. It is defined as:

1 function fireEvent(event, resourceType_i, address_i)

Where:

• event_i: event name for the ith event, e.g. "PRESS".

• resourceType_i: resource type of the ith resource (key in resource_types).

• address_i: address of the ith resource a, e.g. "0:1:3".

If a resource matching resourceType_i and address_i is found for one of the given tuples, it
fires the corresponding event. Otherwise, it generates a monitor event containing all the possible
tuples.

Multiple events in the same call is intended for events which could be valid for more than one
BLGW resource type. Until the type is determined by the installer (adding the correct resource)
only one entry shows up on the capture, as opposed to calling fireEvent multiple times wich
results in multiple entries on the capture.

BLGW | DRIVER DEVELOPMENT GUIDE 44
2016-10-10

4.9.3 setResourceState generalization

Sets a resource state or generates a corresponding monitor event if the resource does not exist. It
is defined as:

1 function setResourceState(resourceType_i, address_i)

Where:

• resourceType_i: Resource type of the ith resource (key in resource_types).

• address_i: The address for the ith resource, e.g. "0:1:3".

• arguments_i: Key,value list for arguments specified in resource_types[resourceType].states
(see resource_types) for the ith resource.

If a resource matching resourceType_i and address_i is found for one of the given tuples,
it updates the corresponding state. Otherwise it generates a monitor event containing all the
possible tuples.

Updating the state of a resource to its current state will not result in a state update in BLGW (will
not fire macros corresponding to a state update to that value nor be noticeable through system
monitor).

Updating state of multiple resources in the same call is intended for use when a state update is
received which could be valid for more than one BLGW resource type (same way as in fireEvent).

4.9.4 Load resources

In BLGW systems can provide a set of candidate resources called Loaded Resources as a means
to store resource information. This data can be used later by the user to add a resource, or to
improve the capture functionality in cases the protocol offers limited information in the events.

Loaded Resources provide information about resources either known to the system and directly
retrieved by a request, or loaded from a file (e.g. an export from the system programming tool).

To add Loaded Resources the driver must define the requestResources function and/or the parseRe-
sources function. The requestResources function allows the driver to send a request to the system
which response will arrive to the process function loop (and add loaded resources asynchronous-
ly), or to make a request to the system using a connection and/or protocol other than the one

BLGW | DRIVER DEVELOPMENT GUIDE 45
2016-10-10

used for the normal operation and process its response (and add loaded resources synchronously).
The parseResources function allows the system to process a file uploaded by the installer from
the UI and add loaded resources from it. In order for the driver to use the Loaded Resources
when generating events for the capture functionality two functions are provided: readAllLoad-
edResources and readLoadedResource. Loaded resources are represented in Lua by the Loaded
Resources structure, and can be added as resources using the addDiscoveredResource function.

As mentioned before, loaded resources can be used in two ways.

1. When adding new resources directly from Loaded Resources.

2. When the driver generates events for the capture functionality.

The usage of Loaded resources when adding new resources directly from the structure consists of
a list in the resources section of the BLGW UI which displays the available information for each
Loaded Resource in a row. Alongside the information an extra column allows the user to add the
Loaded Resource as a BLGW resource in one of two ways:

1. In the selected Area/Zone.

2. In a specific Area/Zone inferred from the areaName/zoneName fields of the Loaded Resource
in case a matching area and a matching zone are defined in BLGW.

Also the entire row gets disabled in case the Loaded Resource matches a defined BLGW resource.
The matching is by default done by comparing the resource address and type with the address and
type fields of the loaded resource, but can be defined by the driver by providing an implementation
for the equals function.

4.9.4.1 Loaded Resources structure Loaded resources contain information of resources in
the third party system intended to help the installer user add BLGW resources, either by capture
or directly selecting from the list of loaded resources for the system.

The Loaded Resource structure is a Lua table containing the following string fields:

• name: The proposed BLGW resource name.

• type: The proposed type for the BLGW resource.

• areaName: The proposed area name for the BLGW resource.

• zoneName: The proposed zone name for the BLGW resource.

• address: The proposed address for the BLGW resource.

BLGW | DRIVER DEVELOPMENT GUIDE 46
2016-10-10

• description: A description to help the installer understand which resource in the third
party system this loaded resource refers, other than the already included in the previous
fields (should be empty if there is nothing to add).

When adding BLGW resources directly from the loaded resources list in the UI, the name, type
and address are assigned to the created resource while the areaName and zoneName are option-
ally used. When in BLGW exists an area named exactly as the areaName field and it contains a
zone named exactly as the zoneName field, the UI shows alongside the "add" button an "add in
area/zone" one which results in adding the resource in the corresponding area and zone.

The description field can be used by the driver to give the installer additional information about
the resource on the third party system other than the included in the other fields, such as for
example a reference to its location (when area and zone are not enough), colour, etc.

4.9.4.2 Loaded Resources related functions The first two functions presented here: re-
questResources and parseResources, may be implemented by the driver to provide loaded re-
sources. Then the addDiscoveredResource function can be used within requestResources and
parseResources to add loaded resources, or even within the process function when the driver
adds loaded resources using the same connection/protocol used for normal operation (thus imple-
menting requestResources only to make a request to the third party system).

4.9.4.2.1 requestResources When the third party system provides a way to retrieve informa-
tion of all defined resources through its integration protocol, the driver can exploit the functionality
by defining this function. This functionality is triggered through a button in the BLGW program-
ming UI and to be available, the driver must provide an implementation for this function and
define driver_load_system_help in its specification.

There are two ways of implementing this function:

1. Asynchronous When the driver is using a TCP or RS232 connection for communication with
the third party system, and thus process function is listening messages from the third party to
generate events on BLGW. If the third party system integration protocol provides a request
through the same channel to list the defined resources, this function should only send the
request as the process function is already waiting for messages from the system. In this
case the function sends the request and returns, it is in the process function where the
Loaded Resources are added to BLGW when it receives the answer to the request, by calling
addDiscoveredResource function.

2. Synchronous Some systems provide a way to retrieve the defined resources directly from
the controller but through a different protocol, thus using a different connection or way of
connecting. This being the case as it does not interfere with the ongoing connection, the
Loaded Resources can be added within this function. The common use case for this is when

BLGW | DRIVER DEVELOPMENT GUIDE 47
2016-10-10

the third party system provides an URL where to download a file containing the project
resources through HTTP, not to be confused with the case of parseResources in which it’s
the installer who uploads a file.

This function must be defined as:

1 function requestResources()

And return two values, the first one is a Boolean indicating whether the operation succeeded or
not. The second return value is the number of added loaded resources if the first one is true, or
the error message if the first one is false.

4.9.4.2.2 parseResources Most third party devices are programmed through an external
desktop application in which a project is defined containing the resources and behaviour of the
system, and then transferred to the device. These applications sometimes handle meta informa-
tion not used in the device itself but useful for the programmer, thus it is not available through
the device integration protocol but could help the programmer when defining BLGW resources.
That being the case and if the application provides a way of exporting/saving the project to a file,
the driver can implement this function to load that file manually through BLGW UI. When driv-
er_load_file_help is defined in the driver specification the BLGW UI allows the installer to upload
the file, and when uploaded, BLGW executes this function using the file name and the file content
as arguments.

This function must be defined as:

1 function parseResources(data, fileName)

The data argument contains the file content as a string, and the fileName argument is the name
of the uploaded file.

The body of the function should parse the contents of data looking for resources and generate
loaded resources for the system.

The function must return two values, the first one is a Boolean indicating whether the operation
succeeded or not. The second return value is the number of added loaded resources if the first
one is true, or the error message if the first one is false.

BLGW | DRIVER DEVELOPMENT GUIDE 48
2016-10-10

4.9.4.2.3 addDiscoveredResource This function is the way for the driver to add a Loaded
Resource whether in parseResources, in requestResources or in process, and it is defined as:

1 function addDiscoveredResource(dr)

Where dr is a Loaded Resource.

4.9.4.2.4 readLoadedResource Allows the driver to request a single loaded resource given
its address and type, it is defined as:

1 function readLoadedResource(resourceType, address)

Where resourceType is the type of the loaded resource and address its address. If there is a
loaded resource for the system matching address and resource type, returns a Loaded Resources
structure, otherwise returns nil.

4.9.4.2.5 readAllLoadedResource Allows the driver to request a list of all the loaded re-
sources for a given type, it is defined as:

1 function readAllLoadedResources(resourceType)

Where resourceType is the type of the expected loaded resources. It returns a table which entries
are Loaded Resources matching the given type.

4.9.4.2.6 equals On certain circumstances such as when displaying loaded resources on the
UI to be added by the user, it is necessary to compare loaded resources with BLGW resources so
the user can easily notice whether a loaded resource was added as BLGW resource or not. This is
by default done by comparing address and type fields, a loaded resource is not presented to be
added if there exists a BLGW resource with the same type and address.

This behaviour does not necessary fit any third party system, for instance on a system providing
buttons, buttons with LED and LED’s, it might be expected for the driver to list given a button and
a LED, three resources: the button, the LED and the button with LED.

Once the user adds a BLGW resource by selecting one of them, there are two loaded resources
which should not show up any longer. If for example the user adds the button with LED, it makes
no sense to keep displaying the LED and the button resources alone.

BLGW | DRIVER DEVELOPMENT GUIDE 49
2016-10-10

Being that the case, the comparison between loaded resources and BLGW resources would not
fit as it would compare resource type, which is different, and address, which will also be different
but, probably, the address of the LED and the address from the button could be inferred from
the address of the button with LED. For that case this function is provided, a driver in need of
a more complex comparison between loaded resources and resource types should provide an
implementation of this.

The function must be defined as:

1 function equals(resource, loadedResource)

Where resource is a resource and loadedResource a Loaded Resource, and it must return true
or false.

As an example, an implementation of the function to compare address and type and also name
follows:

1 function equals(resource, loadedResource)
2 return
3 resource.address == loadedResource.address and
4 resource.typeId == loadedResource.type and
5 resource.name == loadedResource.name
6 end

4.9.4.3 Load resources examples As an example lets suppose a third party system which
controls buttons identifying them with unique numbers, organized by area and zone and having
user defined names and a description. But, the provided protocol for integration only uses the
numeric identifiers thus not providing names nor description or any other meta-data on the event
messages. As buttons are uniquely identified by a number, this number is the natural address to
use for BLGW resources. For the driver to be able to provide the friendly names and also zone and
area names to BLGW installer, Loaded Resources could be used.

The third party system has three possible ways of providing the meta-data not present in the
protocol which BLGW could exploit through the Lua driver, and here three examples are present-
ed, one for each. Notice that the driver may use one, two or (more rarely) the three proposed
solutions.

4.9.4.3.1 Example 1: File uploaded by the installer. Lets suppose the presented third party
system offers a desktop application to define the buttons and their meta-data, and the application
has an export tool which generates an CSV file containing a line for each defined button in the
following form:

BLGW | DRIVER DEVELOPMENT GUIDE 50
2016-10-10

<numeric id>, <name>, <area>, <zone>, <description>

There is an intended obvious mapping to BLGW loaded resources for the sake of the example, on
which we will use numeric id as address, name as name, area as areaName, zone as zoneName
and description as description.

The driver should define driver_load_file_help and parseResources to process this file as follows:

1 driver_load_file_help="To get the file from the system you should click export on the " ..
2 "example system programming tool."
3 function parseResources(data, fileName)
4 local name,extension= split(".", fileName)
5 if not extension or extension ~= ".csv" then
6 return false, "Incorrect file."
7 end
8 local lines= splitToList("\n", data)
9 for _,line in ipairs(lines) do

10 local addr, n, area, zone, desc= split(",", line)
11 addDiscoveredResource({
12 type= "Our button",
13 address= addr,
14 name= n,
15 areaName= area,
16 zoneName= zone,
17 description= desc
18 })
19 end
20 return true, #lines
21 end

4.9.4.3.2 Example 2: File retrieved directly from the third party system. Now lets sup-
pose the third party system uses a tcp connection for integration, which the driver uses to send
and receive events and commands, thus the driver has a tcp channel defined. Also, the third party
system provides an CSV file exactly like the presented on the example 1 but in this case, it is not
provided by a desktop app, but by the same system in the default HTTP port (80). That being the
case the driver should define driver_load_system_help and requestResources to get the file and
process it as follows:

1 driver_load_system_help="If the example system is connected to the network, " ..
2 "use this to request all the resources defined on it."
3 function requestResources()
4 local host= channel.attributes("host")
5 local ret, msg= urlGet("http://" .. host .. "/TheFile.csv", "", {})
6

7 if ret ~= true then
8 Error("Failed to request resources")
9 return false, "Failed to request resources to system."

BLGW | DRIVER DEVELOPMENT GUIDE 51
2016-10-10

10 else
11 return parseResources("TheFile.csv", msg)
12 end
13 end

Where parseResources is the one defined in the example 1.

4.9.4.3.3 Example 3: Loaded resources retrieved through integration protocol. In this
case lets suppose the same protocol used by the third party system to communicate events and
commands, provides an operation to retrieve all defined resources and their meta-data. That
being the case the driver should provide an implementation of requestResources which sends the
request to the system, while its response is processed in the process function alongside the other
messages from the third party system. Here we suppose that when the third party system receives
a message with the string "GET_ALL_RESOURCES", it answers with several messages, the first one
being "BEGIN_LIST_RESOURCES" and the last one "END_LIST_RESOURCES", while in the middle it
sends messages in the form "RESOURCE,<ID>,<TYPE>,<NAME>,<AREA>,<ZONE>,<COMMENT>"
for each defined resource. Similarly to the previous presented example here an implementation
for the requestResources is provided and driver_load_system_help is defined, but now also an
example implementation for process is provided as follows:

1 driver_load_system_help="If the example system is connected to the network, " ..
2 "use this to request all the resources defined on it."
3 function requestResources()
4 local err= channel.write("GET_ALL_RESOURCES\r\n")
5 if err ~= CONST.OK then
6 Error("Failed to request resources.")
7 return false, "Failed to request resources to system."
8 end
9 return true, -1

10 end
11

12 function process()
13 if (not setup_connection()) then
14 channel.retry("Failed to initialize system, retrying in 10 seconds", 10)
15 return CONST.HW_ERROR
16 end
17

18 driver.setOnline()
19 local lrCount= 0
20 while channel.status() do
21 local err, msg= channel.readUntil("\r\n")
22 if err ~= CONST.OK then
23 channel.retry("Communication failed, retrying in 10 seconds", 10)
24 return err
25 end
26 if isEvent(msg) then
27 processEvent(msg)
28 elseif msg == "BEGIN_LIST_RESOURCES" then

BLGW | DRIVER DEVELOPMENT GUIDE 52
2016-10-10

29 Info("Starting to add loaded resources")
30 elseif msg == "END_LIST_RESOURCES" then
31 Info(tostring(lrCount) .. " resources were loaded")
32 lrCount= 0
33 else
34 local cmd, id, rtype, rname, area, zone, comment= split(msg)
35 if cmd == "RESOURCE" then
36 local loadedResource= {
37 address= id,
38 type= sysTypeToBLGW(rtype),
39 name= rname,
40 areaName= area,
41 zoneName= zone,
42 description= comment
43 }
44 addDiscoveredResource(loadedResource)
45 lrCount= lrCount + 1
46 end
47 end
48 end
49 end

4.9.5 Driver for systems providing Rest API for integration

Some systems provide a Rest API instead of a protocol over an established connection, for inte-
gration with such systems a CUSTOM channel should be used to prevent BLGW from trying to
connect to the system and URL functions should be used instead of channel based ones. The
main difference when working with a Rest API is within the process function on which instead of
establishing a connection with the third party system and keeping it alive while receiving messages
from the system, some kind of polling should be done. The way to implement a polling within
process is by making all the needed requests at first, and then call channel.retry before returning
CONST.POLLING telling BLGW to call process again after some seconds. For example:

1 ...
2

3 driver_channels= {
4 CUSTOM("my connection", "connection help", { stringArgument("_baseurl",

"http://192.168.1.1/", {})})↪→

5 }
6

7 ...
8

9 function process()
10 local baseurl= channel.attributes("_baseurl")
11 for res in readAllResources("My resource type") do
12 local success, msg= urlGet(baseurl+res.address, "", {})
13 if success then
14 myUpdateResourceStateFromResponse(res, msg)
15 end
16 end

BLGW | DRIVER DEVELOPMENT GUIDE 53
2016-10-10

17

18 -- poll state again in 10 seconds
19 channel.retry("", 10)
20 return CONST.POLLING
21 end

Some systems also provide a Rest streaming API to request state, in that case the stream URL
functions should be used and the driver code should look much like non Rest drivers as process
will be listening on a streaming request for state changes instead of polling.

4.9.5.1 URL functions As a way to interact with HTTP servers easily without needing to im-
plement the protocol directly over a TCP connection, functions are provided to solve the most
common cases urlGet urlPut and urlPost to make an HTTP GET, HTTP PUT and HTTP POST request
respectively.

4.9.5.1.1 urlGet Performs an HTTP GET request to the given URL, it is defined as:

1 function urlGet(url, data, headers)

Where url is the URL to perform the GET operation, data is a string with the parameters, and
headers is a table containing the corresponding headers for the request. data and headers are
optional (as normally in Lua, if you want to set headers you must set data).

Returs two values, a flag indicating success and the response.

For example to perfomr an HTTP GET on myserver.com with argument arg=28 on port 1892,
setting ="User-Agent"= header to BLGW :

1 local ok, response= urlGet("http://myserver.com:1892/, "arg=28", { ["User-Agent"]= "BLGW" })
2 if ok then
3 processResponse(response)
4 end

Or to get from myserver.com on port 80:

1 local ok, response= urlGet("http://myserver.com")
2 if ok then
3 processResponse(response)
4 end

BLGW | DRIVER DEVELOPMENT GUIDE 54
2016-10-10

To set headers but no data:

1 local ok, response= urlGet("http://myserver.com", "", { ["User-Agent"]= "BLGW" })
2 if ok then
3 processResponse(response)
4 end

4.9.5.1.2 urlPut Performs an HTTP PUT request to the given URL, it is defined as:

1 function urlPut(url, data, headers)

Where url is the URL to perform the PUT operation, data is a string with the parameters, and
headers is a table containing the corresponding headers for the request. data and headers are
optional (as normally in Lua, if you want to set headers you must set data).

Returs two values, a flag indicating success and the response.

4.9.5.1.3 urlPost Performs an HTTP POST request to the given URL, it is defined as:

1 function urlPost(url, data, headers)

Where url is the URL to perform the POST operation, data is a string with the parameters, and
headers is a table containing the corresponding headers for the request.. data and headers are
optional (as normally in Lua, if you want to set headers you must set data).

Returs two values, a flag indicating success and the response.

4.9.5.2 Streaming URL functions Streaming URL functions provide a way to interact with
REST streaming APIs which some systems provide in order to receive real time updates, without
polling. BLGW’s Rest streaming support is based on Firebase’s Streaming from the REST API, and
being non standard it may not fit your system API. Nevertheless it should work given that the Rest
streaming API consists on passing some kind of argument or header to an HTTP request resulting
on that request never returning, but sending data as it is generated.

https://www.firebase.com/docs/rest/api/#section-streaming

BLGW | DRIVER DEVELOPMENT GUIDE 55
2016-10-10

4.9.5.2.1 urlStreamCreate Creates a streaming request for a given url, it is defined as:

1 function urlStreamCreate(request)

Where request is a table containing the following fields:

• type: the type of the request, must be "GET" or "POST".

• url: the URL to perform the operation.

• headers: a table containing the headers for the request.

• arguments: a string containing the parameters for the request.

Returns three values:

• A boolean flag indicating success.

• A table to identify the created stream on the other operations, it has an id field that uniquely
identifies the stream but also the url and type fields of the request table which created it
to allow easier identification.

• A string with information in case of error, nil in case of success.

Once a stream is created it can be used as argument for the following functions and when no
longer needed it must be released calling urlStreamDelete.

4.9.5.2.2 urlStreamWait Blocks the caller until there is data or an error on the given stream,
it is defined as:

1 function urlStreamWait(timeout, stream_1, ..., stream_N)

Where stream_1 to stream_N are the tables returned by successful calls to urlStreamCreate.
timeout should be set to a number of seconds the function should wait for data before returning
a timeout error (0 means infinity).

Returns three values:

• A boolean flag indicating success.

BLGW | DRIVER DEVELOPMENT GUIDE 56
2016-10-10

• A table containing the list of stream id’s that have news, and a function has(stream) which
returns a boolean for a given stream indicating whether it has news or not.

• A table for error cases with the following fields:

– type: can be timeout or interrupt, timeout menans the timeout was reached and
interrupt means urlStreamInterrupt was called.

– userdata: only present when type is interrupt, a user defined table set in the call to
urlStreamInterrupt.

4.9.5.2.3 urlStreamRead Retrieves data from a given stream, it is defined as: #+begin_src
lua function urlStreamRead(stream) #+end Where stream is a table returned by a successful call
to urlStreamCreate. Returns three values:

• A boolean flag indicating success.

• A table containing the results with the following fields:

– code: the response code in case of success.

– url: the url of the request.

– data: the returned data.

– id: the stream identifier.

– finalized: a boolean indicating whether or not the request ended.

• A string with a message in case of error.

4.9.5.2.4 urlStreamDelete Releases the resources of a given stream returned by a successful
call to urlStreamCreate, it is defined as:

1 function urlStreamDelete(stream)

Where stream is the stream to be deleted. Returns two values:

• A boolean indicating success.

• A string message in case of error.

BLGW | DRIVER DEVELOPMENT GUIDE 57
2016-10-10

4.9.5.2.5 urlStreamInterrupt Interrupt an ongoing call to urlStreamWait, it is defined as:

1 function urlStreamInterrupt(userData)

Where userData is a user defined table to be returned in the interrupted call to urlStreamWait in
case of success.

Returns two values:

• A boolean indicating success.

• A string message in case of error.

4.9.5.2.6 Rest streaming examples

1. Basic example For a service providing a boolean state according to the Firebase Rest stream-
ing API at http://www.somesite.com/state, we build a non standard resource type to
hold that state and keep it in sync using our rest streaming API.

1 driver_channels = {
2 CUSTOM("custom channel", "Connection to the site.", {})
3 }
4

5 local url= "http://www.somesite.com/state"
6 local headers= {["Accept"]= "text/event-stream"}
7

8 resource_types = {
9 ["Our state resource"] = {

10 standardResourceType = "_OUR_CUSTOM_STATE",
11 address = stringArgumentRegEx("address","","",
12 { context_help= "Force an address to forbid more than one resource." }),
13 states = { boolArgument("_STATE", false, { context_help= "this is our state" }) },
14 context_help = "Our state"
15 }
16 }
17

18 ...
19

20 function process()
21 local request= {}
22 request.arguments= ""
23 request.url= url
24 request.headers= headers
25 request.type= "GET"
26 local ok, stream, errmsg= urlStreamCreate(request)
27 if ok then

http://www.somesite.com/state

BLGW | DRIVER DEVELOPMENT GUIDE 58
2016-10-10

28 driver.setOnline()
29 while ok do
30 local result, err
31 ok, result, err= urlStreamWait(10, stream)
32 if ok and result.has(stream) then
33 ok, result, errmsg= urlStreamRead(stream)
34 local data= string.gsub(result.data, "\n", "") -- throw away \n
35 if string.match(data, "event: put") then
36 local putData= tonumber(string.match(data, "event: put.*data:

{\"state\":(.*)}$"))↪→

37 setResourceState("Our state resource", "", { "_STATE" = putData })
38 end
39 end
40 end
41 end
42

43 driver.setOffline()
44 channel.retry("Something went wrong, retrying in 20 seconds", 20)
45 return CONST.TIMEOUT
46 end
47

48 ...

2. Advanced example Now our previous example’s service provides ten different state values at
http://www.somesite.com/N where N is 0 to 9 for each state respectively. So we change
the url from:

1 local url= "http://www.somesite.com/state"

To:

1 local url= "http://www.somesite.com/"

The address from:

1 stringArgumentRegEx("address","","",{ context_help= "Force empty to allow only one."})

To:

1 stringArgumentRegEx("address", "", "[0-9]", { context_help= "id of the resource." })

The urlStreamCreate from:

1 local request= {}
2 request.arguments= ""
3 request.url= url
4 request.headers= headers
5 request.type= "GET"
6 local ok, stream, errmsg= urlStreamCreate(request)

To:

http://www.somesite.com/N

BLGW | DRIVER DEVELOPMENT GUIDE 59
2016-10-10

1 for i= 0,9 do
2 local request= {}
3 request.arguments= ""
4 request.url= url + tostring(i)
5 request.headers= headers
6 request.type= "GET"
7 local ok, stream, errmsg= urlStreamCreate(request)
8 end

And finally the setResourceState call from:

1 setResourceState("Our state resource", "", { "_STATE" = putData })

To:

1 setResourceState("Our state resource",
2 result.url:sub(#result.url, #result.url),
3 { "_STATE" = putData })

And it works like a charm, but lets say the user has to pay for each resource its state is
requested, then we need to be able to only request the state of defined resources, so instead
of creating streams for each number we only create one for each defined resource:

1 for resoruce in readAllResources("_OUR_CUSTOM_STATE") do
2 local request= {}
3 request.arguments= ""
4 request.url= url + tostring(i)
5 request.headers= headers
6 request.type= "GET"
7 local ok, stream, errmsg= urlStreamCreate(request)
8 end

Now we only do the needed requests, the capture won’t show the resources as there won’t
be any resource state update for non defined resources, but that can be solved in some other
way (e.g. see Loaded resources). The problem is that if the installer adds a new resource
while online, its state won’t be synchronized until next time a rest streaming request fails.
This is what urlStreamInterrupt is meant for, each time a resource is added or updated, we
call urlStreamInterrupt and for the sake of simplicity at process we return to start over in
that case:

1 driver_channels = {
2 CUSTOM("custom channel", "Connection to the site.", {})
3 }
4

5 local url= "http://www.somesite.com/"
6 local headers= {["Accept"]= "text/event-stream"}
7

8 resource_types = {
9 ["Our state resource"] = {

10 standardResourceType = "_OUR_CUSTOM_STATE",
11 address= stringArgumentRegEx("address", "", "[0-9]", {context_help= "id of the

resource."}),↪→

BLGW | DRIVER DEVELOPMENT GUIDE 60
2016-10-10

12 states = { boolArgument("_STATE", false, { context_help= "this is our state" }) },
13 context_help = "Our state"
14 }
15 }
16

17 ...
18

19 function process()
20 local myStreams= {}
21 for resoruce in readAllResources("_OUR_CUSTOM_STATE") do
22 local request= {}
23 request.arguments= ""
24 request.url= url + tostring(i)
25 request.headers= headers
26 request.type= "GET"
27 local ok, stream, errmsg= urlStreamCreate(request)
28 if not ok then
29 cleanup(myStreams)
30 driver.setOffline()
31 channel.retry("Failed to create stream, retrying in 20 seconds", 20)
32 return CONST.TIMEOUT
33 else
34 table.insert(myStreams, stream)
35 end
36 end
37 if ok then
38 driver.setOnline()
39 while ok do
40 local result, err
41 ok, result, err= urlStreamWait(10, stream)
42 if ok then
43 for _, stream in ipairs(myStreams) do
44 if result.has(stream) then
45 ok, result, errmsg= urlStreamRead(stream)
46 local data= string.gsub(result.data, "\n", "") -- throw away \n
47 if string.match(data, "event: put") then
48 local putData= string.match(data, "event: put.*data: {\"state\":(.*)}$")
49 putData= tonumber(putData)
50 setResourceState(
51 "Our state resource",
52 result.url:sub(#result.url, #result.url),
53 { "_STATE" = putData }
54)
55 end
56 end
57 end
58 else if err.type == "interrupt" then
59 cleanup(myStreams)
60 channel.retry("Resources changed, will start over in 5 seconds to keep it

simple.", 5)↪→

61 reutrn CONST.TIMEOUT
62 end
63 end
64 end
65 cleanup(myStreams)
66 driver.setOffline()

BLGW | DRIVER DEVELOPMENT GUIDE 61
2016-10-10

67 channel.retry("Something went wrong or a resource was added, retrying in 20 seconds",
20)↪→

68 return CONST.TIMEOUT
69 end
70

71 function cleanup(myStreams)
72 for _, stream in ipairs(myStreams) do
73 urlStreamDelete(stream)
74 end
75 end
76

77 ...
78

79 function onResourceDelete(resource)
80 urlStreamInterrupt({})
81 end
82

83 function onResourceUpdate(resource)
84 urlStreamInterrupt({})
85 end
86

87 function onResourceAdd(resource)
88 urlStreamInterrupt({})
89 end
90

91 ...

BLGW | DRIVER DEVELOPMENT GUIDE 62
2016-10-10

5 | Standard Resoure Types
. .

5.1 | Glossary

Resource An abstraction inside BLGW architecture that represents a physical or logical entity,
such as a button on a keypad.

SRT Standard Resource Type

BLGW BeoLink Gateway

MLGW Masterlink Gateway MkII

MLGW Protocol Control protocol to interact with MLGW.

GPIO General Purpose Input / Output, a signal with 2 logical levels (high/low, on/off, true/false,
etc.).

HIP Home Integration Protocol

Driver Software inside BLGW or MLGW that supports a particular 3rd party system, including
connection and interaction with that system, and transforming that interaction into the
gateway’s internal representation.

5.2 | Standard resource types

5.2.1 Motivation and background

The specific functionality and features supported by 3rd party systems is very varied.

For example, something as simple as a button, may be considered differently on different systems:

• May support a simple PRESS event, or full PRESS, HOLD, RELEASE sequence, DUBLE/MULTI
TAP, or LONG PRESS, or simply TRUE / FALSE state.

• May have an associated LED indicator, which you can query or even control.

• May be considered as part of a keypad, or as a completely independent entity.

• May just generate an event when pressed, or can also be commanded to emulate user
activity.

BLGW | DRIVER DEVELOPMENT GUIDE 63
2016-10-10

MLGW drivers considered all the peculiarities of 3rd party systems, thus providing maximum flexi-
bility for defining macros.

However, it was not possible to provide a common representation or functionality common to
all buttons, and therefore the user interfaces (such as BeoLink App or the Web Panel) could not
provide access to all resources, buttons included. Moreover, an abstraction called virtual button
was defined to be able to call macros from the user interfaces or controllers via MLGW protocol.

BLGW introduces the concept of standard resource types. Each type provides a common func-
tionality that should be supported by all drivers.

For example, a standard button provides PRESS, HOLD and RELEASE actions, independent of
the 3rd party system features. Macros can now respond to any button in the system, and user
interfaces can represent a button, without caring for the specifics of the actual hardware.

This minimum functionality can be extended by drivers in order to accommodate extra features.

5.2.2 Defined SRTs

Driver implementations must try to match all their resources into the defined SRTs.

A driver is allowed to define new types, or to extend the functionality of a SRT.

By convention, all SRTs and their standard actions are identified by a symbol. For extensions to
SRTs, or for new types, the corresponding symbols start with an underscore. For example, the
standard BUTTON and PRESS, or the non-standard _MULTI TAP.

The following are the SRTs already defined:

SRT Symbol
Button BUTTON
Dimmer DIMMER
Shade SHADE
Thermostat 1 setpoint THERMOSTAT_1SP
Thermostat 2 setpoints THERMOSTAT_2SP
GPIO GPIO
A/V renderer AV_RENDERER

BLGW | DRIVER DEVELOPMENT GUIDE 64
2016-10-10

5.2.3 State, commands and events

Resources can keep one or more state attributes that can be queried at any time. For example,
the current level of a light dimmer is a state attribute.

A command is an action that BLGW performs on the resource. For example, changing the channel
on a TV.

An event is an indication that some activity has occurred on a resource. For example, a button has
been pressed.

In many cases, events and commands coincide. Such is the case of a button press, which is both
a command and an event.

Command and event interactions may contain attributes.

State changes in a resource generate a STATE_UPDATE event, which contains all state attributes.

5.2.4 Mandatory functionality

Each standard resource type will have a minimum mandatory functionality implemented by the
driver.

This means that if the driver exposes a resource as one of the standard types defined, it is required
to implement a minimum set of commands, events and state information.

Mandatory functions are marked with (M) in the listings below.

5.3 | Identification of a command or event

A resource is uniquely identified by the combination of area, zone, type and name, and is repre-
sented uniquely in string form as a path. For example:

Guest house/Kitchen/AV_RENDERER/BeoVision/

An event or command is represented by a resource path followed by an action (event or com-
mand), optionally followed by attributes and values.

BLGW | DRIVER DEVELOPMENT GUIDE 65
2016-10-10

Example of a simple command, and a command with 2 attributes:

Guest house/Kitchen/BUTTON/Lights ON/PRESS
Guest house/Kitchen/AV_RENDERER/BeoVision/Beo4 command?Command=TV&

Destination selector=Video_source

Example state change event, with 1 attribute.

Guest house/Kitchen/BUTTON/Lights ON/STATE_UPDATE?STATE=1

Example generic event matching all state updates (see documentation for generic programming):

//*/*/STATE_UPDATE

5.4 | BUTTON type

Commands and events:

Symbol Type Description
PRESS (M) evt / cmd Button press.
HOLD evt / cmd Button being held pressed.
RELEASE evt / cmd Button released.
TAP command Button press and immediate release.
STATE_UPDATE event State update notification.

Attributes:

Attribute Used by Description
STATE STATE_UPDATE Button feedback (LED).

The driver must ensure that button events follow the sequences:

• PRESS + RELEASE if the button is not being held

• PRESS + HOLD + RELEASE if the button is held. Only one HOLD event should be generated.

BLGW | DRIVER DEVELOPMENT GUIDE 66
2016-10-10

The state of a button is an integer value in the range 0 to 9 with 0 meaning OFF. 1 meaning ON.
Optional values greater than 1 indicate other ON states and are driver dependent.

Example command:

Upstairs/Bedroom/BUTTON/Lights on/PRESS

Example events:

Social/Entrance/BUTTON/Vacation/RELEASE
Social/Entrance/BUTTON/Vacation/STATE_UPDATE?STATE=1

5.5 | DIMMER type

Commands and events:

Symbol Type Description
SET (M) command Set a dimming level.
SET COLOR command Set the color value for the dimmer.
STATE_UPDATE event State update notification.

Attributes:

Attribute Used by Description
LEVEL SET Requested dimmer level.
COLOR SET COLOR Requested color value.
LEVEL STATE_UPDATE Dimmer level feedback.
COLOR STATE_UPDATE Color value feedback.

Dimming levels are an integer value from 0 (off) to 100 (fully on); this is valid both for the LEVEL
state attribute and the SET command.

Color value is specified as a string containing the Hue, Saturation and Brightness values, in the
format hsv(H,S,B)(https://en.wikipedia.org/wiki/HSL_and_HSV).

The H value is an integer from 0 to 360, and both S and B are an integer from 0 to 100.

Example commands:

https://en.wikipedia.org/wiki/HSL_and_HSV

BLGW | DRIVER DEVELOPMENT GUIDE 67
2016-10-10

Upstairs/Bedroom/DIMMER/Downlight/SET?LEVEL=32
Upstairs/Bedroom/DIMMER/Downlight/SET COLOR?COLOR=hsv(120,66,87)

Example events:

Upstairs/Bedroom/DIMMER/Downlight/STATE_UPDATE?LEVEL=32&COLOR=hsv(120,66,87)

5.6 | SHADE type

Commands and events:

Symbol Type Description
RAISE (M) cmd Shade starts raising.
LOWER (M) cmd Shade starts lowering.
STOP (M) cmd Shade stops.
RAISE evt Shade starts raising.
LOWER evt Shade starts lowering.
STOP evt Shade stops.
PRESET command Set preset level.
SET command Set specific level.
STATE_UPDATE event State update notification.

Attributes:

Attribute Used by Description
NUM PRESET Requested shade preset.
LEVEL SET Requested shade level.
LEVEL STATE_UPDATE Dimmer level feedback.

The level parameter is an integer between 0 and 100. A level of 0 indicates a closed shade
(minimum natural lighting), or lowered awning. The level 100 corresponds to an open shade, or
raised awning (maximum lighting).

Preset numbers supported are 0 through 30.

Example command:

Upstairs/Bedroom/SHADE/*/PRESET?NUM=3

BLGW | DRIVER DEVELOPMENT GUIDE 68
2016-10-10

Example event:

Upstairs/Bedroom/SHADE/Left/STATE_UPDATE?LEVEL=45

5.7 | THERMOSTAT_1SP type

Commands and events:

Symbol Type Description
SET SETPOINT (M) command Set setpoint.
SET MODE (M) command Set operation mode.
SET FAN AUTO (M) command Set fan auto on/off.
STATE_UPDATE event State update notification.
SET SCHEDULE command Set schedule operation on/off.
SET ECO MODE command Set echo mode on/off.

Attributes:

Attribute Used by Description
VALUE All SET commands Value to set.
TEMPERATURE (M) STATE_UPDATE Local temperature readout.
SETPOINT (M) STATE_UPDATE Setpoint.
MODE (M) STATE_UPDATE Operation mode.
FAN AUTO (M) STATE_UPDATE Fan auto mode on/off.
SCHEDULE STATE_UPDATE Schedule operation on/off.
ECO MODE STATE_UPDATE Eco mode on/off.

All on/off values are represented by true and false respectively.

Temperature settings are represented as decimal numbers (with optional decimal point).

Operation mode is one of:

Mode Description
Off System off.
Heat Heat only mode.
Cool Cool only mode.
Auto Auto heat/cool.
Em.Heat Emergency heat mode.

BLGW | DRIVER DEVELOPMENT GUIDE 69
2016-10-10

5.8 | THERMOSTAT_2SP type

Commands and events:

Symbol Type Description
SET HEAT SP (M) command Set heat setpoint.
SET COOL SP (M) command Set cool setpoint.
SET MODE (M) command Set operation mode.
SET FAN AUTO (M) command Set fan auto on/off.
STATE_UPDATE event State update notification.
SET SCHEDULE command Set schedule operation on/off.
SET ECO MODE command Set echo mode on/off.

Attributes:

Attribute Used by Description
VALUE All SET commands Value to set.
TEMPERATURE (M) STATE_UPDATE Local temperature readout.
HEAT SP (M) STATE_UPDATE Heat setpoint.
COOL SP (M) STATE_UPDATE Cool setpoint.
MODE (M) STATE_UPDATE Operation mode.
FAN AUTO (M) STATE_UPDATE Fan auto mode on/off.
SCHEDULE STATE_UPDATE Schedule operation on/off.
ECO MODE STATE_UPDATE Eco mode on/off.

All on/off values are represented by true and false respectively.

Temperature settings are represented as decimal numbers (with optional decimal point).

Operation mode is one of:

Mode Description
Off System off.
Heat Heat only mode.
Cool Cool only mode.
Auto Auto heat/cool.
Em.Heat Emergency heat mode.

BLGW | DRIVER DEVELOPMENT GUIDE 70
2016-10-10

5.9 | GPIO type

Commands and events:

Symbol Type Description
SET command Set value.
PULSE command Set on then off.
TOGGLE command Toggle current value.
STATE_UPDATE event State update notification.

Attributes:

Attribute Used by Description
VALUE SET Value of GPIO, true / false.
STATE STATE_UPDATE Value of GPIO, true / false.

Example command:

Garden/Pool/GPIO/Filter/SET?VALUE=true

5.10 | AV_RENDERER type

Commands and events:

Symbol Type Description
Beo4 command command IR simul low with default attributes.
Beo4 advanced command command Complete IR simul low.
All standby cmd / evt All products standby.
Light event Light function event.
Control event Control function event.

Attributes:

Attribute Used by Description
Action Light and Control Key action.
Command Light, Control, B4, B4 adv Key code.
Destination selector B4 and B4 adv Destination code.
Link B4 adv Link code.
Secondary source B4 adv Unit code.

BLGW | DRIVER DEVELOPMENT GUIDE 71
2016-10-10

Key actions can be one of Press, Continue or Key release.

Command key codes are one of:

• STANDBY, SLEEP, TV, RADIO, AUX_V_DTV2, AUX_A, VTR_V.MEM_DVD2, CDV_DVD, CAMCORDER_CAMERA,
TEXT, V_SAT_DTV, PC, DOORCAM_V.AUX2, TP1_A.MEM, CD, PH_N.RADIO, TP2_N.MUSIC_USB,
CD2_JOIN, VTR2_V.MEM2_DVD2, MEDIA, WEB, PHOTO, USB2, SERVER, NET, PICTURE_IN_PICTURE_P-AND-P

• CIFFER_0_Digit_0, CIFFER_1_Digit_1, CIFFER_2_Digit_2, CIFFER_3_Digit_3, CIFFER_4_Digit_4,
CIFFER_5_Digit_5, CIFFER_6_Digit_6, CIFFER_7_Digit_7, CIFFER_8_Digit_8, CIFFER_9_Digit_9

• STEP_UP, STEP_DW, REWIND, REC_RETURN_RETURN, WIND, GO_PLAY, STOP, CNTL_WIND_Yellow,
CNTL_REWIND_Green, CNTL_STEP_UP_Blue, CNTL_STEP_DW_Red

• MUTE, PICTURE_TOGGLE_P.MUTE, PICTURE_FORMAT_FORMAT, SOUND_SPEAKER, MENU, ANALOG_UP_1_Volume_UP,
ANALOG_DW_1_Volume_DOWN, CINEMA_ON, CINEMA_OFF, OPEN_STAND_STAND

• CLEAR, STORE, RESET_INDEX, BACK, CMD_A_MOTS, GOTO_TRACK_LAMP, SHOW_CLOCK_CLOCK,
EJECT, RECORD, MEDIUM_SELECT_SELECT, TURN_SOUND, EXIT

• CNTL_0_SHIFT-0_EDIT, CNTL_1_SHIFT-1_RANDOM, CNTL_2_SHIFT-2, CNTL_3_SHIFT-3_REPEAT,
CNTL_4_SHIFT-4_SELECT, CNTL_5_SHIFT-5, CNTL_6_SHIFT-6, CNTL_7_SHIFT-7, CNTL_8_SHIFT-8,
CNTL_9_SHIFT-9, C_REWIND_Continue_REWIND, C_WIND_Continue_WIND, C_STEP_UP_Continue_step_UP,
C_STEP_DW_Continue_step_DOWN, CONTINUE_Continue_(other_keys), CNTL_C_REWIND_Continue_Green,
CNTL_C_WIND_Continue_Yellow, CNTL_C_STEP_UP_Continue_Blue, CNTL_C_STEP_DW_Continue_Red,
KEY_RELEASE

• FUNCTION_1, FUNCTION_2, to FUNCTION_40

• SELECT_Cursor_SELECT, CURSOR_UP, CURSOR_DW, CURSOR_LEFT, CURSOR_RIGHT

Destination code may be Audio_source, Video_source or V.TAPE/V.MEM.

Link code is one of Local_Default_source or Remote_source_(main_room).

Secondary source (unit) code may be one of DEFAULT or V.TAPE2_DVD2_V.MEM2.

	Introduction
	Glossary

	Driver structure
	Representation of resources
	Specification section
	Functionality section

	Driver specification
	Generic field
	Generic field examples

	Generic field builders
	stringArgument
	stringArgumentRegEx
	stringArgumentMinMax
	roStringArgument
	numericArgument
	roNumericArgument
	passwordArgument
	boolArgument
	floatArgument
	floatArgumentMinMax
	enumArgument
	temperatureArgument

	resource_types
	resource_type

	driver_label
	driver_help
	driver_channels
	TCP constructor
	RS232 constructor
	CUSTOM constructor

	driver_load_system_help
	driver_load_file_help
	Specification example

	Driver functionality
	process
	executeCommand
	onResourceDelete
	onResourceUpdate
	onResourceAdd
	Tools
	The driver table
	The channel table
	The CONST table
	fireEvent
	setResourceState
	monitorEvent
	readResource
	readAllResources
	Log
	utils

	resource Lua instance
	resource state Lua instance
	Advanced features
	monitorEvent generalization
	fireEvent
	setResourceState generalization
	Load resources
	Driver for systems providing Rest API for integration

	Standard Resoure Types
	Glossary
	Standard resource types
	Motivation and background
	Defined SRTs
	State, commands and events
	Mandatory functionality

	Identification of a command or event
	BUTTON type
	DIMMER type
	SHADE type
	THERMOSTAT_1SP type
	THERMOSTAT_2SP type
	GPIO type
	AV_RENDERER type

