RoseTTAFold-All-Atom/rf2aa/util.py

1045 lines
40 KiB
Python
Raw Normal View History

2024-03-05 06:38:17 +00:00
import sys
import warnings
import assertpy
import numpy as np
import random
import torch
import warnings
from assertpy import assert_that
import networkx as nx
import itertools
from itertools import combinations
from collections import OrderedDict, Counter
from openbabel import openbabel
from scipy.spatial.transform import Rotation
from icecream import ic
from rf2aa.chemical import ChemicalData as ChemData
from rf2aa.kinematics import get_atomize_protein_chirals, generate_Cbeta
from rf2aa.scoring import *
def random_rot_trans(xyz, random_noise=20.0, deterministic: bool = False):
if deterministic:
random.seed(0)
np.random.seed(0)
torch.manual_seed(0)
torch.cuda.manual_seed(0)
# xyz: (N, L, 27, 3)
N, L = xyz.shape[:2]
# pick random rotation axis
R_mat = torch.tensor(Rotation.random(N).as_matrix(), dtype=xyz.dtype).to(xyz.device)
xyz = torch.einsum('nij,nlaj->nlai', R_mat, xyz) + torch.rand(N,1,1,3, device=xyz.device)*random_noise
return xyz
def get_prot_sm_mask(atom_mask, seq):
"""
Parameters
----------
atom_mask : (..., L, Natoms)
seq : (L)
Returns
-------
mask : (..., L)
"""
sm_mask = is_atom(seq).to(atom_mask.device) # (L)
# Asserting that atom_mask is full for masked regions of proteins [should be]
has_backbone = atom_mask[...,:3].all(dim=-1)
# has_backbone_prot = has_backbone[...,~sm_mask]
# n_protein_with_backbone = has_backbone.sum()
# n_protein = (~sm_mask).sum()
#assert_that((n_protein/n_protein_with_backbone).item()).is_greater_than(0.8)
mask_prot = has_backbone & ~sm_mask # valid protein/NA residues (L)
mask_ca_sm = atom_mask[...,1] & sm_mask # valid sm mol positions (L)
mask = mask_prot | mask_ca_sm # valid positions
return mask
def center_and_realign_missing(xyz, mask_t, seq=None, same_chain=None, should_center: bool = True):
"""
Moves center of mass of xyz to origin, then moves positions with missing
coordinates to nearest existing residue on same chain.
Parameters
----------
seq : (L)
xyz : (L, Natms, 3)
mask_t : (L, Natms)
same_chain : (L, L)
Returns
-------
xyz : (L, Natms, 3)
"""
L = xyz.shape[0]
if same_chain is None:
same_chain = torch.full((L,L), True)
# valid protein/NA/small mol. positions
if seq is None:
mask = torch.full((L,), True)
else:
mask = get_prot_sm_mask(mask_t, seq)
# center c.o.m of existing residues at the origin
if should_center:
center_CA = xyz[mask,1].mean(dim=0) # (3)
xyz = torch.where(mask.view(L,1,1), xyz - center_CA.view(1, 1, 3), xyz)
# move missing residues to the closest valid residues on same chain
exist_in_xyz = torch.where(mask)[0] # (L_sub)
same_chain_in_xyz = same_chain[:,mask].bool() # (L, L_sub)
seqmap = (torch.arange(L, device=xyz.device)[:,None] - exist_in_xyz[None,:]).abs() # (L, L_sub)
seqmap[~same_chain_in_xyz] += 99999
seqmap = torch.argmin(seqmap, dim=-1) # (L)
idx = torch.gather(exist_in_xyz, 0, seqmap) # (L)
offset_CA = torch.gather(xyz[:,1], 0, idx.reshape(L,1).expand(-1,3))
has_neighbor = same_chain_in_xyz.all(-1)
offset_CA[~has_neighbor] = 0 # stay at origin if nothing on same chain has coords
xyz = torch.where(mask.view(L, 1, 1), xyz, xyz + offset_CA.reshape(L,1,3))
return xyz
# note: needs consistency with chemical.py
def is_protein(seq):
return seq < ChemData().NPROTAAS
def is_nucleic(seq):
return (seq>=ChemData().NPROTAAS) * (seq <= ChemData().NNAPROTAAS)
# fd hacky
def is_DNA(seq):
return (seq>=ChemData().NPROTAAS) * (seq < ChemData().NPROTAAS+5)
# fd hacky
def is_RNA(seq):
return (seq>=ChemData().NPROTAAS+5) * (seq < ChemData().NNAPROTAAS)
def is_atom(seq):
return seq > ChemData().NNAPROTAAS
# build a frame from 3 points
#fd - more complicated version splits angle deviations between CA-N and CA-C (giving more accurate CB position)
#fd - makes no assumptions about input dims (other than last 1 is xyz)
def rigid_from_3_points(N, Ca, C, is_na=None, eps=1e-4):
dims = N.shape[:-1]
v1 = C-Ca
v2 = N-Ca
e1 = v1/(torch.norm(v1, dim=-1, keepdim=True)+eps)
u2 = v2-(torch.einsum('...li, ...li -> ...l', e1, v2)[...,None]*e1)
e2 = u2/(torch.norm(u2, dim=-1, keepdim=True)+eps)
e3 = torch.cross(e1, e2, dim=-1)
R = torch.cat([e1[...,None], e2[...,None], e3[...,None]], axis=-1) #[B,L,3,3] - rotation matrix
v2 = v2/(torch.norm(v2, dim=-1, keepdim=True)+eps)
cosref = torch.sum(e1*v2, dim=-1)
costgt = torch.full(dims, -0.3616, device=N.device)
if is_na is not None:
costgt[is_na] = ChemData().costgtNA
cos2del = torch.clamp( cosref*costgt + torch.sqrt((1-cosref*cosref)*(1-costgt*costgt)+eps), min=-1.0, max=1.0 )
cosdel = torch.sqrt(0.5*(1+cos2del)+eps)
sindel = torch.sign(costgt-cosref) * torch.sqrt(1-0.5*(1+cos2del)+eps)
Rp = torch.eye(3, device=N.device).repeat(*dims,1,1)
Rp[...,0,0] = cosdel
Rp[...,0,1] = -sindel
Rp[...,1,0] = sindel
Rp[...,1,1] = cosdel
R = torch.einsum('...ij,...jk->...ik', R,Rp)
return R, Ca
def idealize_reference_frame(seq, xyz_in):
xyz = xyz_in.clone()
namask = is_nucleic(seq)
Rs, Ts = rigid_from_3_points(xyz[...,0,:],xyz[...,1,:],xyz[...,2,:], namask)
protmask = ~namask
pmask_bs,pmask_rs = protmask.nonzero(as_tuple=True)
nmask_bs,nmask_rs = namask.nonzero(as_tuple=True)
xyz[pmask_bs,pmask_rs,0,:] = torch.einsum('...ij,j->...i', Rs[pmask_bs,pmask_rs], ChemData().init_N.to(device=xyz_in.device) ) + Ts[pmask_bs,pmask_rs]
xyz[pmask_bs,pmask_rs,2,:] = torch.einsum('...ij,j->...i', Rs[pmask_bs,pmask_rs], ChemData().init_C.to(device=xyz_in.device) ) + Ts[pmask_bs,pmask_rs]
xyz[nmask_bs,nmask_rs,0,:] = torch.einsum('...ij,j->...i', Rs[nmask_bs,nmask_rs], ChemData().init_O1.to(device=xyz_in.device) ) + Ts[nmask_bs,nmask_rs]
xyz[nmask_bs,nmask_rs,2,:] = torch.einsum('...ij,j->...i', Rs[nmask_bs,nmask_rs], ChemData().init_O2.to(device=xyz_in.device) ) + Ts[nmask_bs,nmask_rs]
return xyz
def xyz_to_frame_xyz(xyz, seq_unmasked, atom_frames):
"""
xyz (1, L, natoms, 3)
seq_unmasked (1, L)
atom_frames (1, L, 3, 2)
"""
xyz_frame = xyz.clone()
atoms = is_atom(seq_unmasked)
if torch.all(~atoms):
return xyz_frame
atom_crds = xyz_frame[atoms]
atom_L, natoms, _ = atom_crds.shape
frames_reindex = torch.zeros(atom_frames.shape[:-1])
for i in range(atom_L):
frames_reindex[:, i, :] = (i+atom_frames[..., i, :, 0])*natoms + atom_frames[..., i, :, 1]
frames_reindex = frames_reindex.long()
xyz_frame[atoms, :, :3] = atom_crds.reshape(atom_L*natoms, 3)[frames_reindex]
return xyz_frame
def xyz_frame_from_rotation_mask(xyz,rotation_mask, atom_frames):
"""
function to get xyz_frame for l1 feature in Structure module
xyz (1, L, natoms, 3)
rotation_mask (1, L)
atom_frames (1, L, 3, 2)
"""
xyz_frame = xyz.clone()
if torch.all(~rotation_mask):
return xyz_frame
atom_crds = xyz_frame[rotation_mask]
atom_L, natoms, _ = atom_crds.shape
frames_reindex = torch.zeros(atom_frames.shape[:-1])
for i in range(atom_L):
frames_reindex[:, i, :] = (i+atom_frames[..., i, :, 0])*natoms + atom_frames[..., i, :, 1]
frames_reindex = frames_reindex.long()
xyz_frame[rotation_mask, :, :3] = atom_crds.reshape(atom_L*natoms, 3)[frames_reindex]
return xyz_frame
def xyz_t_to_frame_xyz(xyz_t, seq_unmasked, atom_frames):
"""
Parameters:
xyz_t (1, T, L, natoms, 3)
seq_unmasked (B, L)
atom_frames (1, A, 3, 2)
Returns:
xyz_t_frame (B, T, L, natoms, 3)
"""
is_sm = is_atom(seq_unmasked[0])
return xyz_t_to_frame_xyz_sm_mask(xyz_t, is_sm, atom_frames)
def xyz_t_to_frame_xyz_sm_mask(xyz_t, is_sm, atom_frames):
"""
Parameters:
xyz_t (1, T, L, natoms, 3)
is_sm (L)
atom_frames (1, A, 3, 2)
Returns:
xyz_t_frame (B, T, L, natoms, 3)
"""
# ic(xyz_t.shape, is_sm.shape, atom_frames.shape)
# xyz_t.shape: torch.Size([1, 1, 194, 36, 3])
# is_sm.shape: torch.Size([194])
# atom_frames.shape: torch.Size([1, 29, 3, 2])
xyz_t_frame = xyz_t.clone()
atoms = is_sm
if torch.all(~atoms):
return xyz_t_frame
atom_crds_t = xyz_t_frame[:, :, atoms]
B, T, atom_L, natoms, _ = atom_crds_t.shape
frames_reindex = torch.zeros(atom_frames.shape[:-1])
for i in range(atom_L):
frames_reindex[:, i, :] = (i+atom_frames[..., i, :, 0])*natoms + atom_frames[..., i, :, 1]
frames_reindex = frames_reindex.long()
xyz_t_frame[:, :, atoms, :3] = atom_crds_t.reshape(T, atom_L*natoms, 3)[:, frames_reindex.squeeze(0)]
return xyz_t_frame
def get_frames(xyz_in, xyz_mask, seq, frame_indices, atom_frames=None):
#B,L,natoms = xyz_in.shape[:3]
frames = frame_indices[seq]
atoms = is_atom(seq)
if torch.any(atoms):
frames[:,atoms[0].nonzero().flatten(), 0] = atom_frames
frame_mask = ~torch.all(frames[...,0, :] == frames[...,1, :], axis=-1)
# frame_mask *= torch.all(
# torch.gather(xyz_mask,2,frames.reshape(B,L,-1)).reshape(B,L,-1,3),
# axis=-1)
return frames, frame_mask
def get_tips(xyz, seq):
B,L = xyz.shape[:2]
xyz_tips = torch.gather(xyz, 2, tip_indices.to(xyz.device)[seq][:,:,None,None].expand(-1,-1,-1,3)).reshape(B, L, 3)
if torch.isnan(xyz_tips).any(): # replace NaN tip atom with virtual Cb atom
# three anchor atoms
N = xyz[:,:,0]
Ca = xyz[:,:,1]
C = xyz[:,:,2]
# recreate Cb given N,Ca,C
b = Ca - N
c = C - Ca
a = torch.cross(b, c, dim=-1)
Cb = -0.58273431*a + 0.56802827*b - 0.54067466*c + Ca
xyz_tips = torch.where(torch.isnan(xyz_tips), Cb, xyz_tips)
return xyz_tips
def superimpose(pred, true, atom_mask):
def centroid(X):
return X.mean(dim=-2, keepdim=True)
B, L, natoms = pred.shape[:3]
# center to centroid
pred_allatom = pred[atom_mask][None]
true_allatom = true[atom_mask][None]
cp = centroid(pred_allatom)
ct = centroid(true_allatom)
pred_allatom_origin = pred_allatom - cp
true_allatom_origin = true_allatom - ct
# Computation of the covariance matrix
C = torch.matmul(pred_allatom_origin.permute(0,2,1), true_allatom_origin)
# Compute optimal rotation matrix using SVD
V, S, W = torch.svd(C)
# get sign to ensure right-handedness
d = torch.ones([B,3,3], device=pred.device)
d[:,:,-1] = torch.sign(torch.det(V)*torch.det(W)).unsqueeze(1)
# Rotation matrix U
U = torch.matmul(d*V, W.permute(0,2,1)) # (IB, 3, 3)
pred_rms = pred - cp
true_rms = true - ct
# Rotate pred
rP = torch.matmul(pred_rms, U) # (IB, L*3, 3)
return rP+ct
def writepdb(filename, *args, file_mode='w', **kwargs, ):
f = open(filename, file_mode)
writepdb_file(f, *args, **kwargs)
def writepdb_file(f, atoms, seq, modelnum=None, chain="A", idx_pdb=None, bfacts=None,
bond_feats=None, file_mode="w",atom_mask=None, atom_idx_offset=0, chain_Ls=None,
remap_atomtype=True, lig_name='LG1', atom_names=None):
def _get_atom_type(atom_name):
atype = ''
if atom_name[0].isalpha():
atype += atom_name[0]
atype += atom_name[1]
return atype
# if needed, correct mistake in atomic number assignment in RF2-allatom (fold&dock 3 & earlier)
atom_names_ = [
"F", "Cl", "Br", "I", "O", "S", "Se", "Te", "N", "P", "As", "Sb",
"C", "Si", "Ge", "Sn", "Pb", "B", "Al", "Zn", "Hg", "Cu", "Au", "Ni",
"Pd", "Pt", "Co", "Rh", "Ir", "Pr", "Fe", "Ru", "Os", "Mn", "Re", "Cr",
"Mo", "W", "V", "U", "Tb", "Y", "Be", "Mg", "Ca", "Li", "K", "ATM"]
atom_num = [
9, 17, 35, 53, 8, 16, 34, 52, 7, 15, 33, 51,
6, 14, 32, 50, 82, 5, 13, 30, 80, 29, 79, 28,
46, 78, 27, 45, 77, 59, 26, 44, 76, 25, 75, 24,
42, 74, 23, 92, 65, 39, 4, 12, 20, 3, 19, 0]
atomnum2atomtype_ = dict(zip(atom_num,atom_names_))
if remap_atomtype:
atomtype_map = {v:atomnum2atomtype_[k] for k,v in ChemData().atomnum2atomtype.items()}
else:
atomtype_map = {v:v for k,v in ChemData().atomnum2atomtype.items()} # no change
ctr = 1+atom_idx_offset
scpu = seq.cpu().squeeze(0)
atomscpu = atoms.cpu().squeeze(0)
if bfacts is None:
bfacts = torch.zeros(atomscpu.shape[0])
if idx_pdb is None:
idx_pdb = 1 + torch.arange(atomscpu.shape[0])
alphabet = list('ABCDEFGHIJKLMNOPQRSTUVWXYZabcdefghijklmnopqrstuvwxyz0123456789')
if chain_Ls is not None:
chain_letters = np.concatenate([np.full(L, alphabet[i]) for i,L in enumerate(chain_Ls)])
else:
chain_letters = [chain]*len(scpu)
if modelnum is not None:
f.write(f"MODEL {modelnum}\n")
Bfacts = torch.clamp( bfacts.cpu(), 0, 1)
atom_idxs = {}
i_res_lig = 0
for i_res,s,ch in zip(range(len(scpu)), scpu, chain_letters):
natoms = atomscpu.shape[-2]
#if (natoms!=NHEAVY and natoms!=NTOTAL and natoms!=3):
# print ('bad size!', natoms, NHEAVY, NTOTAL, atoms.shape)
# assert(False)
if s >= len(ChemData().aa2long):
atom_idxs[i_res] = ctr
# hack to make sure H's are output properly (they are not in RFAA alphabet)
if atom_names is not None:
atom_type = _get_atom_type(atom_names[i_res_lig])
atom_name = atom_names[i_res_lig]
else:
atom_type = atomtype_map[ChemData().num2aa[s]]
atom_name = atom_type
f.write ("%-6s%5s %4s %3s %s%4d %8.3f%8.3f%8.3f%6.2f%6.2f %+2s\n"%(
"HETATM", ctr, atom_name, lig_name,
ch, idx_pdb.max()+10, atomscpu[i_res,1,0], atomscpu[i_res,1,1], atomscpu[i_res,1,2],
1.0, Bfacts[i_res], atom_type) )
i_res_lig += 1
ctr += 1
continue
atms = ChemData().aa2long[s]
for i_atm,atm in enumerate(atms):
if atom_mask is not None and not atom_mask[i_res,i_atm]: continue # skip missing atoms
if (i_atm<natoms and atm is not None and not torch.isnan(atomscpu[i_res,i_atm,:]).any()):
f.write ("%-6s%5s %4s %3s %s%4d %8.3f%8.3f%8.3f%6.2f%6.2f\n"%(
"ATOM", ctr, atm, ChemData().num2aa[s],
ch, idx_pdb[i_res], atomscpu[i_res,i_atm,0], atomscpu[i_res,i_atm,1], atomscpu[i_res,i_atm,2],
1.0, Bfacts[i_res] ) )
ctr += 1
if bond_feats != None:
atom_bonds = (bond_feats > 0) * (bond_feats <5)
atom_bonds = atom_bonds.cpu()
b, i, j = atom_bonds.nonzero(as_tuple=True)
for start, end in zip(i,j):
#print (start,end,bond_feats)
f.write(f"CONECT{atom_idxs[int(start.cpu().numpy())]:5d}{atom_idxs[int(end.cpu().numpy())]:5d}\n")
if modelnum is not None:
f.write("ENDMDL\n")
### Create atom frames for FAPE loss calculation ###
def get_nxgraph(mol):
'''build NetworkX graph from openbabel's OBMol'''
N = mol.NumAtoms()
# pairs of bonded atoms, openbabel indexes from 1 so readjust to indexing from 0
bonds = [(bond.GetBeginAtomIdx()-1, bond.GetEndAtomIdx()-1) for bond in openbabel.OBMolBondIter(mol)]
# connectivity graph
G = nx.Graph()
G.add_nodes_from(range(N))
G.add_edges_from(bonds)
return G
def find_all_rigid_groups(bond_feats):
"""
remove all single bonds from the graph and find connected components
"""
rigid_atom_bonds = (bond_feats>1)*(bond_feats<5)
rigid_atom_bonds_np = rigid_atom_bonds[0].cpu().numpy()
G = nx.from_numpy_array(rigid_atom_bonds_np)
connected_components = nx.connected_components(G)
connected_components = [cc for cc in connected_components if len(cc)>2]
connected_components = [torch.tensor(list(combinations(cc,2))) for cc in connected_components]
if connected_components:
connected_components = torch.cat(connected_components, dim=0)
else:
connected_components = None
return connected_components
def find_all_paths_of_length_n(G : nx.Graph,
n : int,
**karg) -> torch.Tensor:
'''find all paths of length N in a networkx graph
https://stackoverflow.com/questions/28095646/finding-all-paths-walks-of-given-length-in-a-networkx-graph'''
def findPaths(G,u,n):
if n==0:
return [[u]]
paths = [[u]+path for neighbor in G.neighbors(u) for path in findPaths(G,neighbor,n-1) if u not in path]
return paths
# all paths of length n
allpaths = [tuple(p) if p[0]<p[-1] else tuple(reversed(p))
for node in G for p in findPaths(G,node,n)]
if 'omit_permutation' in karg.keys() and not karg['omit_permutation']:
allpaths = [tuple(p) for node in G for p in findPaths(G,node,n)]
# unique paths
allpaths = list(set(allpaths))
#return torch.tensor(allpaths)
return allpaths
def get_atom_frames(msa, G, **karg):
"""choose a frame of 3 bonded atoms for each atom in the molecule, rule based system that chooses frame based on atom priorities"""
query_seq = msa
frames = find_all_paths_of_length_n(G, 2, **karg)
selected_frames = []
for n in range(msa.shape[0]):
frames_with_n = [frame for frame in frames if n == frame[1]]
# some chemical groups don't have two bonded heavy atoms; so choose a frame with an atom 2 bonds away
if not frames_with_n:
frames_with_n = [frame for frame in frames if n in frame]
# if the atom isn't in a 3 atom frame, it should be ignored in loss calc, set all the atoms to n
if not frames_with_n:
selected_frames.append([(0,1),(0,1),(0, 1)])
continue
frame_priorities = []
for frame in frames_with_n:
# hacky but uses the "query_seq" to convert index of the atom into an "atom type" and converts that into a priority
indices = [index for index in frame if index!=n]
aas = [ChemData().num2aa[int(query_seq[index].numpy())] for index in indices]
if 'omit_permutation' in karg.keys() and not karg['omit_permutation']:
frame_priorities.append([ChemData().atom2frame_priority[aa] for aa in aas])
else:
frame_priorities.append(sorted([ChemData().atom2frame_priority[aa] for aa in aas]))
# np.argsort doesn't sort tuples correctly so just sort a list of indices using a key
sorted_indices = sorted(range(len(frame_priorities)), key=lambda i: frame_priorities[i])
# calculate residue offset for frame
frame = [(frame-n, 1) for frame in frames_with_n[sorted_indices[0]]]
selected_frames.append(frame)
assert msa.shape[0] == len(selected_frames)
return torch.tensor(selected_frames).long()
### Generate bond features for small molecules ###
def get_bond_feats(mol):
"""creates 2d bond graph for small molecules"""
N = mol.NumAtoms()
bond_feats = torch.zeros((N, N)).long()
for bond in openbabel.OBMolBondIter(mol):
i,j = (bond.GetBeginAtomIdx()-1, bond.GetEndAtomIdx()-1)
bond_feats[i,j] = bond.GetBondOrder() if not bond.IsAromatic() else 4
bond_feats[j,i] = bond_feats[i,j]
return bond_feats.long()
def get_protein_bond_feats(protein_L):
""" creates protein residue connectivity graphs """
bond_feats = torch.zeros((protein_L, protein_L))
residues = torch.arange(protein_L-1)
bond_feats[residues, residues+1] = 5
bond_feats[residues+1, residues] = 5
return bond_feats
def get_protein_bond_feats_from_idx(protein_L, idx_protein):
""" creates protein residue connectivity graphs """
bond_feats = torch.zeros((protein_L, protein_L))
residues = torch.arange(protein_L-1)
mask = idx_protein[:,None] == idx_protein[None,:]+1
bond_feats[mask] = 5
bond_feats[mask.T] = 5
return bond_feats
def get_atomize_protein_bond_feats(i_start, msa, ra, n_res_atomize=5):
"""
generate atom bond features for atomized residues
currently ignores long-range bonds like disulfides
"""
ra2ind = {}
for i, two_d in enumerate(ra):
ra2ind[tuple(two_d.numpy())] = i
N = len(ra2ind.keys())
bond_feats = torch.zeros((N, N))
for i, res in enumerate(msa[0, i_start:i_start+n_res_atomize]):
for j, bond in enumerate(ChemData().aabonds[res]):
start_idx = ChemData().aa2long[res].index(bond[0])
end_idx = ChemData().aa2long[res].index(bond[1])
if (i, start_idx) not in ra2ind or (i, end_idx) not in ra2ind:
#skip bonds with atoms that aren't observed in the structure
continue
start_idx = ra2ind[(i, start_idx)]
end_idx = ra2ind[(i, end_idx)]
# maps the 2d index of the start and end indices to btype
bond_feats[start_idx, end_idx] = ChemData().aabtypes[res][j]
bond_feats[end_idx, start_idx] = ChemData().aabtypes[res][j]
#accounting for peptide bonds
if i > 0:
if (i-1, 2) not in ra2ind or (i, 0) not in ra2ind:
#skip bonds with atoms that aren't observed in the structure
continue
start_idx = ra2ind[(i-1, 2)]
end_idx = ra2ind[(i, 0)]
bond_feats[start_idx, end_idx] = ChemData().SINGLE_BOND
bond_feats[end_idx, start_idx] = ChemData().SINGLE_BOND
return bond_feats
### Generate atom features for proteins ###
def atomize_protein(i_start, msa, xyz, mask, n_res_atomize=5):
""" given an index i_start, make the following flank residues into "atom" nodes """
residues_atomize = msa[0, i_start:i_start+n_res_atomize]
residues_atom_types = [ChemData().aa2elt[num][:14] for num in residues_atomize]
residue_atomize_mask = mask[i_start:i_start+n_res_atomize].float() # mask of resolved atoms in the sidechain
residue_atomize_allatom_mask = ChemData().allatom_mask[residues_atomize][:, :14] # the indices that have heavy atoms in that sidechain
xyz_atomize = xyz[i_start:i_start+n_res_atomize]
# handle symmetries
xyz_alt = torch.zeros_like(xyz.unsqueeze(0))
xyz_alt.scatter_(2, ChemData().long2alt[msa[0],:,None].repeat(1,1,1,3), xyz.unsqueeze(0))
xyz_alt_atomize = xyz_alt[0, i_start:i_start+n_res_atomize]
coords_stack = torch.stack((xyz_atomize, xyz_alt_atomize), dim=0)
swaps = (coords_stack[0] == coords_stack[1]).all(dim=1).all(dim=1).squeeze() #checks whether theres a swap at each position
swaps = torch.nonzero(~swaps).squeeze() # indices with a swap eg. [2,3]
if swaps.numel() != 0:
# if there are residues with alternate numbering scheme, create a stack of coordinate with each combo of swaps
with warnings.catch_warnings():
warnings.filterwarnings("ignore",category=UserWarning)
combs = torch.combinations(torch.tensor([0,1]), r=swaps.numel(), with_replacement=True) #[[0,0], [0,1], [1,1]]
stack = torch.stack((combs, swaps.repeat(swaps.numel()+1,1)), dim=-1).squeeze()
coords_stack = coords_stack.repeat(swaps.numel()+1,1,1,1)
nat_symm = coords_stack[0].repeat(swaps.numel()+1,1,1,1) # (N_symm, num_atomize_residues, natoms, 3)
swapped_coords = coords_stack[stack[...,0], stack[...,1]].squeeze(1) #
nat_symm[:,swaps] = swapped_coords
else:
nat_symm = xyz_atomize.unsqueeze(0)
# every heavy atom that is in the sidechain is modelled but losses only applied to resolved atoms
ra = residue_atomize_allatom_mask.nonzero()
lig_seq = torch.tensor([ChemData().aa2num[residues_atom_types[r][a]] if residues_atom_types[r][a] in ChemData().aa2num else ChemData().aa2num["ATM"] for r,a in ra])
ins = torch.zeros_like(lig_seq)
r,a = ra.T
lig_xyz = torch.zeros((len(ra), 3))
lig_xyz = nat_symm[:, r, a]
lig_mask = residue_atomize_mask[r, a].repeat(nat_symm.shape[0], 1)
bond_feats = get_atomize_protein_bond_feats(i_start, msa, ra, n_res_atomize=n_res_atomize)
#HACK: use networkx graph to make the atom frames, correct implementation will include frames with "residue atoms"
G = nx.from_numpy_array(bond_feats.numpy())
frames = get_atom_frames(lig_seq, G)
chirals = get_atomize_protein_chirals(residues_atomize, lig_xyz[0], residue_atomize_allatom_mask, bond_feats)
return lig_seq, ins, lig_xyz, lig_mask, frames, bond_feats, ra, chirals
def atomize_discontiguous_residues(idxs, msa, xyz, mask, bond_feats, same_chain, dslfs=None):
"""
this atomizes multiple discontiguous residues at the same time, this is the default interface into atomizing residues
(using the non assembly dataset)
"""
protein_L = msa.shape[1]
seq_atomize_all = []
ins_atomize_all = []
xyz_atomize_all = []
mask_atomize_all = []
frames_atomize_all = []
chirals_atomize_all = []
prev_C_index = None
total_num_atoms = 0
sgs = {}
for idx in idxs:
seq_atomize, ins_atomize, xyz_atomize, mask_atomize, frames_atomize, bond_feats_atomize, resatom2idx, chirals_atomize = \
atomize_protein(idx, msa, xyz, mask, n_res_atomize=1)
r,_ = resatom2idx.T
#print ('atomize_discontiguous_residues', idx, resatom2idx)
last_C = torch.all(resatom2idx==torch.tensor([r[-1],2]),dim=1).nonzero()
sgs[idx.item()] = torch.all(resatom2idx==torch.tensor([r[-1],5]),dim=1).nonzero()
natoms = seq_atomize.shape[0]
L = bond_feats.shape[0]
sgs[idx.item()] = L+sgs[idx.item()]
# update the chirals to be after all the other atoms (still need to update to put it behind all the proteins)
chirals_atomize[:, :-1] += total_num_atoms
seq_atomize_all.append(seq_atomize)
ins_atomize_all.append(ins_atomize)
xyz_atomize_all.append(xyz_atomize)
mask_atomize_all.append(mask_atomize)
frames_atomize_all.append(frames_atomize)
chirals_atomize_all.append(chirals_atomize)
N_term = idx == 0
C_term = idx == protein_L-1
# update bond_feats every iteration, update all other features at the end
bond_feats_new = torch.zeros((L+natoms, L+natoms))
bond_feats_new[:L, :L] = bond_feats
bond_feats_new[L:, L:] = bond_feats_atomize
# add bond between protein and atomized N
if not N_term and idx-1 not in idxs:
bond_feats_new[idx-1, L] = 6 # protein (backbone)-atom bond
bond_feats_new[L, idx-1] = 6 # protein (backbone)-atom bond
# add bond between protein and C, assumes every residue is being atomized one at a time (eg n_res_atomize=1)
if not C_term and idx+1 not in idxs:
bond_feats_new[idx+1, L+int(last_C.numpy())] = 6 # protein (backbone)-atom bond
bond_feats_new[L+int(last_C.numpy()), idx+1] = 6 # protein (backbone)-atom bond
# handle drawing peptide bond between contiguous atomized residues
if idx-1 in idxs:
if prev_C_index is None:
raise ValueError("prev_C_index is None even though the previous residue has been atomized")
bond_feats_new[prev_C_index, L] = 1 # single bond
bond_feats_new[L, prev_C_index] = 1 # single bond
prev_C_index = L+int(last_C.numpy()) #update prev_C to draw bond to upcoming residue
# update same_chain every iteration
same_chain_new = torch.zeros((L+natoms, L+natoms))
same_chain_new[:L, :L] = same_chain
residues_in_prot_chain = same_chain[idx].squeeze().nonzero()
same_chain_new[L:, residues_in_prot_chain] = 1
same_chain_new[residues_in_prot_chain, L:] = 1
same_chain_new[L:, L:] = 1
bond_feats = bond_feats_new
same_chain = same_chain_new
total_num_atoms += natoms
# disulfides
if dslfs is not None:
for i,j in dslfs:
start_idx = sgs[i].item()
end_idx = sgs[j].item()
bond_feats[start_idx, end_idx] = 1
bond_feats[end_idx, start_idx] = 1
seq_atomize_all = torch.cat(seq_atomize_all)
ins_atomize_all = torch.cat(ins_atomize_all)
xyz_atomize_all = cartprodcat(xyz_atomize_all)
mask_atomize_all = cartprodcat(mask_atomize_all)
# frames were calculated per residue -- we want them over all residues in case there are contiguous residues
bond_feats_sm = bond_feats[protein_L:][:, protein_L:]
G = nx.from_numpy_array(bond_feats_sm.detach().cpu().numpy())
frames_atomize_all = get_atom_frames(seq_atomize_all, G)
# frames_atomize_all = torch.cat(frames_atomize_all)
chirals_atomize_all = torch.cat(chirals_atomize_all)
return seq_atomize_all, ins_atomize_all, xyz_atomize_all, mask_atomize_all, frames_atomize_all, chirals_atomize_all, \
bond_feats, same_chain
def reindex_protein_feats_after_atomize(
residues_to_atomize,
prot_partners,
msa,
ins,
xyz,
mask,
bond_feats,
idx,
xyz_t,
f1d_t,
mask_t,
same_chain,
ch_label,
Ls_prot,
Ls_sm,
akeys_sm,
remove_residue=True
):
"""
Removes residues that have been atomized from protein features.
"""
Ls = Ls_prot + Ls_sm
chain_bins = [sum(Ls[:i]) for i in range(len(Ls)+1)]
akeys_sm = list(itertools.chain.from_iterable(akeys_sm)) # list of list of tuples get flattened to a list of tuples
# get tensor indices of atomized residues
residue_chain_nums = []
residue_indices = []
for residue in residues_to_atomize:
# residue object is a list of tuples:
# ((chain_letter, res_number, res_name), (chain_letter, xform_index))
#### Need to identify what chain you're in to get correct res idx
residue_chid_xf = residue[1]
residue_chain_num = [p[:2] for p in prot_partners].index(residue_chid_xf)
residue_index = (int(residue[0][1]) - 1) + sum(Ls_prot[:residue_chain_num]) # residues are 1 indexed in the cif files
# skip residues with all backbone atoms masked
if torch.sum(mask[0, residue_index, :3]) <3: continue
residue_chain_nums.append(residue_chain_num)
residue_indices.append(residue_index)
atomize_N = residue[0] + ("N",)
atomize_C = residue[0] + ("C",)
N_index = akeys_sm.index(atomize_N) + sum(Ls_prot)
C_index = akeys_sm.index(atomize_C) + sum(Ls_prot)
# if first residue in chain, no extra bond feats to previous residue
if residue_index != 0 and residue_index not in Ls_prot:
bond_feats[residue_index-1, N_index] = 6
bond_feats[N_index, residue_index-1] = 6
# if residue is last in chain, no extra bonds feats to following residue
if residue_index not in [L-1 for L in Ls_prot]:
bond_feats[residue_index+1, C_index] = 6
bond_feats[C_index,residue_index+1] = 6
lig_chain_num = np.digitize([N_index], chain_bins)[0] -1 # np.digitize is 1 indexed
same_chain[chain_bins[lig_chain_num]:chain_bins[lig_chain_num+1], \
chain_bins[residue_chain_num]: chain_bins[residue_chain_num+1]] = 1
same_chain[chain_bins[residue_chain_num]: chain_bins[residue_chain_num+1], \
chain_bins[lig_chain_num]:chain_bins[lig_chain_num+1]] = 1
if remove_residue:
# remove atomized residues from feature tensors
i_res = torch.tensor([i for i in range(sum(Ls)) if i not in residue_indices])
msa = msa[:,i_res]
ins = ins[:,i_res]
xyz = xyz[:,i_res]
mask = mask[:,i_res]
bond_feats = bond_feats[i_res][:,i_res]
idx = idx[i_res]
xyz_t = xyz_t[:,i_res]
f1d_t = f1d_t[:,i_res]
mask_t = mask_t[:,i_res]
same_chain = same_chain[i_res][:,i_res]
ch_label = ch_label[i_res]
for i_ch in residue_chain_nums:
Ls_prot[i_ch] -= 1
return msa, ins, xyz, mask, bond_feats, idx, xyz_t, f1d_t, mask_t, same_chain, ch_label, Ls_prot, Ls_sm
def pop_protein_feats(residue_indices, msa, ins, xyz, mask, bond_feats, idx, xyz_t, f1d_t, mask_t, same_chain, ch_label, Ls):
"""
remove protein features for an arbitrary set of residue indices
"""
pop = torch.ones((sum(Ls)))
pop[residue_indices] = 0
pop = pop.bool()
msa = msa[:,pop]
ins = ins[:,pop]
xyz = xyz[:,pop]
mask = mask[:,pop]
bond_feats = bond_feats[pop][:,pop]
idx = idx[pop]
xyz_t = xyz_t[:,pop]
f1d_t = f1d_t[:,pop]
mask_t = mask_t[:,pop]
same_chain = same_chain[pop][:,pop]
ch_label = ch_label[pop]
return msa, ins, xyz, mask, bond_feats, idx, xyz_t, f1d_t, mask_t, same_chain, ch_label
def get_automorphs(mol, xyz_sm, mask_sm, max_symm=1000):
"""Enumerate atom symmetry permutations."""
try:
automorphs = openbabel.vvpairUIntUInt()
openbabel.FindAutomorphisms(mol, automorphs)
automorphs = torch.tensor(automorphs)
n_symmetry = automorphs.shape[0]
xyz_sm = xyz_sm[None].repeat(n_symmetry,1,1)
mask_sm = mask_sm[None].repeat(n_symmetry,1)
xyz_sm = torch.scatter(xyz_sm, 1, automorphs[:,:,0:1].repeat(1,1,3),
torch.gather(xyz_sm,1,automorphs[:,:,1:2].repeat(1,1,3)))
mask_sm = torch.scatter(mask_sm, 1, automorphs[:,:,0],
torch.gather(mask_sm, 1, automorphs[:,:,1]))
except Exception as e:
xyz_sm = xyz_sm[None]
mask_sm = mask_sm[None]
if xyz_sm.shape[0] > max_symm:
xyz_sm = xyz_sm[:max_symm]
mask_sm = mask_sm[:max_symm]
return xyz_sm, mask_sm
def expand_xyz_sm_to_ntotal(xyz_sm, mask_sm, N_symmetry=None):
"""
for small molecules, takes a 1d xyz tensor and converts to using N_total
"""
N_symm_sm, L = xyz_sm.shape[:2]
if N_symmetry is None:
N_symmetry = N_symm_sm
xyz = torch.full((N_symmetry, L, ChemData().NTOTAL, 3), np.nan).float()
xyz[:N_symm_sm, :, 1, :] = xyz_sm
mask = torch.full((N_symmetry, L, ChemData().NTOTAL), False).bool()
mask[:N_symm_sm, :, 1] = mask_sm
return xyz, mask
def same_chain_2d_from_Ls(Ls):
"""Given list of chain lengths, returns binary matrix with 1 if two residues are on the same chain."""
same_chain = torch.zeros((sum(Ls),sum(Ls))).long()
i_curr = 0
for L in Ls:
same_chain[i_curr:i_curr+L, i_curr:i_curr+L] = 1
i_curr += L
return same_chain
def Ls_from_same_chain_2d(same_chain):
"""Given binary matrix indicating whether two residues are on same chain, returns list of chain lengths"""
if len(same_chain.shape)==3: # remove batch dimension
same_chain = same_chain.squeeze(0)
Ls = []
i_curr = 0
while i_curr < len(same_chain):
idx = torch.where(same_chain[i_curr])[0]
Ls.append(int(idx[-1]-idx[0]+1))
i_curr = idx[-1]+1
return Ls
def get_prot_seqstring(ch, modres):
"""Return string representing amino acid sequence of a parsed CIF chain."""
idx = [int(k[1]) for k in ch.atoms]
i_min, i_max = np.min(idx), np.max(idx)
L = i_max - i_min + 1
seq = ["-"]*L
for k,v in ch.atoms.items():
i_res = int(k[1])-i_min
if k[2] in ChemData().to1letter: # standard AA
aa = ChemData().to1letter[k[2]]
elif k[2] in modres and modres[k[2]] in ChemData().to1letter: # nonstandard AA, map to standard
aa = ChemData().to1letter[modres[k[2]]]
else: # unknown AA, still try to store BB atoms
aa = 'X'
seq[i_res] = aa
return ''.join(seq)
def map_identical_prot_chains(partners, chains, modres):
"""Identifies which chain letters represent unique protein sequences,
assigns a number to each unique sequence, and returns dicts mapping sequence
numbers to chain letters and vice versa.
Parameters
----------
partners : list of tuples (partner, transform_index, num_contacts, partner_type)
Information about neighboring chains to the query ligand in an
assembly. This function will use the subset of these tuples that
represent protein chains, where `partner_type = 'polypeptide(L)'`
and `partner` contains the chain letter. `transform_index` is an
integer index of the coordinate transform for each partner chain.
chains : dict
Dictionary mapping chain letters to cifutils.Chain objects representing
the chains in a PDB entry.
modres : dict
Maps modified residue names to their canonical equivalents. Any
modified residue will be converted to its standard equivalent and
coordinates for atoms with matching names will be saved.
Returns
-------
chnum2chlet : dict
Dictionary mapping integers to lists of chain letters which represent
identical chains
"""
chlet2seq = OrderedDict()
for p in partners:
if p[-1] != 'polypeptide(L)': continue
if p[0] not in chlet2seq:
chlet2seq[p[0]] = get_prot_seqstring(chains[p[0]], modres)
seq2chlet = OrderedDict()
for chlet, seq in chlet2seq.items():
if seq not in seq2chlet:
seq2chlet[seq] = set()
seq2chlet[seq].add(chlet)
chnum2chlet = OrderedDict([(i,v) for i,(k,v) in enumerate(seq2chlet.items())])
#chlet2chnum = OrderedDict([(chlet,chnum) for chnum,chlet_s in chnum2chlet.items() for chlet in chlet_s])
return chnum2chlet
def cartprodcat(X_s):
"""Concatenate list of tensors on dimension 1 while taking their cartesian product
over dimension 0."""
X = X_s[0]
for X_ in X_s[1:]:
N, L = X.shape[:2]
N_, L_ = X_.shape[:2]
X_out = torch.full((N, N_, L+L_,)+X.shape[2:], np.nan)
for i in range(N):
for j in range(N_):
X_out[i,j] = torch.concat([X[i], X_[j]], dim=0)
dims = (N*N_,L+L_,)+X.shape[2:]
X = X_out.view(*dims)
return X
def idx_from_Ls(Ls):
"""Generate residue indexes from a list of chain lengths,
with a chain gap offset between indexes for each chain."""
idx = []
offset = 0
for L in Ls:
idx.append(torch.arange(L)+offset)
offset = offset+L+ChemData().CHAIN_GAP
return torch.cat(idx, dim=0)
def bond_feats_from_Ls(Ls):
"""Generate protein (or DNA/RNA) bond features from a list of chain
lengths"""
bond_feats = torch.zeros((sum(Ls), sum(Ls))).long()
offset = 0
for L_ in Ls:
bond_feats[offset:offset+L_, offset:offset+L_] = get_protein_bond_feats(L_)
offset += L_
return bond_feats
def same_chain_from_bond_feats(bond_feats):
"""Return binary matrix indicating if pairs of residues are on same chain,
given their bond features.
"""
assert(len(bond_feats.shape)==2) # assume no batch dimension
L = bond_feats.shape[0]
same_chain = torch.zeros((L,L))
G = nx.from_numpy_array(bond_feats.detach().cpu().numpy())
for idx in nx.connected_components(G):
idx = list(idx)
for i in idx:
same_chain[i,idx] = 1
return same_chain
def kabsch(xyz1, xyz2, eps=1e-6):
"""Superimposes `xyz2` coordinates onto `xyz1`, returns RMSD and rotation matrix."""
# center to CA centroid
xyz1 = xyz1 - xyz1.mean(0)
xyz2 = xyz2 - xyz2.mean(0)
# Computation of the covariance matrix
C = xyz2.T @ xyz1
# Compute optimal rotation matrix using SVD
V, S, W = torch.linalg.svd(C)
# get sign to ensure right-handedness
d = torch.ones([3,3])
d[:,-1] = torch.sign(torch.linalg.det(V)*torch.linalg.det(W))
# Rotation matrix U
U = (d*V) @ W
# Rotate xyz2
xyz2_ = xyz2 @ U
L = xyz2_.shape[0]
rmsd = torch.sqrt(torch.sum((xyz2_-xyz1)*(xyz2_-xyz1), axis=(0,1)) / L + eps)
return rmsd, U