mirror of
https://github.com/baker-laboratory/RoseTTAFold-All-Atom.git
synced 2024-11-04 22:25:42 +00:00
Update README.md
Create an initial update to README.md for Mamba environment
This commit is contained in:
parent
6bc5c745a2
commit
ea81b735aa
1 changed files with 19 additions and 13 deletions
32
README.md
32
README.md
|
@ -20,21 +20,29 @@ RFAA is not accurate for all cases, but produces useful error estimates to allow
|
||||||
|
|
||||||
<a id="set-up"></a>
|
<a id="set-up"></a>
|
||||||
### Setup/Installation
|
### Setup/Installation
|
||||||
1. Clone the package
|
1. Install Mamba
|
||||||
|
```
|
||||||
|
wget "https://github.com/conda-forge/miniforge/releases/latest/download/Mambaforge-$(uname)-$(uname -m).sh"
|
||||||
|
bash Mambaforge-$(uname)-$(uname -m).sh # accept all terms and install to the default location
|
||||||
|
rm Mambaforge-$(uname)-$(uname -m).sh # (optionally) remove installer after using it
|
||||||
|
source ~/.bashrc # alternatively, one can restart their shell session to achieve the same result
|
||||||
|
```
|
||||||
|
2. Clone the package
|
||||||
```
|
```
|
||||||
git clone https://github.com/baker-laboratory/RoseTTAFold-All-Atom
|
git clone https://github.com/baker-laboratory/RoseTTAFold-All-Atom
|
||||||
cd RoseTTAFold-All-Atom
|
cd RoseTTAFold-All-Atom
|
||||||
```
|
```
|
||||||
2. Download the container used to run RFAA.
|
3. Create Mamba environment
|
||||||
```
|
```
|
||||||
wget http://files.ipd.uw.edu/pub/RF-All-Atom/containers/SE3nv-20240131.sif
|
mamba env create -f environment.yaml
|
||||||
|
conda activate RFAA # NOTE: one still needs to use `conda` to (de)activate environments
|
||||||
|
pip3 install -e .
|
||||||
```
|
```
|
||||||
3. Download the model weights.
|
4. Download the model weights.
|
||||||
```
|
```
|
||||||
wget http://files.ipd.uw.edu/pub/RF-All-Atom/weights/RFAA_paper_weights.pt
|
wget http://files.ipd.uw.edu/pub/RF-All-Atom/weights/RFAA_paper_weights.pt
|
||||||
|
|
||||||
```
|
```
|
||||||
4. Download sequence databases for MSA and template generation.
|
5. Download sequence databases for MSA and template generation.
|
||||||
```
|
```
|
||||||
# uniref30 [46G]
|
# uniref30 [46G]
|
||||||
wget http://wwwuser.gwdg.de/~compbiol/uniclust/2020_06/UniRef30_2020_06_hhsuite.tar.gz
|
wget http://wwwuser.gwdg.de/~compbiol/uniclust/2020_06/UniRef30_2020_06_hhsuite.tar.gz
|
||||||
|
@ -56,11 +64,9 @@ tar xfz pdb100_2021Mar03.tar.gz
|
||||||
|
|
||||||
We use a library called Hydra to compose config files for predictions. The actual script that runs the model is in `rf2aa/run_inference.py` and default parameters that were used to train the model are in `rf2aa/config/inference/base.yaml`. We highly suggest using the default parameters since those are closest to the training task for RFAA but we have found that increasing loader_params.MAXCYCLE=10 (default set to 4) gives better results for hard cases (as noted in the paper).
|
We use a library called Hydra to compose config files for predictions. The actual script that runs the model is in `rf2aa/run_inference.py` and default parameters that were used to train the model are in `rf2aa/config/inference/base.yaml`. We highly suggest using the default parameters since those are closest to the training task for RFAA but we have found that increasing loader_params.MAXCYCLE=10 (default set to 4) gives better results for hard cases (as noted in the paper).
|
||||||
|
|
||||||
We use a container system called apptainers which have very simple syntax. Instead of developing a local conda environment, users can use the apptainer to run the model which has all the dependencies already packaged.
|
|
||||||
|
|
||||||
The general way to run the model is as follows:
|
The general way to run the model is as follows:
|
||||||
```
|
```
|
||||||
SE3nv-20240131.sif -m rf2aa.run_inference --config-name {your inference config}
|
python -m rf2aa.run_inference --config-name {your inference config}
|
||||||
```
|
```
|
||||||
The main inputs into the model are split into:
|
The main inputs into the model are split into:
|
||||||
- protein inputs (protein_inputs)
|
- protein inputs (protein_inputs)
|
||||||
|
@ -90,7 +96,7 @@ When specifying the fasta file for your protein, you might notice that it is nes
|
||||||
|
|
||||||
Now to predict the sample monomer structure, run:
|
Now to predict the sample monomer structure, run:
|
||||||
```
|
```
|
||||||
SE3nv-20240131.sif -m rf2aa.run_inference --config-name protein
|
python -m rf2aa.run_inference --config-name protein
|
||||||
```
|
```
|
||||||
|
|
||||||
<a id="p-na-complex"></a>
|
<a id="p-na-complex"></a>
|
||||||
|
@ -118,7 +124,7 @@ This repo currently does not support making RNA MSAs or pairing protein MSAs wit
|
||||||
|
|
||||||
Now, predict the example protein/NA complex.
|
Now, predict the example protein/NA complex.
|
||||||
```
|
```
|
||||||
SE3nv-20240131.sif -m rf2aa.run_inference --config-name nucleic_acid
|
python -m rf2aa.run_inference --config-name nucleic_acid
|
||||||
```
|
```
|
||||||
<a id="p-sm-complex"></a>
|
<a id="p-sm-complex"></a>
|
||||||
### Predicting Protein Small Molecule Complexes
|
### Predicting Protein Small Molecule Complexes
|
||||||
|
@ -143,7 +149,7 @@ Small molecule inputs are provided as sdf files or smiles strings and users are
|
||||||
|
|
||||||
To predict the example:
|
To predict the example:
|
||||||
```
|
```
|
||||||
SE3nv-20240131.sif -m rf2aa.run_inference --config-name protein_sm
|
python -m rf2aa.run_inference --config-name protein_sm
|
||||||
```
|
```
|
||||||
<a id="higher-order"></a>
|
<a id="higher-order"></a>
|
||||||
### Predicting Higher Order Complexes
|
### Predicting Higher Order Complexes
|
||||||
|
@ -172,7 +178,7 @@ sm_inputs:
|
||||||
```
|
```
|
||||||
And to run:
|
And to run:
|
||||||
```
|
```
|
||||||
SE3nv-20240131.sif -m rf2aa.run_inference --config-name protein_na_sm
|
python -m rf2aa.run_inference --config-name protein_na_sm
|
||||||
```
|
```
|
||||||
<a id="covale"></a>
|
<a id="covale"></a>
|
||||||
### Predicting Covalently Modified Proteins
|
### Predicting Covalently Modified Proteins
|
||||||
|
|
Loading…
Reference in a new issue