RoseTTAFold-All-Atom/rf2aa/tests/test_conditions.py
2024-03-04 22:38:17 -08:00

79 lines
No EOL
2.6 KiB
Python

import torch
import pandas as pd
import numpy as np
import itertools
from collections import OrderedDict
from hydra import initialize, compose
from rf2aa.setup_model import trainer_factory, seed_all
from rf2aa.chemical import ChemicalData as ChemData
# configurations to test
configs = ["legacy_train"]
datasets = ["compl", "na_compl", "rna", "sm_compl", "sm_compl_covale", "sm_compl_asmb"]
cfg_overrides = [
"loader_params.p_msa_mask=0.0",
"loader_params.crop=100000",
"loader_params.mintplt=0",
"loader_params.maxtplt=2"
]
def make_deterministic(seed=0):
seed_all(seed)
if torch.cuda.is_available():
torch.backends.cudnn.deterministic = True
torch.backends.cudnn.benchmark = False
def setup_dataset_names():
data = {}
for name in datasets:
data[name] = [name]
return data
# set up models for regression tests
def setup_models(device="cpu"):
models, chem_cfgs = [], []
for config in configs:
with initialize(version_base=None, config_path="../config/train"):
cfg = compose(config_name=config, overrides=cfg_overrides)
# initializing the model needs the chemical DB initialized. Force a reload
ChemData.reset()
ChemData(cfg.chem_params)
trainer = trainer_factory[cfg.experiment.trainer](cfg)
seed_all()
trainer.construct_model(device=device)
models.append(trainer.model)
chem_cfgs.append(cfg.chem_params)
trainer = None
return dict(zip(configs, (zip(configs, models, chem_cfgs))))
# set up job array for regression
def setup_array(datasets, models, device="cpu"):
test_data = setup_dataset_names()
test_models = setup_models(device=device)
test_data = [test_data[dataset] for dataset in datasets]
test_models = [test_models[model] for model in models]
return (list(itertools.product(test_data, test_models)))
def random_param_init(model):
seed_all()
with torch.no_grad():
fake_state_dict = OrderedDict()
for name, param in model.model.named_parameters():
fake_state_dict[name] = torch.randn_like(param)
model.model.load_state_dict(fake_state_dict)
model.shadow.load_state_dict(fake_state_dict)
return model
def dataset_pickle_path(dataset_name):
return f"test_pickles/data/{dataset_name}_regression.pt"
def model_pickle_path(dataset_name, model_name):
return f"test_pickles/model/{model_name}_{dataset_name}_regression.pt"
def loss_pickle_path(dataset_name, model_name, loss_name):
return f"test_pickles/loss/{loss_name}_{model_name}_{dataset_name}_regression.pt"