RoseTTAFold-All-Atom/rf2aa/data/merge_inputs.py
2024-03-11 19:01:21 -05:00

208 lines
7.7 KiB
Python

import torch
from hashlib import md5
from rf2aa.data.data_loader_utils import merge_a3m_hetero, merge_a3m_homo, merge_hetero_templates, get_term_feats, join_msas_by_taxid, expand_multi_msa
from rf2aa.data.data_loader import RawInputData
from rf2aa.util import center_and_realign_missing, same_chain_from_bond_feats, random_rot_trans, idx_from_Ls
def merge_protein_inputs(protein_inputs, deterministic: bool = False):
if len(protein_inputs) == 0:
return None,[]
elif len(protein_inputs) == 1:
chain = list(protein_inputs.keys())[0]
input = list(protein_inputs.values())[0]
xyz_t = input.xyz_t
xyz_t[0:1] = random_rot_trans(xyz_t[0:1], deterministic=deterministic)
input.xyz_t = xyz_t
return input, [(chain, input.length())]
# handle merging MSAs and such
# first determine which sequence are identical, then which one have mergeable MSAs
# then cat the templates, other feats
else:
a3m_list = [
{"msa": input.msa,
"ins": input.ins,
"taxid": input.taxids
}
for input in protein_inputs.values()
]
hash_list = [md5(input.sequence_string().encode()).hexdigest() for input in protein_inputs.values()]
lengths_list = [input.length() for input in protein_inputs.values()]
seen = set()
unique_indices = []
for idx, hash in enumerate(hash_list):
if hash not in seen:
unique_indices.append(idx)
seen.add(hash)
unique_a3m = [a3m for i, a3m in enumerate(a3m_list) if i in unique_indices ]
unique_hashes = [value for index, value in enumerate(hash_list) if index in unique_indices]
unique_lengths_list = [value for index, value in enumerate(lengths_list) if index in unique_indices]
if len(unique_a3m) >1:
a3m_out = unique_a3m[0]
for i in range(1, len(unique_a3m)):
a3m_out = join_msas_by_taxid(a3m_out, a3m_list[i])
a3m_out = expand_multi_msa(a3m_out, unique_hashes, hash_list, unique_lengths_list, lengths_list)
else:
a3m = unique_a3m[0]
msa, ins = a3m["msa"], a3m["ins"]
a3m_out = merge_a3m_homo(msa, ins, len(hash_list))
# merge templates
max_template_dim = max([input.xyz_t.shape[0] for input in protein_inputs.values()])
xyz_t_list = [input.xyz_t for input in protein_inputs.values()]
mask_t_list = [input.mask_t for input in protein_inputs.values()]
t1d_list = [input.t1d for input in protein_inputs.values()]
ids = ["inference"] * len(t1d_list)
xyz_t, t1d, mask_t, _ = merge_hetero_templates(xyz_t_list, t1d_list, mask_t_list, ids, lengths_list, deterministic=deterministic)
atom_frames = torch.zeros(0,3,2)
chirals = torch.zeros(0,5)
L_total = sum(lengths_list)
bond_feats = torch.zeros((L_total, L_total)).long()
offset = 0
for bf in [input.bond_feats for input in protein_inputs.values()]:
L = bf.shape[0]
bond_feats[offset:offset+L, offset:offset+L] = bf
offset += L
chain_lengths = list(zip(protein_inputs.keys(), lengths_list))
merged_input = RawInputData(
a3m_out["msa"],
a3m_out["ins"],
bond_feats,
xyz_t[:max_template_dim],
mask_t[:max_template_dim],
t1d[:max_template_dim],
chirals,
atom_frames,
taxids=None
)
return merged_input, chain_lengths
def merge_na_inputs(na_inputs):
# should just be trivially catting features
running_inputs = None
chain_lengths = []
for chid, input in na_inputs.items():
running_inputs = merge_two_inputs(running_inputs, input)
chain_lengths.append((chid, input.length()))
return running_inputs, chain_lengths
def merge_sm_inputs(sm_inputs):
# should be trivially catting features
running_inputs = None
chain_lengths = []
for chid, input in sm_inputs.items():
running_inputs = merge_two_inputs(running_inputs, input)
chain_lengths.append((chid, input.length()))
return running_inputs, chain_lengths
def merge_two_inputs(first_input, second_input):
# merges two arbitrary inputs of data types
if first_input is None and second_input is None:
return None
elif first_input is None:
return second_input
elif second_input is None:
return first_input
Ls = [first_input.length(), second_input.length()]
L_total = sum(Ls)
# merge msas
a3m_first = {
"msa": first_input.msa,
"ins": first_input.ins,
}
a3m_second = {
"msa": second_input.msa,
"ins": second_input.ins,
}
a3m = merge_a3m_hetero(a3m_first, a3m_second, Ls)
# merge bond_feats
bond_feats = torch.zeros((L_total, L_total)).long()
offset = 0
for bf in [first_input.bond_feats, second_input.bond_feats]:
L = bf.shape[0]
bond_feats[offset:offset+L, offset:offset+L] = bf
offset += L
# merge templates
xyz_t = torch.cat([first_input.xyz_t, second_input.xyz_t],dim=1)
t1d = torch.cat([first_input.t1d, second_input.t1d],dim=1)
mask_t = torch.cat([first_input.mask_t, second_input.mask_t],dim=1)
# handle chirals (need to residue offset)
if second_input.chirals.shape[0] > 0 :
second_input.chirals[:, :-1] = second_input.chirals[:, :-1] + first_input.length()
chirals = torch.cat([first_input.chirals, second_input.chirals])
# cat atom frames
atom_frames = torch.cat([first_input.atom_frames, second_input.atom_frames])
# return new object
return RawInputData(
a3m["msa"],
a3m["ins"],
bond_feats,
xyz_t,
mask_t,
t1d,
chirals,
atom_frames,
taxids=None
)
def merge_all(
protein_inputs,
na_inputs,
sm_inputs,
residues_to_atomize,
deterministic: bool = False,
):
protein_inputs, protein_chain_lengths = merge_protein_inputs(protein_inputs, deterministic=deterministic)
na_inputs, na_chain_lengths = merge_na_inputs(na_inputs)
sm_inputs, sm_chain_lengths = merge_sm_inputs(sm_inputs)
if protein_inputs is None and na_inputs is None and sm_inputs is None:
raise ValueError("No valid inputs were provided")
running_inputs = merge_two_inputs(protein_inputs, na_inputs) #could handle pairing protein/NA MSAs here
running_inputs = merge_two_inputs(running_inputs, sm_inputs)
all_chain_lengths = protein_chain_lengths + na_chain_lengths + sm_chain_lengths
running_inputs.chain_lengths = all_chain_lengths
all_lengths = get_Ls_from_chain_lengths(running_inputs.chain_lengths)
protein_lengths = get_Ls_from_chain_lengths(protein_chain_lengths)
term_info = get_term_feats(all_lengths)
term_info[sum(protein_lengths):, :] = 0
running_inputs.term_info = term_info
xyz_t = running_inputs.xyz_t
mask_t = running_inputs.mask_t
same_chain = same_chain = same_chain_from_bond_feats(running_inputs.bond_feats)
ntempl = xyz_t.shape[0]
xyz_t = torch.stack(
[center_and_realign_missing(xyz_t[i], mask_t[i], same_chain=same_chain) for i in range(ntempl)]
)
xyz_t = torch.nan_to_num(xyz_t)
running_inputs.xyz_t = xyz_t
running_inputs.idx = idx_from_Ls(all_lengths)
# after everything is merged need to add bond feats for covales
# reindex protein feats function
if residues_to_atomize:
running_inputs.update_protein_features_after_atomize(residues_to_atomize)
return running_inputs
def get_Ls_from_chain_lengths(chain_lengths):
return [val[1] for val in chain_lengths]