mirror of
https://github.com/baker-laboratory/RoseTTAFold-All-Atom.git
synced 2024-11-24 22:37:20 +00:00
71 lines
2.7 KiB
Python
71 lines
2.7 KiB
Python
import torch
|
|
import torch.nn as nn
|
|
|
|
import numpy as np
|
|
|
|
from contextlib import ExitStack
|
|
|
|
from rf2aa.chemical import ChemicalData as ChemData
|
|
|
|
def recycle_step_legacy(ddp_model, input, n_cycle, use_amp, nograds=False, force_device=None):
|
|
if force_device is not None:
|
|
gpu = force_device
|
|
else:
|
|
gpu = ddp_model.device
|
|
|
|
xyz_prev, alpha_prev, mask_recycle = \
|
|
input["xyz_prev"], input["alpha_prev"], input["mask_recycle"]
|
|
output_i = (None, None, xyz_prev, alpha_prev, mask_recycle)
|
|
for i_cycle in range(n_cycle):
|
|
with ExitStack() as stack:
|
|
stack.enter_context(torch.cuda.amp.autocast(enabled=use_amp))
|
|
if i_cycle < n_cycle -1 or nograds is True:
|
|
stack.enter_context(torch.no_grad())
|
|
if force_device is None:
|
|
stack.enter_context(ddp_model.no_sync())
|
|
return_raw = (i_cycle < n_cycle -1)
|
|
use_checkpoint = not nograds and (i_cycle == n_cycle -1)
|
|
|
|
input_i = add_recycle_inputs(input, output_i, i_cycle, gpu, return_raw=return_raw, use_checkpoint=use_checkpoint)
|
|
output_i = ddp_model(**input_i)
|
|
return output_i
|
|
|
|
|
|
def run_model_forward_legacy(model, network_input, device="cpu"):
|
|
""" run model forward pass, no recycling or ddp with legacy model (for tests)"""
|
|
gpu = device
|
|
xyz_prev, alpha_prev, mask_recycle = \
|
|
network_input["xyz_prev"], network_input["alpha_prev"], network_input["mask_recycle"]
|
|
output_i = (None, None, xyz_prev, alpha_prev, mask_recycle)
|
|
input_i = add_recycle_inputs(network_input, output_i, 0, gpu, return_raw=False, use_checkpoint=False)
|
|
input_i["seq_unmasked"] = input_i["seq_unmasked"].to(gpu)
|
|
input_i["sctors"] = input_i["sctors"].to(gpu)
|
|
model.eval()
|
|
with torch.no_grad():
|
|
output_i = model(**input_i)
|
|
|
|
return output_i
|
|
|
|
def add_recycle_inputs(network_input, output_i, i_cycle, gpu, return_raw=False, use_checkpoint=False):
|
|
input_i = {}
|
|
for key in network_input:
|
|
if key in ['msa_latent', 'msa_full', 'seq']:
|
|
input_i[key] = network_input[key][:,i_cycle].to(gpu, non_blocking=True)
|
|
else:
|
|
input_i[key] = network_input[key]
|
|
|
|
L = input_i["msa_latent"].shape[2]
|
|
msa_prev, pair_prev, _, alpha, mask_recycle = output_i
|
|
xyz_prev = ChemData().INIT_CRDS.reshape(1,1,ChemData().NTOTAL,3).repeat(1,L,1,1).to(gpu, non_blocking=True)
|
|
|
|
input_i['msa_prev'] = msa_prev
|
|
input_i['pair_prev'] = pair_prev
|
|
input_i['xyz'] = xyz_prev
|
|
input_i['mask_recycle'] = mask_recycle
|
|
input_i['sctors'] = alpha
|
|
input_i['return_raw'] = return_raw
|
|
input_i['use_checkpoint'] = use_checkpoint
|
|
|
|
input_i.pop('xyz_prev')
|
|
input_i.pop('alpha_prev')
|
|
return input_i
|