mirror of
https://github.com/baker-laboratory/RoseTTAFold-All-Atom.git
synced 2025-02-27 00:10:12 +00:00
131 lines
5.4 KiB
Python
131 lines
5.4 KiB
Python
# Copyright (c) 2021, NVIDIA CORPORATION & AFFILIATES. All rights reserved.
|
|
#
|
|
# Permission is hereby granted, free of charge, to any person obtaining a
|
|
# copy of this software and associated documentation files (the "Software"),
|
|
# to deal in the Software without restriction, including without limitation
|
|
# the rights to use, copy, modify, merge, publish, distribute, sublicense,
|
|
# and/or sell copies of the Software, and to permit persons to whom the
|
|
# Software is furnished to do so, subject to the following conditions:
|
|
#
|
|
# The above copyright notice and this permission notice shall be included in
|
|
# all copies or substantial portions of the Software.
|
|
#
|
|
# THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
|
|
# IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
|
|
# FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL
|
|
# THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
|
|
# LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING
|
|
# FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER
|
|
# DEALINGS IN THE SOFTWARE.
|
|
#
|
|
# SPDX-FileCopyrightText: Copyright (c) 2021 NVIDIA CORPORATION & AFFILIATES
|
|
# SPDX-License-Identifier: MIT
|
|
|
|
from typing import List
|
|
|
|
import torch
|
|
import torch.nn as nn
|
|
from torch.nn.parallel import DistributedDataParallel
|
|
from torch.utils.data import DataLoader
|
|
from tqdm import tqdm
|
|
|
|
from rf2aa.SE3Transformer.se3_transformer.runtime import gpu_affinity
|
|
from rf2aa.SE3Transformer.se3_transformer.runtime.arguments import PARSER
|
|
from rf2aa.SE3Transformer.se3_transformer.runtime.callbacks import BaseCallback
|
|
from rf2aa.SE3Transformer.se3_transformer.runtime.loggers import DLLogger
|
|
from rf2aa.SE3Transformer.se3_transformer.runtime.utils import to_cuda, get_local_rank
|
|
|
|
|
|
@torch.inference_mode()
|
|
def evaluate(model: nn.Module,
|
|
dataloader: DataLoader,
|
|
callbacks: List[BaseCallback],
|
|
args):
|
|
model.eval()
|
|
for i, batch in tqdm(enumerate(dataloader), total=len(dataloader), unit='batch', desc=f'Evaluation',
|
|
leave=False, disable=(args.silent or get_local_rank() != 0)):
|
|
*input, target = to_cuda(batch)
|
|
|
|
for callback in callbacks:
|
|
callback.on_batch_start()
|
|
|
|
with torch.cuda.amp.autocast(enabled=args.amp):
|
|
pred = model(*input)
|
|
|
|
for callback in callbacks:
|
|
callback.on_validation_step(input, target, pred)
|
|
|
|
|
|
if __name__ == '__main__':
|
|
from rf2aa.SE3Transformer.se3_transformer.runtime.callbacks import QM9MetricCallback, PerformanceCallback
|
|
from rf2aa.SE3Transformer.se3_transformer.runtime.utils import init_distributed, seed_everything
|
|
from rf2aa.SE3Transformer.se3_transformer.model import SE3TransformerPooled, Fiber
|
|
from rf2aa.SE3Transformer.se3_transformer.data_loading import QM9DataModule
|
|
import torch.distributed as dist
|
|
import logging
|
|
import sys
|
|
|
|
is_distributed = init_distributed()
|
|
local_rank = get_local_rank()
|
|
args = PARSER.parse_args()
|
|
|
|
logging.getLogger().setLevel(logging.CRITICAL if local_rank != 0 or args.silent else logging.INFO)
|
|
|
|
logging.info('====== SE(3)-Transformer ======')
|
|
logging.info('| Inference on the test set |')
|
|
logging.info('===============================')
|
|
|
|
if not args.benchmark and args.load_ckpt_path is None:
|
|
logging.error('No load_ckpt_path provided, you need to provide a saved model to evaluate')
|
|
sys.exit(1)
|
|
|
|
if args.benchmark:
|
|
logging.info('Running benchmark mode with one warmup pass')
|
|
|
|
if args.seed is not None:
|
|
seed_everything(args.seed)
|
|
|
|
major_cc, minor_cc = torch.cuda.get_device_capability()
|
|
|
|
logger = DLLogger(args.log_dir, filename=args.dllogger_name)
|
|
datamodule = QM9DataModule(**vars(args))
|
|
model = SE3TransformerPooled(
|
|
fiber_in=Fiber({0: datamodule.NODE_FEATURE_DIM}),
|
|
fiber_out=Fiber({0: args.num_degrees * args.num_channels}),
|
|
fiber_edge=Fiber({0: datamodule.EDGE_FEATURE_DIM}),
|
|
output_dim=1,
|
|
tensor_cores=(args.amp and major_cc >= 7) or major_cc >= 8, # use Tensor Cores more effectively
|
|
**vars(args)
|
|
)
|
|
callbacks = [QM9MetricCallback(logger, targets_std=datamodule.targets_std, prefix='test')]
|
|
|
|
model.to(device=torch.cuda.current_device())
|
|
if args.load_ckpt_path is not None:
|
|
checkpoint = torch.load(str(args.load_ckpt_path), map_location={'cuda:0': f'cuda:{local_rank}'})
|
|
model.load_state_dict(checkpoint['state_dict'])
|
|
|
|
if is_distributed:
|
|
nproc_per_node = torch.cuda.device_count()
|
|
affinity = gpu_affinity.set_affinity(local_rank, nproc_per_node)
|
|
model = DistributedDataParallel(model, device_ids=[local_rank], output_device=local_rank)
|
|
|
|
test_dataloader = datamodule.test_dataloader() if not args.benchmark else datamodule.train_dataloader()
|
|
evaluate(model,
|
|
test_dataloader,
|
|
callbacks,
|
|
args)
|
|
|
|
for callback in callbacks:
|
|
callback.on_validation_end()
|
|
|
|
if args.benchmark:
|
|
world_size = dist.get_world_size() if dist.is_initialized() else 1
|
|
callbacks = [PerformanceCallback(logger, args.batch_size * world_size, warmup_epochs=1, mode='inference')]
|
|
for _ in range(6):
|
|
evaluate(model,
|
|
test_dataloader,
|
|
callbacks,
|
|
args)
|
|
callbacks[0].on_epoch_end()
|
|
|
|
callbacks[0].on_fit_end()
|