mirror of
https://github.com/baker-laboratory/RoseTTAFold-All-Atom.git
synced 2025-02-12 23:37:10 +00:00
103 lines
3.7 KiB
Python
103 lines
3.7 KiB
Python
# Copyright (c) 2021, NVIDIA CORPORATION & AFFILIATES. All rights reserved.
|
|
#
|
|
# Permission is hereby granted, free of charge, to any person obtaining a
|
|
# copy of this software and associated documentation files (the "Software"),
|
|
# to deal in the Software without restriction, including without limitation
|
|
# the rights to use, copy, modify, merge, publish, distribute, sublicense,
|
|
# and/or sell copies of the Software, and to permit persons to whom the
|
|
# Software is furnished to do so, subject to the following conditions:
|
|
#
|
|
# The above copyright notice and this permission notice shall be included in
|
|
# all copies or substantial portions of the Software.
|
|
#
|
|
# THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
|
|
# IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
|
|
# FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL
|
|
# THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
|
|
# LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING
|
|
# FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER
|
|
# DEALINGS IN THE SOFTWARE.
|
|
#
|
|
# SPDX-FileCopyrightText: Copyright (c) 2021 NVIDIA CORPORATION & AFFILIATES
|
|
# SPDX-License-Identifier: MIT
|
|
|
|
import torch
|
|
import pytest
|
|
|
|
from rf2aa.SE3Transformer.se3_transformer.model import SE3Transformer
|
|
from rf2aa.SE3Transformer.se3_transformer.model.fiber import Fiber
|
|
from tests.utils import get_random_graph, assign_relative_pos, get_max_diff, rot
|
|
|
|
# Tolerances for equivariance error abs( f(x) @ R - f(x @ R) )
|
|
TOL = 1e-3
|
|
CHANNELS, NODES = 32, 512
|
|
|
|
|
|
def _get_outputs(model, R):
|
|
feats0 = torch.randn(NODES, CHANNELS, 1)
|
|
feats1 = torch.randn(NODES, CHANNELS, 3)
|
|
|
|
coords = torch.randn(NODES, 3)
|
|
graph = get_random_graph(NODES)
|
|
if torch.cuda.is_available():
|
|
feats0 = feats0.cuda()
|
|
feats1 = feats1.cuda()
|
|
R = R.cuda()
|
|
coords = coords.cuda()
|
|
graph = graph.to('cuda')
|
|
model.cuda()
|
|
|
|
graph1 = assign_relative_pos(graph, coords)
|
|
out1 = model(graph1, {'0': feats0, '1': feats1}, {})
|
|
graph2 = assign_relative_pos(graph, coords @ R)
|
|
out2 = model(graph2, {'0': feats0, '1': feats1 @ R}, {})
|
|
|
|
return out1, out2
|
|
|
|
|
|
def _get_model(**kwargs):
|
|
return SE3Transformer(
|
|
num_layers=4,
|
|
fiber_in=Fiber.create(2, CHANNELS),
|
|
fiber_hidden=Fiber.create(3, CHANNELS),
|
|
fiber_out=Fiber.create(2, CHANNELS),
|
|
fiber_edge=Fiber({}),
|
|
num_heads=8,
|
|
channels_div=2,
|
|
**kwargs
|
|
)
|
|
|
|
@pytest.mark.skip
|
|
def test_equivariance():
|
|
model = _get_model()
|
|
R = rot(*torch.rand(3))
|
|
if torch.cuda.is_available():
|
|
R = R.cuda()
|
|
out1, out2 = _get_outputs(model, R)
|
|
|
|
assert torch.allclose(out2['0'], out1['0'], atol=TOL), \
|
|
f'type-0 features should be invariant {get_max_diff(out1["0"], out2["0"])}'
|
|
assert torch.allclose(out2['1'], (out1['1'] @ R), atol=TOL), \
|
|
f'type-1 features should be equivariant {get_max_diff(out1["1"] @ R, out2["1"])}'
|
|
|
|
@pytest.mark.skip
|
|
def test_equivariance_pooled():
|
|
model = _get_model(pooling='avg', return_type=1)
|
|
R = rot(*torch.rand(3))
|
|
if torch.cuda.is_available():
|
|
R = R.cuda()
|
|
out1, out2 = _get_outputs(model, R)
|
|
|
|
assert torch.allclose(out2, (out1 @ R), atol=TOL), \
|
|
f'type-1 features should be equivariant {get_max_diff(out1 @ R, out2)}'
|
|
|
|
@pytest.mark.skip
|
|
def test_invariance_pooled():
|
|
model = _get_model(pooling='avg', return_type=0)
|
|
R = rot(*torch.rand(3))
|
|
if torch.cuda.is_available():
|
|
R = R.cuda()
|
|
out1, out2 = _get_outputs(model, R)
|
|
|
|
assert torch.allclose(out2, out1, atol=TOL), \
|
|
f'type-0 features should be invariant {get_max_diff(out1, out2)}'
|