Twizy-Virtual-BMS/src/TwizyVirtualBMS.h
Michael Balzer 3f97ae4cbe - Fixed polling check for CAN modules without IRQ
- Raised serial speed for examples to 1000000 baud
2017-07-04 19:19:28 +02:00

1049 lines
25 KiB
C++

/**
* ==========================================================================
* Twizy Virtual BMS
* ==========================================================================
*
* Emulation of Renault Twizy BMS (battery management system)
* Interface between the Twizy and custom built / third party batteries
*
* Author: Michael Balzer <dexter@dexters-web.de>
*
* Twizy CAN object dictionary:
* https://docs.google.com/spreadsheets/d/1gOrG9rnGR9YuMGakAbl4s97a6irHF6UNFV1TS5Ll7MY/edit#gid=0
* (Maintainer: Michael Balzer <dexter@dexters-web.de>)
*
* Twizy BMS CAN & hardware protocol decoding and reengineering has been done
* by a joint effort of (in reverse alphabetical order):
* - Lutz Schäfer <aquillo@t-online.de>
* - Pascal Ripp <pascal@ripp.li>
* - Bernd Eickhoff <b.eickhoff@gmx.de>
* - Michael Balzer <dexter@dexters-web.de>
*
* Libraries used:
* - MCP_CAN: https://github.com/coryjfowler/MCP_CAN_lib
* …plus one of…
* - TimerOne: https://github.com/PaulStoffregen/TimerOne
* - FlexiTimer2: https://github.com/PaulStoffregen/FlexiTimer2
* - TimerThree: https://github.com/PaulStoffregen/TimerThree
*
* Licenses:
* This is free software and information under the following licenses:
* - Source code: GNU Lesser General Public License (LGPL)
* https://www.gnu.org/licenses/lgpl.html
* - Documentation: GNU Free Documentation License (FDL)
* https://www.gnu.org/licenses/fdl.html
*
*/
#ifndef _TwizyVirtualBMS_h
#define _TwizyVirtualBMS_h
#define TWIZY_VBMS_VERSION "V1.1.0 (2017-06-20)"
#ifndef TWIZY_TAG
#define TWIZY_TAG "twizy."
#endif
#include <Arduino.h>
#include <avr/pgmspace.h>
#include <mcp_can.h>
#include <mcp_can_dfs.h>
#ifndef TWIZY_USE_TIMER
#define TWIZY_USE_TIMER 1
#endif
#if TWIZY_USE_TIMER == 1
#include <TimerOne.h>
#elif TWIZY_USE_TIMER == 2
#include <FlexiTimer2.h>
#elif TWIZY_USE_TIMER == 3
#include <TimerThree.h>
#else
#error "TWIZY_USE_TIMER invalid, please set to 1, 2 or 3!"
#endif
#ifndef _TwizyVirtualBMS_config_h
#warning "Fallback to default TwizyVirtualBMS_config.h -- you should copy this into your sketch folder"
#include "TwizyVirtualBMS_config.h"
#endif
// ==========================================================================
// TYPES AND CONSTANTS
// ==========================================================================
// Twizy states:
enum TwizyState {
Off,
Init,
Error,
Ready,
StartDrive,
Driving,
StopDrive,
StartCharge,
Charging,
StopCharge,
StartTrickle,
Trickle,
StopTrickle
};
// Twizy state names:
#if TWIZY_DEBUG_LEVEL >= 1
const char twizyStateName[13][13] PROGMEM = {
"Off",
"Init",
"Error",
"Ready",
"StartDrive",
"Driving",
"StopDrive",
"StartCharge",
"Charging",
"StopCharge",
"StartTrickle",
"Trickle",
"StopTrickle"
};
#endif
// Known error codes for setError():
// Note: these can be used singularly or be ORed to set multiple indicators.
// i.e. do setError(TWIZY_SERV_TEMP|TWIZY_SERV_STOP) to indicate
// a severely high temperature
#define TWIZY_OK 0x00000000 // clear all indicators
#define TWIZY_SERV 0x00eeee00 // set SERV indicator
#define TWIZY_SERV_12V 0x00eeee20 // set SERV + 12V battery indicator
#define TWIZY_SERV_BATT 0x00eeee40 // set SERV + main battery indicator
#define TWIZY_SERV_TEMP 0x00eeee80 // set SERV + temperature indicator
#define TWIZY_SERV_STOP 0x00eeff00 // set SERV + STOP indicator + beep
// User callbacks hooks:
typedef void (*TwizyEnterStateCallback)(TwizyState currentState, TwizyState newState);
typedef bool (*TwizyCheckStateCallback)(TwizyState currentState, TwizyState newState);
typedef void (*TwizyTickerCallback)(unsigned int clockCnt);
typedef void (*TwizyProcessCanMsgCallback)(unsigned long rxId, byte rxLen, byte *rxBuf);
// ==========================================================================
// LIBRARY CODE AREA
// ==========================================================================
// PROGMEM string helpers:
#define FLASHSTRING const __FlashStringHelper
#define FS(x) (__FlashStringHelper*)(x)
// Parameter boundary check with error output:
#define CHECKLIMIT(var, minval, maxval) \
if (var < minval || var > maxval) { \
Serial.print(TWIZY_TAG); \
Serial.print(__func__); \
Serial.print(F(": ERROR " #var "=")); \
Serial.print(var); \
Serial.println(F(" out of bounds [" #minval "," #maxval "]")); \
return false; \
}
// -----------------------------------------------------
// Interrupt handlers
//
volatile bool twizyCanMsgReceived = false;
#ifdef TWIZY_CAN_IRQ_PIN
void twizyCanISR() {
twizyCanMsgReceived = true;
}
#endif
volatile bool twizyClockTick = false;
void twizyClockISR() {
twizyClockTick = true;
}
// -----------------------------------------------------
// TwizyVirtualBMS class definition
//
class TwizyVirtualBMS {
public:
// -----------------------------------------------------
// Public API
//
TwizyVirtualBMS();
void begin(); // to be called in setup()
void looper(); // to be called in loop()
// User callback registration:
void attachEnterState(TwizyEnterStateCallback fn);
void attachCheckState(TwizyCheckStateCallback fn);
void attachTicker(TwizyTickerCallback fn);
void attachProcessCanMsg(TwizyProcessCanMsgCallback fn);
// Model access:
bool setChargeCurrent(int amps);
bool setCurrent(float amps);
bool setCurrentQA(long quarterAmps);
bool setSOC(float soc);
bool setPowerLimits(unsigned int drive, unsigned int recup);
bool setSOH(int soh);
bool setCellVoltage(int cell, float volt);
bool setVoltage(float volt, bool deriveCells);
bool setModuleTemperature(int module, int temp);
bool setTemperature(int tempMin, int tempMax, bool deriveModules);
bool setError(unsigned long error);
// State access:
TwizyState state() {
return twizyState;
}
bool inState(TwizyState state1) {
return (twizyState==state1);
}
bool inState(TwizyState state1, TwizyState state2) {
return (twizyState==state1 || twizyState==state2);
}
bool inState(TwizyState state1, TwizyState state2, TwizyState state3) {
return (twizyState==state1 || twizyState==state2 || twizyState==state3);
}
bool inState(TwizyState state1, TwizyState state2, TwizyState state3, TwizyState state4) {
return (twizyState==state1 || twizyState==state2 || twizyState==state3 || twizyState==state4);
}
bool inState(TwizyState state1, TwizyState state2, TwizyState state3, TwizyState state4, TwizyState state5) {
return (twizyState==state1 || twizyState==state2 || twizyState==state3 || twizyState==state4 || twizyState==state5);
}
void enterState(TwizyState newState);
// CAN interface access:
bool sendMsg(INT32U id, INT8U len, INT8U *buf);
void setCanFilter(byte filterNum, unsigned int canId);
// Debug utils:
void dumpId(FLASHSTRING *name, int len, byte *buf);
void debugInfo();
private:
// -----------------------------------------------------
// Twizy CAN model
//
// BMS (controlled by us):
byte id155[8] = { 0x07, 0x97, 0xCA, 0x54, 0x52, 0x30, 0x00, 0x6C };
byte id424[8] = { 0x11, 0x40, 0x10, 0x20, 0x39, 0x63, 0x00, 0x3A };
byte id425[8] = { 0x2A, 0x1F, 0x44, 0xFF, 0xFE, 0x42, 0x01, 0x20 };
byte id554[8] = { 0x3A, 0x3A, 0x3A, 0x3A, 0x3A, 0x3A, 0x3A, 0x00 };
byte id556[8] = { 0x30, 0x93, 0x09, 0x30, 0x93, 0x09, 0x30, 0x9A };
byte id557[8] = { 0x30, 0x93, 0x09, 0x30, 0x93, 0x09, 0x30, 0x90 };
byte id55E[8] = { 0x30, 0x93, 0x09, 0x30, 0x93, 0x09, 0x0C, 0xF9 };
byte id55F[8] = { 0xFF, 0xFF, 0x73, 0x00, 0x00, 0x21, 0xF2, 0x1F };
byte id628[3] = { 0x00, 0x00, 0x00 };
byte id659[4] = { 0xFF, 0xFF, 0xFF, 0xFF };
// CHARGER:
byte id423[8] = { 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00 };
byte id597[8] = { 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00 };
// DISPLAY:
byte id599[8] = { 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00 };
// -----------------------------------------------------
// Twizy CAN interface
//
MCP_CAN twizyCAN;
unsigned int sendErrors = 0;
unsigned int sendRetries = 0;
// RX buffer:
unsigned long rxId;
byte rxLen;
byte rxBuf[8];
void receiveCanMsgs();
void process423();
void process597();
void process599();
// -----------------------------------------------------
// Twizy state machine
//
TwizyState twizyState = (TwizyState) -1;
// 3MW pulse tick counter:
byte counter3MW = 0;
// -----------------------------------------------------
// Twizy ticker:
//
unsigned int clockCnt = 0;
void ticker();
// -----------------------------------------------------
// User callbacks hooks
//
TwizyEnterStateCallback bmsEnterState = NULL;
TwizyCheckStateCallback bmsCheckState = NULL;
TwizyTickerCallback bmsTicker = NULL;
TwizyProcessCanMsgCallback bmsProcessCanMsg = NULL;
};
// -----------------------------------------------------
// API
//
TwizyVirtualBMS::TwizyVirtualBMS()
: twizyCAN(TWIZY_CAN_CS_PIN) {
}
void TwizyVirtualBMS::attachEnterState(TwizyEnterStateCallback fn) {
bmsEnterState = fn;
}
void TwizyVirtualBMS::attachCheckState(TwizyCheckStateCallback fn) {
bmsCheckState = fn;
}
void TwizyVirtualBMS::attachTicker(TwizyTickerCallback fn) {
bmsTicker = fn;
}
void TwizyVirtualBMS::attachProcessCanMsg(TwizyProcessCanMsgCallback fn) {
bmsProcessCanMsg = fn;
}
// -----------------------------------------------------
// Twizy CAN model
//
// Set battery charge current level
// amps: 0 .. 35 [A] (5 A resolution, 35 not reached with current charger generation)
// Note: will enter state StopCharge if set to 0 during charge
bool TwizyVirtualBMS::setChargeCurrent(int amps) {
CHECKLIMIT(amps, 0, 35);
id155[0] = amps / 5;
if (twizyState == Charging && id155[0] == 0) {
enterState(StopCharge);
}
return true;
}
// Set battery pack current level
// amps: -500 .. +500 (positive = charge, negative = discharge)
bool TwizyVirtualBMS::setCurrent(float amps) {
CHECKLIMIT(amps, -500.0, 500.0);
unsigned int level = 2000 + (amps * 4);
id155[1] = (id155[1] & 0xf0) | ((level & 0x0f00) >> 8);
id155[2] = level & 0x00ff;
return true;
}
// Set battery pack current level (native 1/4 A resolution)
// milliamps: -2000 .. +2000 (positive = charge, negative = discharge)
bool TwizyVirtualBMS::setCurrentQA(long quarterAmps) {
CHECKLIMIT(quarterAmps, -2000L, 2000L);
unsigned int level = 2000 + quarterAmps;
id155[1] = (id155[1] & 0xf0) | ((level & 0x0f00) >> 8);
id155[2] = level & 0x00ff;
return true;
}
// Set battery pack SOC
// soc: 0.00 .. 100.00
// Note: the charger will not start charging at SOC=100%
bool TwizyVirtualBMS::setSOC(float soc) {
CHECKLIMIT(soc, 0.0, 100.0);
unsigned int level = soc * 400;
id155[4] = level >> 8;
id155[5] = level & 0x00ff;
return true;
}
// Set SEVCON power limits
// drive: 0 .. 30000 [W]
// recup: 0 .. 30000 [W]
// Note: both limits have a resolution of 500 W
bool TwizyVirtualBMS::setPowerLimits(unsigned int drive, unsigned int recup) {
CHECKLIMIT(drive, 0, 30000);
CHECKLIMIT(recup, 0, 30000);
id424[2] = recup / 500;
id424[3] = drive / 500;
return true;
}
// Set battery pack SOH
// soh: 0 .. 100
bool TwizyVirtualBMS::setSOH(int soh) {
CHECKLIMIT(soh, 0, 100);
id424[5] = soh;
return true;
}
// Set battery cell voltage level
// cell: 1 .. 14
// volt: 1.0 .. 5.0
bool TwizyVirtualBMS::setCellVoltage(int cell, float volt) {
CHECKLIMIT(cell, 1, 14);
CHECKLIMIT(volt, 1.0, 5.0);
// cell voltages are packed 12 bit values
// determine frame and position:
byte *frame;
if (cell <= 5) {
frame = id556;
cell -= 1;
}
else if (cell <= 10) {
frame = id557;
cell -= 6;
}
else {
frame = id55E;
cell -= 11;
}
int pos = cell * 1.5;
unsigned int level = volt * 200;
if (cell & 1) {
// odd cell number: pack right
frame[pos] = (frame[pos] & 0xf0) | (level >> 8);
frame[pos+1] = level & 0x00ff;
}
else {
// even cell number: pack left
frame[pos] = level >> 4;
frame[pos+1] = (frame[pos+1] & 0x0f) | ((level << 4) & 0xf0);
}
return true;
}
// Set battery pack voltage level
// volt: 19.3 … 69.6 (SEVCON G48 series voltage range)
// deriveCells: true = set all cell voltages to volt/14
bool TwizyVirtualBMS::setVoltage(float volt, bool deriveCells) {
CHECKLIMIT(volt, 19.3, 69.6);
unsigned long level;
// frame 55F: volt * 10, packed 2x:
level = volt * 10;
level |= level << 12;
id55F[5] = (level & 0x00ff0000) >> 16;
id55F[6] = (level & 0x0000ff00) >> 8;
id55F[7] = (level & 0x000000ff);
// frame 425: voltage scaling not 100% known yet, do approximation:
level = (volt - 13.051) * 6.981;
id425[6] = level >> 8;
id425[7] = level & 0x00ff;
level = 0xfc00 | (level << 1);
id425[4] = level >> 8;
id425[5] = level & 0x00ff;
if (deriveCells) {
float cellVolt = volt / 14.0;
for (int i=1; i<=14; i++) {
setCellVoltage(i, cellVolt);
}
}
return true;
}
// Set battery module temperature
// module: 1 .. 7
// temp: -40 .. 100 [°C]
bool TwizyVirtualBMS::setModuleTemperature(int module, int temp) {
CHECKLIMIT(module, 1, 7);
CHECKLIMIT(temp, -40, 100);
id554[module-1] = 40 + temp;
return true;
}
// Set battery overall temperature
// tempMin: -40 .. 100 [°C]
// tempMax: -40 .. 100 [°C]
// deriveModules: true = set all cell temperatures to avg(min,max)
bool TwizyVirtualBMS::setTemperature(int tempMin, int tempMax, bool deriveModules) {
CHECKLIMIT(tempMin, -40, 100);
CHECKLIMIT(tempMax, -40, 100);
// set min/max temperatures:
id424[4] = 40 + tempMin;
id424[7] = 40 + tempMax;
// derive module temperatures:
if (deriveModules) {
int tempAvg = (tempMin + tempMax) / 2;
for (int i=0; i<7; i++) {
id554[i] = 40 + tempAvg;
}
}
return true;
}
// Set display battery error indicators
// error: 0x000000 .. 0xFFFFFF (0 = no error)
// See error code definitions.
bool TwizyVirtualBMS::setError(unsigned long error) {
CHECKLIMIT(error, 0x000000, 0xFFFFFF);
id628[0] = (error & 0xFF0000) >> 16;
id628[1] = (error & 0x00FF00) >> 8;
id628[2] = (error & 0x0000FF);
return true;
}
// -----------------------------------------------------
// Twizy CAN interface
//
// Set free CAN filters:
// filterNum: 1…3
// canId: 11 bit CAN ID i.e. 0x196
void TwizyVirtualBMS::setCanFilter(byte filterNum, unsigned int canId) {
CHECKLIMIT(filterNum, 1, 3);
twizyCAN.init_Filt(2+filterNum, 0, (unsigned long)canId << 16);
}
#define SAVEMSG(dst) for(int i = 0; i<rxLen; i++) { dst[i] = rxBuf[i]; }
// Read and process Twizy CAN messages:
void TwizyVirtualBMS::receiveCanMsgs() {
while (twizyCAN.readMsgBuf(&rxId, &rxLen, rxBuf) == CAN_OK) {
if (rxId == 0x423) {
SAVEMSG(id423);
process423();
}
else if (rxId == 0x597) {
SAVEMSG(id597);
process597();
}
else if (rxId == 0x599) {
SAVEMSG(id599);
process599();
}
// User space callback:
if (bmsProcessCanMsg) {
(*bmsProcessCanMsg)(rxId, rxLen, rxBuf);
}
}
}
// Process CHARGER frame 423:
void TwizyVirtualBMS::process423() {
if (twizyState == Off && id423[0] != 0) {
enterState(Init);
}
else if (twizyState != Off && id423[0] == 0) {
enterState(Off);
}
}
// Process CHARGER frame 597:
void TwizyVirtualBMS::process597() {
byte address = id597[1] & 0xE5;
byte chgmode = id597[3] & 0xF0;
if (address != 0xE4) {
return; // charger does not talk to us
}
if (chgmode == 0xC0) {
if (twizyState != Driving) {
enterState(StartDrive);
}
}
else if (chgmode == 0xB0) {
if (twizyState != Charging) {
enterState(StartCharge);
}
}
else if (chgmode == 0x90) {
if (twizyState != Trickle) {
enterState(StartTrickle);
}
}
else if (chgmode == 0xD0) {
if (twizyState == Driving) {
enterState(StopDrive);
}
else if (twizyState == Charging) {
enterState(StopCharge);
}
else if (twizyState == Trickle) {
enterState(StopTrickle);
}
}
}
// Process DISPLAY frame 599:
void TwizyVirtualBMS::process599() {
// copy odometer to BMS frame 55E
unsigned long odo = ((unsigned long)id599[0] << 24)
| ((unsigned long)id599[1] << 16)
| ((unsigned long)id599[2] << 8)
| (id599[3]);
odo /= 10;
id55E[6] = odo >> 8;
id55E[7] = odo & 0x00ff;
}
// -----------------------------------------------------
// Send Twizy CAN messages:
//
bool TwizyVirtualBMS::sendMsg(INT32U id, INT8U len, INT8U *buf) {
#if TWIZY_CAN_SEND == 1
for (int tries=3; tries>0; tries--) {
if (twizyCAN.sendMsgBuf(id, 0, len, buf) != CAN_GETTXBFTIMEOUT) {
// CAN_OK = frame has been sent
// CAN_SENDMSGTIMEOUT = we made it into a send buffer
// → no need to repeat the send:
return true;
}
sendRetries++;
}
#endif //TWIZY_CAN_SEND
sendErrors++;
return false;
// Note: MCP_CAN.sendMsgBuf() is not optimized for throughput.
// Despite having three send buffers in the MCP, it will wait
// for the send to finish and return an error on timeout.
// The timeout is 50 MCP register reads via SPI.
// It could be worth replacing MCP_CAN.sendMsgBuf() to utilize
// asynchronous writes.
}
// -----------------------------------------------------
// Twizy ticker:
//
void TwizyVirtualBMS::ticker() {
if (++clockCnt == 3000)
clockCnt = 0;
// Note: currently we turn off all CAN sends in state Error,
// as that reliably lets the SEVCON and charger switch off.
// It may be an option to only turn off ID 554 (or all 55x)
// instead, as that happened on one CAN trace of a defective
// original battery.
if ((twizyState != Off) && (twizyState != Error)) {
bool ms100 = (clockCnt % 10 == 0);
bool ms1000 = (clockCnt % 100 == 0);
bool ms3000 = (clockCnt % 300 == 0);
bool ms10000 = (clockCnt % 1000 == 0);
//
// Send CAN messages
//
sendMsg(0x155, sizeof(id155), id155);
if (ms100) {
sendMsg(0x424, sizeof(id424), id424);
sendMsg(0x425, sizeof(id425), id425);
}
if (ms1000) {
sendMsg(0x554, sizeof(id554), id554);
}
if (ms100) {
sendMsg(0x556, sizeof(id556), id556);
}
if (ms1000) {
sendMsg(0x557, sizeof(id557), id557);
sendMsg(0x55E, sizeof(id55E), id55E);
sendMsg(0x55F, sizeof(id55F), id55F);
}
if (ms100) {
sendMsg(0x628, sizeof(id628), id628);
}
if (ms3000) {
sendMsg(0x659, sizeof(id659), id659);
}
//
// Create 3MW pulse cycle
// (high 150ms → low 150ms → high)
//
if (counter3MW > 0) {
--counter3MW;
// 3MW low after 150 ms:
if (counter3MW == 15) {
digitalWrite(TWIZY_3MW_CONTROL_PIN, 0);
}
// 3MW high after 300 ms (pulse finished):
else if (counter3MW == 0) {
digitalWrite(TWIZY_3MW_CONTROL_PIN, 1);
}
}
//
// Check for state transition
//
switch (twizyState) {
// Transition to Ready?
case Init:
case StopDrive:
case StopCharge:
case StopTrickle:
if (!bmsCheckState || (*bmsCheckState)(twizyState, Ready)) {
enterState(Ready);
}
break;
// Transition to Driving?
case StartDrive:
if (!bmsCheckState || (*bmsCheckState)(twizyState, Driving)) {
enterState(Driving);
}
break;
// Transition to Charging?
case StartCharge:
if (!bmsCheckState || (*bmsCheckState)(twizyState, Charging)) {
enterState(Charging);
}
break;
// Transition to Trickle?
case StartTrickle:
if (!bmsCheckState || (*bmsCheckState)(twizyState, Trickle)) {
enterState(Trickle);
}
break;
}
//
// Debug info every 10 seconds
//
#if TWIZY_DEBUG_LEVEL >= 1
if (ms10000) {
debugInfo();
}
#endif
} // if ((twizyState != Off) && (twizyState != Error))
//
// Callback for BMS ticker code:
//
if (bmsTicker) {
(*bmsTicker)(clockCnt);
}
}
// -----------------------------------------------------
// Twizy debug info:
//
void TwizyVirtualBMS::dumpId(FLASHSTRING *name, int len, byte *buf) {
Serial.print(F("- "));
Serial.print(name);
Serial.print(F(":"));
for (int i=0; i<len; i++) {
Serial.print(buf[i] < 0x10 ? F(" 0") : F(" "));
Serial.print(buf[i], HEX);
}
Serial.println();
}
void TwizyVirtualBMS::debugInfo() {
#if TWIZY_DEBUG_LEVEL >= 1
Serial.println(F("\n" TWIZY_TAG "debugInfo:"));
Serial.print(F("- twizyState="));
Serial.println(FS(twizyStateName[twizyState]));
Serial.print(F("- clockCnt="));
Serial.println(clockCnt);
if (sendRetries) {
Serial.print(F("- sendRetries="));
Serial.println(sendRetries);
sendRetries = 0;
}
if (sendErrors) {
Serial.print(F("- sendErrors="));
Serial.println(sendErrors);
sendErrors = 0;
}
#endif
#if TWIZY_DEBUG_LEVEL >= 2
// CHARGER & DISPLAY:
dumpId(F("id423"), sizeof(id423), id423);
dumpId(F("id597"), sizeof(id597), id597);
dumpId(F("id599"), sizeof(id599), id599);
// BMS:
dumpId(F("id155"), sizeof(id155), id155);
dumpId(F("id424"), sizeof(id424), id424);
dumpId(F("id425"), sizeof(id425), id425);
dumpId(F("id554"), sizeof(id554), id554);
dumpId(F("id556"), sizeof(id556), id556);
dumpId(F("id557"), sizeof(id557), id557);
dumpId(F("id55E"), sizeof(id55E), id55E);
dumpId(F("id55F"), sizeof(id55F), id55F);
dumpId(F("id628"), sizeof(id628), id628);
dumpId(F("id659"), sizeof(id659), id659);
#endif
}
// -----------------------------------------------------
// Twizy state transitions:
//
void TwizyVirtualBMS::enterState(TwizyState newState) {
if (twizyState == newState) {
return;
}
#if TWIZY_DEBUG_LEVEL >= 1
Serial.print(F(TWIZY_TAG "enterState: newState="));
Serial.println(FS(twizyStateName[newState]));
#endif
switch (newState) {
case Off:
case Init:
id155[3] = 0x94;
id424[0] = 0x00;
id425[0] = 0x1D;
digitalWrite(TWIZY_3MW_CONTROL_PIN, 0);
counter3MW = 0;
clockCnt = 0;
break;
case Error:
// Note: these updates are just for consistency, will currently
// not be sent as Error turns off sending (may change)
id155[3] = 0x94;
id424[0] |= 0x80;
id425[0] = 0x24;
digitalWrite(TWIZY_3MW_CONTROL_PIN, 0);
break;
case Ready:
// restore minimum charge current level:
if (id155[0] == 0) {
id155[0] = 1;
}
id155[3] = 0x54;
// keep stop charge request if set:
if (id424[0] != 0x12) {
id424[0] = 0x11;
}
id425[0] = 0x24;
// if switching on...
if (digitalRead(TWIZY_3MW_CONTROL_PIN) == 0) {
// ...start 3MW pulse cycle:
digitalWrite(TWIZY_3MW_CONTROL_PIN, 1);
counter3MW = 30;
}
break;
case Driving:
id425[0] = 0x2A;
break;
case Charging:
id425[0] = 0x0A;
break;
case StopCharge:
id424[0] = 0x12;
break;
case StartTrickle:
id425[0] = 0x2C;
break;
case Trickle:
id425[0] = 0x2A;
break;
}
// call BMS state transition:
if (bmsEnterState) {
(*bmsEnterState)(twizyState, newState);
}
// set new state:
twizyState = newState;
}
// -----------------------------------------------------
// Twizy setup
//
void TwizyVirtualBMS::begin() {
Serial.println(F("Twizy Virtual BMS " TWIZY_VBMS_VERSION));
//
// Init Twizy CAN interface
//
while (twizyCAN.begin(MCP_STDEXT, CAN_500KBPS, TWIZY_CAN_MCP_FREQ) != CAN_OK) {
Serial.println(F(TWIZY_TAG "begin: waiting for CAN connection..."));
delay(500);
}
// Set filters:
twizyCAN.init_Mask(0, 0, 0x07FF0000);
twizyCAN.init_Filt(0, 0, 0x04230000); // CHARGER: 423
twizyCAN.init_Filt(1, 0, 0x05970000); // CHARGER: 597
twizyCAN.init_Mask(1, 0, 0x07FF0000);
twizyCAN.init_Filt(2, 0, 0x05990000); // DISPLAY: 599
twizyCAN.init_Filt(3, 0, 0x00000000); // usable by setCanFilter(1)
twizyCAN.init_Filt(4, 0, 0x00000000); // usable by setCanFilter(2)
twizyCAN.init_Filt(5, 0, 0x00000000); // usable by setCanFilter(3)
#ifdef TWIZY_CAN_IRQ_PIN
pinMode(TWIZY_CAN_IRQ_PIN, INPUT);
attachInterrupt(digitalPinToInterrupt(TWIZY_CAN_IRQ_PIN), twizyCanISR, FALLING);
#endif
twizyCAN.setMode(MCP_NORMAL);
//
// Init Twizy state machine & clock
//
pinMode(TWIZY_3MW_CONTROL_PIN, OUTPUT);
enterState(Off);
#if TWIZY_USE_TIMER == 1
// Use Timer1 (16 bit):
Timer1.initialize(TWIZY_CAN_CLOCK_US);
Timer1.attachInterrupt(twizyClockISR);
#elif TWIZY_USE_TIMER == 2
// Use Timer2 (8 bit): derive count from resolution:
FlexiTimer2::set(TWIZY_CAN_CLOCK_US / (1000000UL / TWIZY_TIMER2_RESOLUTION),
1.0 / TWIZY_TIMER2_RESOLUTION,
twizyClockISR);
FlexiTimer2::start();
#else
// Use Timer3 (16 bit):
Timer3.initialize(TWIZY_CAN_CLOCK_US);
Timer3.attachInterrupt(twizyClockISR);
#endif
Serial.println(F(TWIZY_TAG "begin: done"));
}
// -----------------------------------------------------
// Twizy loop
//
void TwizyVirtualBMS::looper() {
//
// Receive Twizy CAN messages
//
#ifndef TWIZY_CAN_IRQ_PIN
// No IRQ, we need to poll:
twizyCanMsgReceived = (twizyCAN.checkReceive() == CAN_MSGAVAIL);
#endif
if (twizyCanMsgReceived) {
twizyCanMsgReceived = false;
receiveCanMsgs();
}
//
// Twizy ticker (send CAN messages, check for state transitions)
//
if (twizyClockTick) {
twizyClockTick = false;
ticker();
}
}
#endif // _TwizyVirtualBMS_h