Twizy-Virtual-BMS/examples/SimpleBMS/SimpleBMS.ino
Michael Balzer 3f97ae4cbe - Fixed polling check for CAN modules without IRQ
- Raised serial speed for examples to 1000000 baud
2017-07-04 19:19:28 +02:00

221 lines
6.4 KiB
C++

/**
* ==========================================================================
* Twizy Virtual BMS Example: SimpleBMS
* ==========================================================================
*
* - Derive SOC and power control from pack voltage measured using a
* simple voltage divider connected to an analog port.
* - Measure pack temperature using a simple temperature sensor (LM35D)
* and issue temperature and STOP warnings accordingly.
*
* Author: Michael Balzer <dexter@dexters-web.de>
*
* Libraries used:
* - TwizyVirtualBMS: https://github.com/dexterbg/Twizy-Virtual-BMS
* - MCP_CAN: https://github.com/coryjfowler/MCP_CAN_lib
* - TimerOne: https://github.com/PaulStoffregen/TimerOne
*
* Licenses:
* This is free software under GNU Lesser General Public License (LGPL)
* https://www.gnu.org/licenses/lgpl.html
*
*/
#include "TwizyVirtualBMS_config.h"
#include "TwizyVirtualBMS.h"
TwizyVirtualBMS twizy;
// -----------------------------------------------------
// Configuration
//
// Maximum driving & recuperation power limits to use [W]:
#define MAX_DRIVE_POWER 18000
#define MAX_RECUP_POWER 8000
// Maximum charge current to use [A]:
#define MAX_CHARGE_CURRENT 35
// Voltage range 0…100% for driving:
#define VMIN_DRV 42.0
#define VMAX_DRV 52.0
// Voltage range 0…100% for charging:
#define VMIN_CHG 42.0
#define VMAX_CHG 57.6
// Voltage analog input:
// i.e. voltage divider scaling 60V → 4.5V
// (you may need to add some tolerance correction factor)
#define PORT_VOLT A0
#define SCALE_VOLT (60.0 / 4.5 * 5.0)
// SOC smoothing samples:
#define SMOOTH_SOC_DOWN 30 // slow adaption to lower voltage
#define SMOOTH_SOC_UP 5 // fast adaption to higher voltage
// Temperature analog input:
// i.e. LM35D: 2…100 °C → 0…1.0 V (10 mV/°C)
#define PORT_TEMP A1
#define BASE_TEMP 2.0
#define SCALE_TEMP (100.0 / 1.0 * 5.0)
// Temperature smoothing samples:
#define SMOOTH_TEMP 10
// -----------------------------------------------------
// Status
//
float temp = 20.0;
float soc = 90.0; // Note: needs to be below 100 to be able to start charging
// --------------------------------------------------------------------------
// Callback: handle state transition for BMS
// - called by twizyEnterState() after Twizy handling
// Note: avoid complex operations, this needs to be fast.
//
void bmsEnterState(TwizyState currentState, TwizyState newState) {
// The charger will not start charging at SOC=100%, so lower a too
// high SOC on wakeup to enable topping-off charges:
if (newState == Init) {
if (soc > 99) {
soc -= 1;
twizy.setSOC(soc);
twizy.setChargeCurrent(5);
Serial.print(F("bmsEnterState: soc lowered to "));
Serial.println(soc, 2);
}
}
}
// --------------------------------------------------------------------------
// Callback: timer ticker
// - called every 10 ms by twizyTicker() after twizy handling
// - clockCnt cyclic range: 0 .. 2999 = 30 seconds (reset to 0 on Off/Init)
// Note: avoid complex operations, this needs to be fast.
//
void bmsTicker(unsigned int clockCnt) {
if (twizy.inState(Off) && (clockCnt % 100 == 0)) {
// per second:
Serial.println(F("\nbmsTicker:"));
float vpack, newsoc, newtemp;
// read pack voltage:
vpack = analogRead(PORT_VOLT) / 1024.0 * SCALE_VOLT;
Serial.print(F("- vpack=")); Serial.println(vpack, 2);
twizy.setVoltage(vpack, true);
// derive SOC change from voltage:
if (twizy.inState(Charging)) {
newsoc = (vpack - VMIN_CHG) / (VMAX_CHG - VMIN_CHG) * 100.0;
}
else {
newsoc = (vpack - VMIN_DRV) / (VMAX_DRV - VMIN_DRV) * 100.0;
}
// smooth SOC:
if (newsoc < soc) {
// slow adaption to lower voltages:
soc = (soc * (SMOOTH_SOC_DOWN-1) + newsoc) / SMOOTH_SOC_DOWN;
}
else {
// fast adaption to higher voltages:
soc = (soc * (SMOOTH_SOC_UP-1) + newsoc) / SMOOTH_SOC_UP;
}
// sanitize...
soc = constrain(soc, 0.0, 100.0);
Serial.print(F("- soc=")); Serial.println(soc, 2);
twizy.setSOC(soc);
// derive power limits & charge current from SOC:
if (soc >= 90.0) {
// high SOC: scale down recuperation & charge power
int recpwr = (100-soc) / 10.0 * MAX_RECUP_POWER;
Serial.print(F("- recpwr=")); Serial.println(recpwr);
twizy.setPowerLimits(MAX_DRIVE_POWER, recpwr);
// charge automatically stops below 5.0 A, so keep min 5.0 until 100%:
float chgcurr = (round(soc*100) == 10000) ? 0.0 : 5.0 + (100-soc) / 10.0 * (MAX_CHARGE_CURRENT-5.0);
Serial.print(F("- chgcurr=")); Serial.println(chgcurr);
twizy.setChargeCurrent(chgcurr);
}
else if (soc <= 20.0) {
// low SOC: scale down drive power
int drvpwr = soc / 20.0 * MAX_DRIVE_POWER;
Serial.print(F("- drvpwr=")); Serial.println(drvpwr);
twizy.setPowerLimits(drvpwr, MAX_RECUP_POWER);
twizy.setChargeCurrent(MAX_CHARGE_CURRENT);
}
else {
// normal SOC: allow max power & current
twizy.setPowerLimits(MAX_DRIVE_POWER, MAX_RECUP_POWER);
twizy.setChargeCurrent(MAX_CHARGE_CURRENT);
}
// read battery temperature:
newtemp = BASE_TEMP + analogRead(PORT_TEMP) / 1024.0 * SCALE_TEMP;
// smooth:
temp = (temp * (SMOOTH_TEMP-1) + newtemp) / SMOOTH_TEMP;
Serial.print(F("- temp=")); Serial.println(temp);
twizy.setTemperature(temp, temp, true);
// set error status if battery too hot:
if (temp > 50) {
twizy.setError(TWIZY_SERV_TEMP|TWIZY_SERV_STOP);
}
else if (temp > 40) {
twizy.setError(TWIZY_SERV_TEMP);
}
else {
twizy.setError(TWIZY_OK);
}
}
}
// -----------------------------------------------------
// SETUP
//
void setup() {
Serial.begin(1000000);
twizy.begin();
twizy.attachTicker(bmsTicker);
twizy.attachEnterState(bmsEnterState);
twizy.setPowerLimits(MAX_DRIVE_POWER, MAX_RECUP_POWER);
twizy.setChargeCurrent(MAX_CHARGE_CURRENT);
twizy.setSOH(100);
twizy.setSOC(soc);
twizy.setTemperature(temp, temp, true);
twizy.setVoltage(50.0, true);
twizy.setCurrent(0.0);
twizy.setError(TWIZY_OK);
}
// -----------------------------------------------------
// MAIN LOOP
//
void loop() {
twizy.looper();
}