VictoriaMetrics/lib/protoparser/opentelemetry/pb/metrics.pb.go

737 lines
34 KiB
Go
Raw Normal View History

// Copyright 2019, OpenTelemetry Authors
//
// Licensed under the Apache License, Version 2.0 (the "License");
// you may not use this file except in compliance with the License.
// You may obtain a copy of the License at
//
// http://www.apache.org/licenses/LICENSE-2.0
//
// Unless required by applicable law or agreed to in writing, software
// distributed under the License is distributed on an "AS IS" BASIS,
// WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
// See the License for the specific language governing permissions and
// limitations under the License.
// Code generated by protoc-gen-go. DO NOT EDIT.
// versions:
// protoc-gen-go v1.28.1
// protoc v3.21.12
// source: lib/protoparser/opentelemetry/proto/metrics.proto
package pb
// AggregationTemporality defines how a metric aggregator reports aggregated
// values. It describes how those values relate to the time interval over
// which they are aggregated.
type AggregationTemporality int32
const (
// UNSPECIFIED is the default AggregationTemporality, it MUST not be used.
AggregationTemporality_AGGREGATION_TEMPORALITY_UNSPECIFIED AggregationTemporality = 0
// DELTA is an AggregationTemporality for a metric aggregator which reports
// changes since last report time. Successive metrics contain aggregation of
// values from continuous and non-overlapping intervals.
//
// The values for a DELTA metric are based only on the time interval
// associated with one measurement cycle. There is no dependency on
// previous measurements like is the case for CUMULATIVE metrics.
//
// For example, consider a system measuring the number of requests that
// it receives and reports the sum of these requests every second as a
// DELTA metric:
//
// 1. The system starts receiving at time=t_0.
// 2. A request is received, the system measures 1 request.
// 3. A request is received, the system measures 1 request.
// 4. A request is received, the system measures 1 request.
// 5. The 1 second collection cycle ends. A metric is exported for the
// number of requests received over the interval of time t_0 to
// t_0+1 with a value of 3.
// 6. A request is received, the system measures 1 request.
// 7. A request is received, the system measures 1 request.
// 8. The 1 second collection cycle ends. A metric is exported for the
// number of requests received over the interval of time t_0+1 to
// t_0+2 with a value of 2.
AggregationTemporality_AGGREGATION_TEMPORALITY_DELTA AggregationTemporality = 1
// CUMULATIVE is an AggregationTemporality for a metric aggregator which
// reports changes since a fixed start time. This means that current values
// of a CUMULATIVE metric depend on all previous measurements since the
// start time. Because of this, the sender is required to retain this state
// in some form. If this state is lost or invalidated, the CUMULATIVE metric
// values MUST be reset and a new fixed start time following the last
// reported measurement time sent MUST be used.
//
// For example, consider a system measuring the number of requests that
// it receives and reports the sum of these requests every second as a
// CUMULATIVE metric:
//
// 1. The system starts receiving at time=t_0.
// 2. A request is received, the system measures 1 request.
// 3. A request is received, the system measures 1 request.
// 4. A request is received, the system measures 1 request.
// 5. The 1 second collection cycle ends. A metric is exported for the
// number of requests received over the interval of time t_0 to
// t_0+1 with a value of 3.
// 6. A request is received, the system measures 1 request.
// 7. A request is received, the system measures 1 request.
// 8. The 1 second collection cycle ends. A metric is exported for the
// number of requests received over the interval of time t_0 to
// t_0+2 with a value of 5.
// 9. The system experiences a fault and loses state.
// 10. The system recovers and resumes receiving at time=t_1.
// 11. A request is received, the system measures 1 request.
// 12. The 1 second collection cycle ends. A metric is exported for the
// number of requests received over the interval of time t_1 to
// t_0+1 with a value of 1.
//
// Note: Even though, when reporting changes since last report time, using
// CUMULATIVE is valid, it is not recommended. This may cause problems for
// systems that do not use start_time to determine when the aggregation
// value was reset (e.g. Prometheus).
AggregationTemporality_AGGREGATION_TEMPORALITY_CUMULATIVE AggregationTemporality = 2
)
// Enum value maps for AggregationTemporality.
var (
AggregationTemporality_name = map[int32]string{
0: "AGGREGATION_TEMPORALITY_UNSPECIFIED",
1: "AGGREGATION_TEMPORALITY_DELTA",
2: "AGGREGATION_TEMPORALITY_CUMULATIVE",
}
AggregationTemporality_value = map[string]int32{
"AGGREGATION_TEMPORALITY_UNSPECIFIED": 0,
"AGGREGATION_TEMPORALITY_DELTA": 1,
"AGGREGATION_TEMPORALITY_CUMULATIVE": 2,
}
)
func (x AggregationTemporality) Enum() *AggregationTemporality {
p := new(AggregationTemporality)
*p = x
return p
}
// DataPointFlags is defined as a protobuf 'uint32' type and is to be used as a
// bit-field representing 32 distinct boolean flags. Each flag defined in this
// enum is a bit-mask. To test the presence of a single flag in the flags of
// a data point, for example, use an expression like:
//
// (point.flags & FLAG_NO_RECORDED_VALUE) == FLAG_NO_RECORDED_VALUE
type DataPointFlags int32
const (
DataPointFlags_FLAG_NONE DataPointFlags = 0
// This DataPoint is valid but has no recorded value. This value
// SHOULD be used to reflect explicitly missing data in a series, as
// for an equivalent to the Prometheus "staleness marker".
DataPointFlags_FLAG_NO_RECORDED_VALUE DataPointFlags = 1
)
// Enum value maps for DataPointFlags.
var (
DataPointFlags_name = map[int32]string{
0: "FLAG_NONE",
1: "FLAG_NO_RECORDED_VALUE",
}
DataPointFlags_value = map[string]int32{
"FLAG_NONE": 0,
"FLAG_NO_RECORDED_VALUE": 1,
}
)
func (x DataPointFlags) Enum() *DataPointFlags {
p := new(DataPointFlags)
*p = x
return p
}
// MetricsData represents the metrics data that can be stored in a persistent
// storage, OR can be embedded by other protocols that transfer OTLP metrics
// data but do not implement the OTLP protocol.
//
// The main difference between this message and collector protocol is that
// in this message there will not be any "control" or "metadata" specific to
// OTLP protocol.
//
// When new fields are added into this message, the OTLP request MUST be updated
// as well.
type MetricsData struct {
unknownFields []byte
// An array of ResourceMetrics.
// For data coming from a single resource this array will typically contain
// one element. Intermediary nodes that receive data from multiple origins
// typically batch the data before forwarding further and in that case this
// array will contain multiple elements.
ResourceMetrics []*ResourceMetrics `protobuf:"bytes,1,rep,name=resource_metrics,json=resourceMetrics,proto3" json:"resource_metrics,omitempty"`
}
// A collection of ScopeMetrics from a Resource.
type ResourceMetrics struct {
unknownFields []byte
// The resource for the metrics in this message.
// If this field is not set then no resource info is known.
Resource *Resource `protobuf:"bytes,1,opt,name=resource,proto3" json:"resource,omitempty"`
// A list of metrics that originate from a resource.
ScopeMetrics []*ScopeMetrics `protobuf:"bytes,2,rep,name=scope_metrics,json=scopeMetrics,proto3" json:"scope_metrics,omitempty"`
// This schema_url applies to the data in the "resource" field. It does not apply
// to the data in the "scope_metrics" field which have their own schema_url field.
SchemaUrl string `protobuf:"bytes,3,opt,name=schema_url,json=schemaUrl,proto3" json:"schema_url,omitempty"`
}
// A collection of Metrics produced by an Scope.
type ScopeMetrics struct {
unknownFields []byte
// A list of metrics that originate from an instrumentation library.
Metrics []*Metric `protobuf:"bytes,2,rep,name=metrics,proto3" json:"metrics,omitempty"`
// This schema_url applies to all metrics in the "metrics" field.
SchemaUrl string `protobuf:"bytes,3,opt,name=schema_url,json=schemaUrl,proto3" json:"schema_url,omitempty"`
}
// Defines a Metric which has one or more timeseries. The following is a
// brief summary of the Metric data model. For more details, see:
//
// https://github.com/open-telemetry/opentelemetry-specification/blob/main/specification/metrics/data-model.md
//
// The data model and relation between entities is shown in the
// diagram below. Here, "DataPoint" is the term used to refer to any
// one of the specific data point value types, and "points" is the term used
// to refer to any one of the lists of points contained in the Metric.
//
// - Metric is composed of a metadata and data.
//
// - Metadata part contains a name, description, unit.
//
// - Data is one of the possible types (Sum, Gauge, Histogram, Summary).
//
// - DataPoint contains timestamps, attributes, and one of the possible value type
// fields.
//
// Metric
// +------------+
// |name |
// |description |
// |unit | +------------------------------------+
// |data |---> |Gauge, Sum, Histogram, Summary, ... |
// +------------+ +------------------------------------+
//
// Data [One of Gauge, Sum, Histogram, Summary, ...]
// +-----------+
// |... | // Metadata about the Data.
// |points |--+
// +-----------+ |
// | +---------------------------+
// | |DataPoint 1 |
// v |+------+------+ +------+ |
// +-----+ ||label |label |...|label | |
// | 1 |-->||value1|value2|...|valueN| |
// +-----+ |+------+------+ +------+ |
// | . | |+-----+ |
// | . | ||value| |
// | . | |+-----+ |
// | . | +---------------------------+
// | . | .
// | . | .
// | . | .
// | . | +---------------------------+
// | . | |DataPoint M |
// +-----+ |+------+------+ +------+ |
// | M |-->||label |label |...|label | |
// +-----+ ||value1|value2|...|valueN| |
// |+------+------+ +------+ |
// |+-----+ |
// ||value| |
// |+-----+ |
// +---------------------------+
//
// Each distinct type of DataPoint represents the output of a specific
// aggregation function, the result of applying the DataPoint's
// associated function of to one or more measurements.
//
// All DataPoint types have three common fields:
// - Attributes includes key-value pairs associated with the data point
// - TimeUnixNano is required, set to the end time of the aggregation
// - StartTimeUnixNano is optional, but strongly encouraged for DataPoints
// having an AggregationTemporality field, as discussed below.
//
// Both TimeUnixNano and StartTimeUnixNano values are expressed as
// UNIX Epoch time in nanoseconds since 00:00:00 UTC on 1 January 1970.
//
// # TimeUnixNano
//
// This field is required, having consistent interpretation across
// DataPoint types. TimeUnixNano is the moment corresponding to when
// the data point's aggregate value was captured.
//
// Data points with the 0 value for TimeUnixNano SHOULD be rejected
// by consumers.
//
// # StartTimeUnixNano
//
// StartTimeUnixNano in general allows detecting when a sequence of
// observations is unbroken. This field indicates to consumers the
// start time for points with cumulative and delta
// AggregationTemporality, and it should be included whenever possible
// to support correct rate calculation. Although it may be omitted
// when the start time is truly unknown, setting StartTimeUnixNano is
// strongly encouraged.
type Metric struct {
unknownFields []byte
// name of the metric, including its DNS name prefix. It must be unique.
Name string `protobuf:"bytes,1,opt,name=name,proto3" json:"name,omitempty"`
// description of the metric, which can be used in documentation.
Description string `protobuf:"bytes,2,opt,name=description,proto3" json:"description,omitempty"`
// unit in which the metric value is reported. Follows the format
// described by http://unitsofmeasure.org/ucum.html.
Unit string `protobuf:"bytes,3,opt,name=unit,proto3" json:"unit,omitempty"`
// Data determines the aggregation type (if any) of the metric, what is the
// reported value type for the data points, as well as the relatationship to
// the time interval over which they are reported.
//
// Types that are assignable to Data:
//
// *Metric_Gauge
// *Metric_Sum
// *Metric_Histogram
// *Metric_ExponentialHistogram
// *Metric_Summary
Data isMetric_Data `protobuf_oneof:"data"`
}
type isMetric_Data interface {
isMetric_Data()
}
type Metric_Gauge struct {
Gauge *Gauge `protobuf:"bytes,5,opt,name=gauge,proto3,oneof"`
}
type Metric_Sum struct {
Sum *Sum `protobuf:"bytes,7,opt,name=sum,proto3,oneof"`
}
type Metric_Histogram struct {
Histogram *Histogram `protobuf:"bytes,9,opt,name=histogram,proto3,oneof"`
}
type Metric_ExponentialHistogram struct {
ExponentialHistogram *ExponentialHistogram `protobuf:"bytes,10,opt,name=exponential_histogram,json=exponentialHistogram,proto3,oneof"`
}
type Metric_Summary struct {
Summary *Summary `protobuf:"bytes,11,opt,name=summary,proto3,oneof"`
}
func (*Metric_Gauge) isMetric_Data() {}
func (*Metric_Sum) isMetric_Data() {}
func (*Metric_Histogram) isMetric_Data() {}
func (*Metric_ExponentialHistogram) isMetric_Data() {}
func (*Metric_Summary) isMetric_Data() {}
// Gauge represents the type of a scalar metric that always exports the
// "current value" for every data point. It should be used for an "unknown"
// aggregation.
//
// A Gauge does not support different aggregation temporalities. Given the
// aggregation is unknown, points cannot be combined using the same
// aggregation, regardless of aggregation temporalities. Therefore,
// AggregationTemporality is not included. Consequently, this also means
// "StartTimeUnixNano" is ignored for all data points.
type Gauge struct {
unknownFields []byte
DataPoints []*NumberDataPoint `protobuf:"bytes,1,rep,name=data_points,json=dataPoints,proto3" json:"data_points,omitempty"`
}
// Sum represents the type of a scalar metric that is calculated as a sum of all
// reported measurements over a time interval.
type Sum struct {
unknownFields []byte
DataPoints []*NumberDataPoint `protobuf:"bytes,1,rep,name=data_points,json=dataPoints,proto3" json:"data_points,omitempty"`
// aggregation_temporality describes if the aggregator reports delta changes
// since last report time, or cumulative changes since a fixed start time.
AggregationTemporality AggregationTemporality `protobuf:"varint,2,opt,name=aggregation_temporality,json=aggregationTemporality,proto3,enum=opentelemetry.AggregationTemporality" json:"aggregation_temporality,omitempty"`
// If "true" means that the sum is monotonic.
IsMonotonic bool `protobuf:"varint,3,opt,name=is_monotonic,json=isMonotonic,proto3" json:"is_monotonic,omitempty"`
}
// Histogram represents the type of a metric that is calculated by aggregating
// as a Histogram of all reported measurements over a time interval.
type Histogram struct {
unknownFields []byte
DataPoints []*HistogramDataPoint `protobuf:"bytes,1,rep,name=data_points,json=dataPoints,proto3" json:"data_points,omitempty"`
// aggregation_temporality describes if the aggregator reports delta changes
// since last report time, or cumulative changes since a fixed start time.
AggregationTemporality AggregationTemporality `protobuf:"varint,2,opt,name=aggregation_temporality,json=aggregationTemporality,proto3,enum=opentelemetry.AggregationTemporality" json:"aggregation_temporality,omitempty"`
}
// ExponentialHistogram represents the type of a metric that is calculated by aggregating
// as a ExponentialHistogram of all reported double measurements over a time interval.
type ExponentialHistogram struct {
unknownFields []byte
DataPoints []*ExponentialHistogramDataPoint `protobuf:"bytes,1,rep,name=data_points,json=dataPoints,proto3" json:"data_points,omitempty"`
// aggregation_temporality describes if the aggregator reports delta changes
// since last report time, or cumulative changes since a fixed start time.
AggregationTemporality AggregationTemporality `protobuf:"varint,2,opt,name=aggregation_temporality,json=aggregationTemporality,proto3,enum=opentelemetry.AggregationTemporality" json:"aggregation_temporality,omitempty"`
}
// Summary metric data are used to convey quantile summaries,
// a Prometheus (see: https://prometheus.io/docs/concepts/metric_types/#summary)
// and OpenMetrics (see: https://github.com/OpenObservability/OpenMetrics/blob/4dbf6075567ab43296eed941037c12951faafb92/protos/prometheus.proto#L45)
// data type. These data points cannot always be merged in a meaningful way.
// While they can be useful in some applications, histogram data points are
// recommended for new applications.
type Summary struct {
unknownFields []byte
DataPoints []*SummaryDataPoint `protobuf:"bytes,1,rep,name=data_points,json=dataPoints,proto3" json:"data_points,omitempty"`
}
// NumberDataPoint is a single data point in a timeseries that describes the
// time-varying scalar value of a metric.
type NumberDataPoint struct {
unknownFields []byte
// The set of key/value pairs that uniquely identify the timeseries from
// where this point belongs. The list may be empty (may contain 0 elements).
// Attribute keys MUST be unique (it is not allowed to have more than one
// attribute with the same key).
Attributes []*KeyValue `protobuf:"bytes,7,rep,name=attributes,proto3" json:"attributes,omitempty"`
// StartTimeUnixNano is optional but strongly encouraged, see the
// the detailed comments above Metric.
//
// Value is UNIX Epoch time in nanoseconds since 00:00:00 UTC on 1 January
// 1970.
StartTimeUnixNano uint64 `protobuf:"fixed64,2,opt,name=start_time_unix_nano,json=startTimeUnixNano,proto3" json:"start_time_unix_nano,omitempty"`
// TimeUnixNano is required, see the detailed comments above Metric.
//
// Value is UNIX Epoch time in nanoseconds since 00:00:00 UTC on 1 January
// 1970.
TimeUnixNano uint64 `protobuf:"fixed64,3,opt,name=time_unix_nano,json=timeUnixNano,proto3" json:"time_unix_nano,omitempty"`
// The value itself. A point is considered invalid when one of the recognized
// value fields is not present inside this oneof.
//
// Types that are assignable to Value:
//
// *NumberDataPoint_AsDouble
// *NumberDataPoint_AsInt
Value isNumberDataPoint_Value `protobuf_oneof:"value"`
// (Optional) List of exemplars collected from
// measurements that were used to form the data point
Exemplars []*Exemplar `protobuf:"bytes,5,rep,name=exemplars,proto3" json:"exemplars,omitempty"`
// Flags that apply to this specific data point. See DataPointFlags
// for the available flags and their meaning.
Flags uint32 `protobuf:"varint,8,opt,name=flags,proto3" json:"flags,omitempty"`
}
type isNumberDataPoint_Value interface {
isNumberDataPoint_Value()
}
type NumberDataPoint_AsDouble struct {
AsDouble float64 `protobuf:"fixed64,4,opt,name=as_double,json=asDouble,proto3,oneof"`
}
type NumberDataPoint_AsInt struct {
AsInt int64 `protobuf:"fixed64,6,opt,name=as_int,json=asInt,proto3,oneof"`
}
func (*NumberDataPoint_AsDouble) isNumberDataPoint_Value() {}
func (*NumberDataPoint_AsInt) isNumberDataPoint_Value() {}
// HistogramDataPoint is a single data point in a timeseries that describes the
// time-varying values of a Histogram. A Histogram contains summary statistics
// for a population of values, it may optionally contain the distribution of
// those values across a set of buckets.
//
// If the histogram contains the distribution of values, then both
// "explicit_bounds" and "bucket counts" fields must be defined.
// If the histogram does not contain the distribution of values, then both
// "explicit_bounds" and "bucket_counts" must be omitted and only "count" and
// "sum" are known.
type HistogramDataPoint struct {
unknownFields []byte
// The set of key/value pairs that uniquely identify the timeseries from
// where this point belongs. The list may be empty (may contain 0 elements).
// Attribute keys MUST be unique (it is not allowed to have more than one
// attribute with the same key).
Attributes []*KeyValue `protobuf:"bytes,9,rep,name=attributes,proto3" json:"attributes,omitempty"`
// StartTimeUnixNano is optional but strongly encouraged, see the
// the detailed comments above Metric.
//
// Value is UNIX Epoch time in nanoseconds since 00:00:00 UTC on 1 January
// 1970.
StartTimeUnixNano uint64 `protobuf:"fixed64,2,opt,name=start_time_unix_nano,json=startTimeUnixNano,proto3" json:"start_time_unix_nano,omitempty"`
// TimeUnixNano is required, see the detailed comments above Metric.
//
// Value is UNIX Epoch time in nanoseconds since 00:00:00 UTC on 1 January
// 1970.
TimeUnixNano uint64 `protobuf:"fixed64,3,opt,name=time_unix_nano,json=timeUnixNano,proto3" json:"time_unix_nano,omitempty"`
// count is the number of values in the population. Must be non-negative. This
// value must be equal to the sum of the "count" fields in buckets if a
// histogram is provided.
Count uint64 `protobuf:"fixed64,4,opt,name=count,proto3" json:"count,omitempty"`
// sum of the values in the population. If count is zero then this field
// must be zero.
//
// Note: Sum should only be filled out when measuring non-negative discrete
// events, and is assumed to be monotonic over the values of these events.
// Negative events *can* be recorded, but sum should not be filled out when
// doing so. This is specifically to enforce compatibility w/ OpenMetrics,
// see: https://github.com/OpenObservability/OpenMetrics/blob/main/specification/OpenMetrics.md#histogram
Sum *float64 `protobuf:"fixed64,5,opt,name=sum,proto3,oneof" json:"sum,omitempty"`
// bucket_counts is an optional field contains the count values of histogram
// for each bucket.
//
// The sum of the bucket_counts must equal the value in the count field.
//
// The number of elements in bucket_counts array must be by one greater than
// the number of elements in explicit_bounds array.
BucketCounts []uint64 `protobuf:"fixed64,6,rep,packed,name=bucket_counts,json=bucketCounts,proto3" json:"bucket_counts,omitempty"`
// explicit_bounds specifies buckets with explicitly defined bounds for values.
//
// The boundaries for bucket at index i are:
//
// (-infinity, explicit_bounds[i]] for i == 0
// (explicit_bounds[i-1], explicit_bounds[i]] for 0 < i < size(explicit_bounds)
// (explicit_bounds[i-1], +infinity) for i == size(explicit_bounds)
//
// The values in the explicit_bounds array must be strictly increasing.
//
// Histogram buckets are inclusive of their upper boundary, except the last
// bucket where the boundary is at infinity. This format is intentionally
// compatible with the OpenMetrics histogram definition.
ExplicitBounds []float64 `protobuf:"fixed64,7,rep,packed,name=explicit_bounds,json=explicitBounds,proto3" json:"explicit_bounds,omitempty"`
// (Optional) List of exemplars collected from
// measurements that were used to form the data point
Exemplars []*Exemplar `protobuf:"bytes,8,rep,name=exemplars,proto3" json:"exemplars,omitempty"`
// Flags that apply to this specific data point. See DataPointFlags
// for the available flags and their meaning.
Flags uint32 `protobuf:"varint,10,opt,name=flags,proto3" json:"flags,omitempty"`
// min is the minimum value over (start_time, end_time].
Min *float64 `protobuf:"fixed64,11,opt,name=min,proto3,oneof" json:"min,omitempty"`
// max is the maximum value over (start_time, end_time].
Max *float64 `protobuf:"fixed64,12,opt,name=max,proto3,oneof" json:"max,omitempty"`
}
// ExponentialHistogramDataPoint is a single data point in a timeseries that describes the
// time-varying values of a ExponentialHistogram of double values. A ExponentialHistogram contains
// summary statistics for a population of values, it may optionally contain the
// distribution of those values across a set of buckets.
type ExponentialHistogramDataPoint struct {
unknownFields []byte
// The set of key/value pairs that uniquely identify the timeseries from
// where this point belongs. The list may be empty (may contain 0 elements).
// Attribute keys MUST be unique (it is not allowed to have more than one
// attribute with the same key).
Attributes []*KeyValue `protobuf:"bytes,1,rep,name=attributes,proto3" json:"attributes,omitempty"`
// StartTimeUnixNano is optional but strongly encouraged, see the
// the detailed comments above Metric.
//
// Value is UNIX Epoch time in nanoseconds since 00:00:00 UTC on 1 January
// 1970.
StartTimeUnixNano uint64 `protobuf:"fixed64,2,opt,name=start_time_unix_nano,json=startTimeUnixNano,proto3" json:"start_time_unix_nano,omitempty"`
// TimeUnixNano is required, see the detailed comments above Metric.
//
// Value is UNIX Epoch time in nanoseconds since 00:00:00 UTC on 1 January
// 1970.
TimeUnixNano uint64 `protobuf:"fixed64,3,opt,name=time_unix_nano,json=timeUnixNano,proto3" json:"time_unix_nano,omitempty"`
// count is the number of values in the population. Must be
// non-negative. This value must be equal to the sum of the "bucket_counts"
// values in the positive and negative Buckets plus the "zero_count" field.
Count uint64 `protobuf:"fixed64,4,opt,name=count,proto3" json:"count,omitempty"`
// sum of the values in the population. If count is zero then this field
// must be zero.
//
// Note: Sum should only be filled out when measuring non-negative discrete
// events, and is assumed to be monotonic over the values of these events.
// Negative events *can* be recorded, but sum should not be filled out when
// doing so. This is specifically to enforce compatibility w/ OpenMetrics,
// see: https://github.com/OpenObservability/OpenMetrics/blob/main/specification/OpenMetrics.md#histogram
Sum *float64 `protobuf:"fixed64,5,opt,name=sum,proto3,oneof" json:"sum,omitempty"`
// scale describes the resolution of the histogram. Boundaries are
// located at powers of the base, where:
//
// base = (2^(2^-scale))
//
// The histogram bucket identified by `index`, a signed integer,
// contains values that are greater than (base^index) and
// less than or equal to (base^(index+1)).
//
// The positive and negative ranges of the histogram are expressed
// separately. Negative values are mapped by their absolute value
// into the negative range using the same scale as the positive range.
//
// scale is not restricted by the protocol, as the permissible
// values depend on the range of the data.
Scale int32 `protobuf:"zigzag32,6,opt,name=scale,proto3" json:"scale,omitempty"`
// zero_count is the count of values that are either exactly zero or
// within the region considered zero by the instrumentation at the
// tolerated degree of precision. This bucket stores values that
// cannot be expressed using the standard exponential formula as
// well as values that have been rounded to zero.
//
// Implementations MAY consider the zero bucket to have probability
// mass equal to (zero_count / count).
ZeroCount uint64 `protobuf:"fixed64,7,opt,name=zero_count,json=zeroCount,proto3" json:"zero_count,omitempty"`
// positive carries the positive range of exponential bucket counts.
Positive *ExponentialHistogramDataPoint_Buckets `protobuf:"bytes,8,opt,name=positive,proto3" json:"positive,omitempty"`
// negative carries the negative range of exponential bucket counts.
Negative *ExponentialHistogramDataPoint_Buckets `protobuf:"bytes,9,opt,name=negative,proto3" json:"negative,omitempty"`
// Flags that apply to this specific data point. See DataPointFlags
// for the available flags and their meaning.
Flags uint32 `protobuf:"varint,10,opt,name=flags,proto3" json:"flags,omitempty"`
// (Optional) List of exemplars collected from
// measurements that were used to form the data point
Exemplars []*Exemplar `protobuf:"bytes,11,rep,name=exemplars,proto3" json:"exemplars,omitempty"`
// min is the minimum value over (start_time, end_time].
Min *float64 `protobuf:"fixed64,12,opt,name=min,proto3,oneof" json:"min,omitempty"`
// max is the maximum value over (start_time, end_time].
Max *float64 `protobuf:"fixed64,13,opt,name=max,proto3,oneof" json:"max,omitempty"`
}
// SummaryDataPoint is a single data point in a timeseries that describes the
// time-varying values of a Summary metric.
type SummaryDataPoint struct {
unknownFields []byte
// The set of key/value pairs that uniquely identify the timeseries from
// where this point belongs. The list may be empty (may contain 0 elements).
// Attribute keys MUST be unique (it is not allowed to have more than one
// attribute with the same key).
Attributes []*KeyValue `protobuf:"bytes,7,rep,name=attributes,proto3" json:"attributes,omitempty"`
// StartTimeUnixNano is optional but strongly encouraged, see the
// the detailed comments above Metric.
//
// Value is UNIX Epoch time in nanoseconds since 00:00:00 UTC on 1 January
// 1970.
StartTimeUnixNano uint64 `protobuf:"fixed64,2,opt,name=start_time_unix_nano,json=startTimeUnixNano,proto3" json:"start_time_unix_nano,omitempty"`
// TimeUnixNano is required, see the detailed comments above Metric.
//
// Value is UNIX Epoch time in nanoseconds since 00:00:00 UTC on 1 January
// 1970.
TimeUnixNano uint64 `protobuf:"fixed64,3,opt,name=time_unix_nano,json=timeUnixNano,proto3" json:"time_unix_nano,omitempty"`
// count is the number of values in the population. Must be non-negative.
Count uint64 `protobuf:"fixed64,4,opt,name=count,proto3" json:"count,omitempty"`
// sum of the values in the population. If count is zero then this field
// must be zero.
//
// Note: Sum should only be filled out when measuring non-negative discrete
// events, and is assumed to be monotonic over the values of these events.
// Negative events *can* be recorded, but sum should not be filled out when
// doing so. This is specifically to enforce compatibility w/ OpenMetrics,
// see: https://github.com/OpenObservability/OpenMetrics/blob/main/specification/OpenMetrics.md#summary
Sum float64 `protobuf:"fixed64,5,opt,name=sum,proto3" json:"sum,omitempty"`
// (Optional) list of values at different quantiles of the distribution calculated
// from the current snapshot. The quantiles must be strictly increasing.
QuantileValues []*SummaryDataPoint_ValueAtQuantile `protobuf:"bytes,6,rep,name=quantile_values,json=quantileValues,proto3" json:"quantile_values,omitempty"`
// Flags that apply to this specific data point. See DataPointFlags
// for the available flags and their meaning.
Flags uint32 `protobuf:"varint,8,opt,name=flags,proto3" json:"flags,omitempty"`
}
// A representation of an exemplar, which is a sample input measurement.
// Exemplars also hold information about the environment when the measurement
// was recorded, for example the span and trace ID of the active span when the
// exemplar was recorded.
type Exemplar struct {
unknownFields []byte
// The set of key/value pairs that were filtered out by the aggregator, but
// recorded alongside the original measurement. Only key/value pairs that were
// filtered out by the aggregator should be included
FilteredAttributes []*KeyValue `protobuf:"bytes,7,rep,name=filtered_attributes,json=filteredAttributes,proto3" json:"filtered_attributes,omitempty"`
// time_unix_nano is the exact time when this exemplar was recorded
//
// Value is UNIX Epoch time in nanoseconds since 00:00:00 UTC on 1 January
// 1970.
TimeUnixNano uint64 `protobuf:"fixed64,2,opt,name=time_unix_nano,json=timeUnixNano,proto3" json:"time_unix_nano,omitempty"`
// The value of the measurement that was recorded. An exemplar is
// considered invalid when one of the recognized value fields is not present
// inside this oneof.
//
// Types that are assignable to Value:
//
// *Exemplar_AsDouble
// *Exemplar_AsInt
Value isExemplar_Value `protobuf_oneof:"value"`
// (Optional) Span ID of the exemplar trace.
// span_id may be missing if the measurement is not recorded inside a trace
// or if the trace is not sampled.
SpanId []byte `protobuf:"bytes,4,opt,name=span_id,json=spanId,proto3" json:"span_id,omitempty"`
// (Optional) Trace ID of the exemplar trace.
// trace_id may be missing if the measurement is not recorded inside a trace
// or if the trace is not sampled.
TraceId []byte `protobuf:"bytes,5,opt,name=trace_id,json=traceId,proto3" json:"trace_id,omitempty"`
}
type isExemplar_Value interface {
isExemplar_Value()
}
type Exemplar_AsDouble struct {
AsDouble float64 `protobuf:"fixed64,3,opt,name=as_double,json=asDouble,proto3,oneof"`
}
type Exemplar_AsInt struct {
AsInt int64 `protobuf:"fixed64,6,opt,name=as_int,json=asInt,proto3,oneof"`
}
func (*Exemplar_AsDouble) isExemplar_Value() {}
func (*Exemplar_AsInt) isExemplar_Value() {}
// Buckets are a set of bucket counts, encoded in a contiguous array
// of counts.
type ExponentialHistogramDataPoint_Buckets struct {
unknownFields []byte
// Offset is the bucket index of the first entry in the bucket_counts array.
//
// Note: This uses a varint encoding as a simple form of compression.
Offset int32 `protobuf:"zigzag32,1,opt,name=offset,proto3" json:"offset,omitempty"`
// Count is an array of counts, where count[i] carries the count
// of the bucket at index (offset+i). count[i] is the count of
// values greater than base^(offset+i) and less or equal to than
// base^(offset+i+1).
//
// Note: By contrast, the explicit HistogramDataPoint uses
// fixed64. This field is expected to have many buckets,
// especially zeros, so uint64 has been selected to ensure
// varint encoding.
BucketCounts []uint64 `protobuf:"varint,2,rep,packed,name=bucket_counts,json=bucketCounts,proto3" json:"bucket_counts,omitempty"`
}
// Represents the value at a given quantile of a distribution.
//
// To record Min and Max values following conventions are used:
// - The 1.0 quantile is equivalent to the maximum value observed.
// - The 0.0 quantile is equivalent to the minimum value observed.
//
// See the following issue for more context:
// https://github.com/open-telemetry/opentelemetry-proto/issues/125
type SummaryDataPoint_ValueAtQuantile struct {
unknownFields []byte
// The quantile of a distribution. Must be in the interval
// [0.0, 1.0].
Quantile float64 `protobuf:"fixed64,1,opt,name=quantile,proto3" json:"quantile,omitempty"`
// The value at the given quantile of a distribution.
//
// Quantile values must NOT be negative.
Value float64 `protobuf:"fixed64,2,opt,name=value,proto3" json:"value,omitempty"`
}