VictoriaMetrics/app/vmstorage/main.go

948 lines
39 KiB
Go
Raw Normal View History

2019-05-22 21:16:55 +00:00
package vmstorage
import (
"errors"
2019-05-22 21:16:55 +00:00
"flag"
"fmt"
"net/http"
"strings"
"sync"
"time"
"github.com/VictoriaMetrics/VictoriaMetrics/lib/encoding"
"github.com/VictoriaMetrics/VictoriaMetrics/lib/fasttime"
"github.com/VictoriaMetrics/VictoriaMetrics/lib/flagutil"
"github.com/VictoriaMetrics/VictoriaMetrics/lib/fs"
2019-05-22 21:16:55 +00:00
"github.com/VictoriaMetrics/VictoriaMetrics/lib/httpserver"
"github.com/VictoriaMetrics/VictoriaMetrics/lib/logger"
"github.com/VictoriaMetrics/VictoriaMetrics/lib/mergeset"
"github.com/VictoriaMetrics/VictoriaMetrics/lib/querytracer"
2019-05-22 21:16:55 +00:00
"github.com/VictoriaMetrics/VictoriaMetrics/lib/storage"
"github.com/VictoriaMetrics/VictoriaMetrics/lib/syncwg"
"github.com/VictoriaMetrics/metrics"
)
var (
retentionPeriod = flagutil.NewDuration("retentionPeriod", "1", "Data with timestamps outside the retentionPeriod is automatically deleted. The minimum retentionPeriod is 24h or 1d. See also -retentionFilter")
snapshotAuthKey = flag.String("snapshotAuthKey", "", "authKey, which must be passed in query string to /snapshot* pages")
forceMergeAuthKey = flag.String("forceMergeAuthKey", "", "authKey, which must be passed in query string to /internal/force_merge pages")
forceFlushAuthKey = flag.String("forceFlushAuthKey", "", "authKey, which must be passed in query string to /internal/force_flush pages")
snapshotsMaxAge = flagutil.NewDuration("snapshotsMaxAge", "0", "Automatically delete snapshots older than -snapshotsMaxAge if it is set to non-zero duration. Make sure that backup process has enough time to finish the backup before the corresponding snapshot is automatically deleted")
snapshotCreateTimeout = flag.Duration("snapshotCreateTimeout", 0, "The timeout for creating new snapshot. If set, make sure that timeout is lower than backup period")
2019-05-22 21:16:55 +00:00
precisionBits = flag.Int("precisionBits", 64, "The number of precision bits to store per each value. Lower precision bits improves data compression at the cost of precision loss")
// DataPath is a path to storage data.
DataPath = flag.String("storageDataPath", "victoria-metrics-data", "Path to storage data")
finalMergeDelay = flag.Duration("finalMergeDelay", 0, "The delay before starting final merge for per-month partition after no new data is ingested into it. "+
"Final merge may require additional disk IO and CPU resources. Final merge may increase query speed and reduce disk space usage in some cases. "+
"Zero value disables final merge")
_ = flag.Int("bigMergeConcurrency", 0, "Deprecated: this flag does nothing. Please use -smallMergeConcurrency "+
"for controlling the concurrency of background merges. See https://docs.victoriametrics.com/#storage")
smallMergeConcurrency = flag.Int("smallMergeConcurrency", 0, "The maximum number of workers for background merges. See https://docs.victoriametrics.com/#storage . "+
"It isn't recommended tuning this flag in general case, since this may lead to uncontrolled increase in the number of parts and increased CPU usage during queries")
retentionTimezoneOffset = flag.Duration("retentionTimezoneOffset", 0, "The offset for performing indexdb rotation. "+
"If set to 0, then the indexdb rotation is performed at 4am UTC time per each -retentionPeriod. "+
"If set to 2h, then the indexdb rotation is performed at 4am EET time (the timezone with +2h offset)")
logNewSeries = flag.Bool("logNewSeries", false, "Whether to log new series. This option is for debug purposes only. It can lead to performance issues "+
"when big number of new series are ingested into VictoriaMetrics")
denyQueriesOutsideRetention = flag.Bool("denyQueriesOutsideRetention", false, "Whether to deny queries outside the configured -retentionPeriod. "+
"When set, then /api/v1/query_range would return '503 Service Unavailable' error for queries with 'from' value outside -retentionPeriod. "+
"This may be useful when multiple data sources with distinct retentions are hidden behind query-tee")
maxHourlySeries = flag.Int("storage.maxHourlySeries", 0, "The maximum number of unique series can be added to the storage during the last hour. "+
"Excess series are logged and dropped. This can be useful for limiting series cardinality. See https://docs.victoriametrics.com/#cardinality-limiter . "+
"See also -storage.maxDailySeries")
maxDailySeries = flag.Int("storage.maxDailySeries", 0, "The maximum number of unique series can be added to the storage during the last 24 hours. "+
"Excess series are logged and dropped. This can be useful for limiting series churn rate. See https://docs.victoriametrics.com/#cardinality-limiter . "+
"See also -storage.maxHourlySeries")
minFreeDiskSpaceBytes = flagutil.NewBytes("storage.minFreeDiskSpaceBytes", 10e6, "The minimum free disk space at -storageDataPath after which the storage stops accepting new data")
cacheSizeStorageTSID = flagutil.NewBytes("storage.cacheSizeStorageTSID", 0, "Overrides max size for storage/tsid cache. "+
"See https://docs.victoriametrics.com/Single-server-VictoriaMetrics.html#cache-tuning")
cacheSizeIndexDBIndexBlocks = flagutil.NewBytes("storage.cacheSizeIndexDBIndexBlocks", 0, "Overrides max size for indexdb/indexBlocks cache. "+
"See https://docs.victoriametrics.com/Single-server-VictoriaMetrics.html#cache-tuning")
cacheSizeIndexDBDataBlocks = flagutil.NewBytes("storage.cacheSizeIndexDBDataBlocks", 0, "Overrides max size for indexdb/dataBlocks cache. "+
"See https://docs.victoriametrics.com/Single-server-VictoriaMetrics.html#cache-tuning")
cacheSizeIndexDBTagFilters = flagutil.NewBytes("storage.cacheSizeIndexDBTagFilters", 0, "Overrides max size for indexdb/tagFiltersToMetricIDs cache. "+
"See https://docs.victoriametrics.com/Single-server-VictoriaMetrics.html#cache-tuning")
2019-05-22 21:16:55 +00:00
)
// CheckTimeRange returns true if the given tr is denied for querying.
func CheckTimeRange(tr storage.TimeRange) error {
if !*denyQueriesOutsideRetention {
return nil
}
minAllowedTimestamp := int64(fasttime.UnixTimestamp()*1000) - retentionPeriod.Msecs
if tr.MinTimestamp > minAllowedTimestamp {
return nil
}
return &httpserver.ErrorWithStatusCode{
Err: fmt.Errorf("the given time range %s is outside the allowed -retentionPeriod=%s according to -denyQueriesOutsideRetention", &tr, retentionPeriod),
StatusCode: http.StatusServiceUnavailable,
}
}
2019-05-22 21:16:55 +00:00
// Init initializes vmstorage.
func Init(resetCacheIfNeeded func(mrs []storage.MetricRow)) {
2019-05-22 21:16:55 +00:00
if err := encoding.CheckPrecisionBits(uint8(*precisionBits)); err != nil {
logger.Fatalf("invalid `-precisionBits`: %s", err)
}
resetResponseCacheIfNeeded = resetCacheIfNeeded
storage.SetLogNewSeries(*logNewSeries)
storage.SetFinalMergeDelay(*finalMergeDelay)
storage.SetMergeWorkersCount(*smallMergeConcurrency)
storage.SetRetentionTimezoneOffset(*retentionTimezoneOffset)
storage.SetFreeDiskSpaceLimit(minFreeDiskSpaceBytes.N)
storage.SetTSIDCacheSize(cacheSizeStorageTSID.IntN())
storage.SetTagFiltersCacheSize(cacheSizeIndexDBTagFilters.IntN())
mergeset.SetIndexBlocksCacheSize(cacheSizeIndexDBIndexBlocks.IntN())
mergeset.SetDataBlocksCacheSize(cacheSizeIndexDBDataBlocks.IntN())
if retentionPeriod.Msecs < 24*3600*1000 {
logger.Fatalf("-retentionPeriod cannot be smaller than a day; got %s", retentionPeriod)
}
logger.Infof("opening storage at %q with -retentionPeriod=%s", *DataPath, retentionPeriod)
2019-05-22 21:16:55 +00:00
startTime := time.Now()
WG = syncwg.WaitGroup{}
strg := storage.MustOpenStorage(*DataPath, retentionPeriod.Msecs, *maxHourlySeries, *maxDailySeries)
2019-05-22 21:16:55 +00:00
Storage = strg
initStaleSnapshotsRemover(strg)
2019-05-22 21:16:55 +00:00
var m storage.Metrics
strg.UpdateMetrics(&m)
2019-05-22 21:16:55 +00:00
tm := &m.TableMetrics
partsCount := tm.SmallPartsCount + tm.BigPartsCount
blocksCount := tm.SmallBlocksCount + tm.BigBlocksCount
rowsCount := tm.SmallRowsCount + tm.BigRowsCount
sizeBytes := tm.SmallSizeBytes + tm.BigSizeBytes
logger.Infof("successfully opened storage %q in %.3f seconds; partsCount: %d; blocksCount: %d; rowsCount: %d; sizeBytes: %d",
*DataPath, time.Since(startTime).Seconds(), partsCount, blocksCount, rowsCount, sizeBytes)
// register storage metrics
storageMetrics = newStorageMetrics(Storage)
metrics.RegisterSet(storageMetrics)
2019-05-22 21:16:55 +00:00
}
var storageMetrics *metrics.Set
2019-05-22 21:16:55 +00:00
// Storage is a storage.
//
// Every storage call must be wrapped into WG.Add(1) ... WG.Done()
// for proper graceful shutdown when Stop is called.
var Storage *storage.Storage
// WG must be incremented before Storage call.
//
// Use syncwg instead of sync, since Add is called from concurrent goroutines.
var WG syncwg.WaitGroup
// resetResponseCacheIfNeeded is a callback for automatic resetting of response cache if needed.
var resetResponseCacheIfNeeded func(mrs []storage.MetricRow)
2019-05-22 21:16:55 +00:00
// AddRows adds mrs to the storage.
//
// The caller should limit the number of concurrent calls to AddRows() in order to limit memory usage.
2019-05-22 21:16:55 +00:00
func AddRows(mrs []storage.MetricRow) error {
if Storage.IsReadOnly() {
return errReadOnly
}
resetResponseCacheIfNeeded(mrs)
2019-05-22 21:16:55 +00:00
WG.Add(1)
err := Storage.AddRows(mrs, uint8(*precisionBits))
WG.Done()
return err
}
var errReadOnly = errors.New("the storage is in read-only mode; check -storage.minFreeDiskSpaceBytes command-line flag value")
// RegisterMetricNames registers all the metrics from mrs in the storage.
lib/storage: switch from global to per-day index for `MetricName -> TSID` mapping Previously all the newly ingested time series were registered in global `MetricName -> TSID` index. This index was used during data ingestion for locating the TSID (internal series id) for the given canonical metric name (the canonical metric name consists of metric name plus all its labels sorted by label names). The `MetricName -> TSID` index is stored on disk in order to make sure that the data isn't lost on VictoriaMetrics restart or unclean shutdown. The lookup in this index is relatively slow, since VictoriaMetrics needs to read the corresponding data block from disk, unpack it, put the unpacked block into `indexdb/dataBlocks` cache, and then search for the given `MetricName -> TSID` entry there. So VictoriaMetrics uses in-memory cache for speeding up the lookup for active time series. This cache is named `storage/tsid`. If this cache capacity is enough for all the currently ingested active time series, then VictoriaMetrics works fast, since it doesn't need to read the data from disk. VictoriaMetrics starts reading data from `MetricName -> TSID` on-disk index in the following cases: - If `storage/tsid` cache capacity isn't enough for active time series. Then just increase available memory for VictoriaMetrics or reduce the number of active time series ingested into VictoriaMetrics. - If new time series is ingested into VictoriaMetrics. In this case it cannot find the needed entry in the `storage/tsid` cache, so it needs to consult on-disk `MetricName -> TSID` index, since it doesn't know that the index has no the corresponding entry too. This is a typical event under high churn rate, when old time series are constantly substituted with new time series. Reading the data from `MetricName -> TSID` index is slow, so inserts, which lead to reading this index, are counted as slow inserts, and they can be monitored via `vm_slow_row_inserts_total` metric exposed by VictoriaMetrics. Prior to this commit the `MetricName -> TSID` index was global, e.g. it contained entries sorted by `MetricName` for all the time series ever ingested into VictoriaMetrics during the configured -retentionPeriod. This index can become very large under high churn rate and long retention. VictoriaMetrics caches data from this index in `indexdb/dataBlocks` in-memory cache for speeding up index lookups. The `indexdb/dataBlocks` cache may occupy significant share of available memory for storing recently accessed blocks at `MetricName -> TSID` index when searching for newly ingested time series. This commit switches from global `MetricName -> TSID` index to per-day index. This allows significantly reducing the amounts of data, which needs to be cached in `indexdb/dataBlocks`, since now VictoriaMetrics consults only the index for the current day when new time series is ingested into it. The downside of this change is increased indexdb size on disk for workloads without high churn rate, e.g. with static time series, which do no change over time, since now VictoriaMetrics needs to store identical `MetricName -> TSID` entries for static time series for every day. This change removes an optimization for reducing CPU and disk IO spikes at indexdb rotation, since it didn't work correctly - see https://github.com/VictoriaMetrics/VictoriaMetrics/issues/1401 . At the same time the change fixes the issue, which could result in lost access to time series, which stop receving new samples during the first hour after indexdb rotation - see https://github.com/VictoriaMetrics/VictoriaMetrics/issues/2698 The issue with the increased CPU and disk IO usage during indexdb rotation will be addressed in a separate commit according to https://github.com/VictoriaMetrics/VictoriaMetrics/issues/1401#issuecomment-1553488685 This is a follow-up for 1f28b46ae9350795af41cbfc3ca0e8a5af084fce
2023-07-13 22:33:41 +00:00
func RegisterMetricNames(qt *querytracer.Tracer, mrs []storage.MetricRow) {
WG.Add(1)
lib/storage: switch from global to per-day index for `MetricName -> TSID` mapping Previously all the newly ingested time series were registered in global `MetricName -> TSID` index. This index was used during data ingestion for locating the TSID (internal series id) for the given canonical metric name (the canonical metric name consists of metric name plus all its labels sorted by label names). The `MetricName -> TSID` index is stored on disk in order to make sure that the data isn't lost on VictoriaMetrics restart or unclean shutdown. The lookup in this index is relatively slow, since VictoriaMetrics needs to read the corresponding data block from disk, unpack it, put the unpacked block into `indexdb/dataBlocks` cache, and then search for the given `MetricName -> TSID` entry there. So VictoriaMetrics uses in-memory cache for speeding up the lookup for active time series. This cache is named `storage/tsid`. If this cache capacity is enough for all the currently ingested active time series, then VictoriaMetrics works fast, since it doesn't need to read the data from disk. VictoriaMetrics starts reading data from `MetricName -> TSID` on-disk index in the following cases: - If `storage/tsid` cache capacity isn't enough for active time series. Then just increase available memory for VictoriaMetrics or reduce the number of active time series ingested into VictoriaMetrics. - If new time series is ingested into VictoriaMetrics. In this case it cannot find the needed entry in the `storage/tsid` cache, so it needs to consult on-disk `MetricName -> TSID` index, since it doesn't know that the index has no the corresponding entry too. This is a typical event under high churn rate, when old time series are constantly substituted with new time series. Reading the data from `MetricName -> TSID` index is slow, so inserts, which lead to reading this index, are counted as slow inserts, and they can be monitored via `vm_slow_row_inserts_total` metric exposed by VictoriaMetrics. Prior to this commit the `MetricName -> TSID` index was global, e.g. it contained entries sorted by `MetricName` for all the time series ever ingested into VictoriaMetrics during the configured -retentionPeriod. This index can become very large under high churn rate and long retention. VictoriaMetrics caches data from this index in `indexdb/dataBlocks` in-memory cache for speeding up index lookups. The `indexdb/dataBlocks` cache may occupy significant share of available memory for storing recently accessed blocks at `MetricName -> TSID` index when searching for newly ingested time series. This commit switches from global `MetricName -> TSID` index to per-day index. This allows significantly reducing the amounts of data, which needs to be cached in `indexdb/dataBlocks`, since now VictoriaMetrics consults only the index for the current day when new time series is ingested into it. The downside of this change is increased indexdb size on disk for workloads without high churn rate, e.g. with static time series, which do no change over time, since now VictoriaMetrics needs to store identical `MetricName -> TSID` entries for static time series for every day. This change removes an optimization for reducing CPU and disk IO spikes at indexdb rotation, since it didn't work correctly - see https://github.com/VictoriaMetrics/VictoriaMetrics/issues/1401 . At the same time the change fixes the issue, which could result in lost access to time series, which stop receving new samples during the first hour after indexdb rotation - see https://github.com/VictoriaMetrics/VictoriaMetrics/issues/2698 The issue with the increased CPU and disk IO usage during indexdb rotation will be addressed in a separate commit according to https://github.com/VictoriaMetrics/VictoriaMetrics/issues/1401#issuecomment-1553488685 This is a follow-up for 1f28b46ae9350795af41cbfc3ca0e8a5af084fce
2023-07-13 22:33:41 +00:00
Storage.RegisterMetricNames(qt, mrs)
WG.Done()
}
// DeleteSeries deletes series matching tfss.
2019-05-22 21:16:55 +00:00
//
// Returns the number of deleted series.
func DeleteSeries(qt *querytracer.Tracer, tfss []*storage.TagFilters) (int, error) {
2019-05-22 21:16:55 +00:00
WG.Add(1)
n, err := Storage.DeleteSeries(qt, tfss)
2019-05-22 21:16:55 +00:00
WG.Done()
return n, err
}
// SearchMetricNames returns metric names for the given tfss on the given tr.
func SearchMetricNames(qt *querytracer.Tracer, tfss []*storage.TagFilters, tr storage.TimeRange, maxMetrics int, deadline uint64) ([]string, error) {
WG.Add(1)
metricNames, err := Storage.SearchMetricNames(qt, tfss, tr, maxMetrics, deadline)
WG.Done()
return metricNames, err
}
// SearchLabelNamesWithFiltersOnTimeRange searches for tag keys matching the given tfss on tr.
func SearchLabelNamesWithFiltersOnTimeRange(qt *querytracer.Tracer, tfss []*storage.TagFilters, tr storage.TimeRange, maxTagKeys, maxMetrics int, deadline uint64) ([]string, error) {
WG.Add(1)
labelNames, err := Storage.SearchLabelNamesWithFiltersOnTimeRange(qt, tfss, tr, maxTagKeys, maxMetrics, deadline)
WG.Done()
return labelNames, err
}
// SearchLabelValuesWithFiltersOnTimeRange searches for label values for the given labelName, tfss and tr.
func SearchLabelValuesWithFiltersOnTimeRange(qt *querytracer.Tracer, labelName string, tfss []*storage.TagFilters,
tr storage.TimeRange, maxLabelValues, maxMetrics int, deadline uint64) ([]string, error) {
2019-05-22 21:16:55 +00:00
WG.Add(1)
labelValues, err := Storage.SearchLabelValuesWithFiltersOnTimeRange(qt, labelName, tfss, tr, maxLabelValues, maxMetrics, deadline)
2019-05-22 21:16:55 +00:00
WG.Done()
return labelValues, err
2019-05-22 21:16:55 +00:00
}
// SearchTagValueSuffixes returns all the tag value suffixes for the given tagKey and tagValuePrefix on the given tr.
//
// This allows implementing https://graphite-api.readthedocs.io/en/latest/api.html#metrics-find or similar APIs.
func SearchTagValueSuffixes(qt *querytracer.Tracer, tr storage.TimeRange, tagKey, tagValuePrefix string, delimiter byte, maxTagValueSuffixes int, deadline uint64) ([]string, error) {
WG.Add(1)
suffixes, err := Storage.SearchTagValueSuffixes(qt, tr, tagKey, tagValuePrefix, delimiter, maxTagValueSuffixes, deadline)
WG.Done()
return suffixes, err
}
// SearchGraphitePaths returns all the metric names matching the given Graphite query.
func SearchGraphitePaths(qt *querytracer.Tracer, tr storage.TimeRange, query []byte, maxPaths int, deadline uint64) ([]string, error) {
WG.Add(1)
paths, err := Storage.SearchGraphitePaths(qt, tr, query, maxPaths, deadline)
WG.Done()
return paths, err
}
// GetTSDBStatus returns TSDB status for given filters on the given date.
func GetTSDBStatus(qt *querytracer.Tracer, tfss []*storage.TagFilters, date uint64, focusLabel string, topN, maxMetrics int, deadline uint64) (*storage.TSDBStatus, error) {
WG.Add(1)
status, err := Storage.GetTSDBStatus(qt, tfss, date, focusLabel, topN, maxMetrics, deadline)
WG.Done()
return status, err
}
2019-05-22 21:16:55 +00:00
// GetSeriesCount returns the number of time series in the storage.
func GetSeriesCount(deadline uint64) (uint64, error) {
2019-05-22 21:16:55 +00:00
WG.Add(1)
n, err := Storage.GetSeriesCount(deadline)
2019-05-22 21:16:55 +00:00
WG.Done()
return n, err
}
// Stop stops the vmstorage
func Stop() {
// deregister storage metrics
metrics.UnregisterSet(storageMetrics)
storageMetrics = nil
2019-05-22 21:16:55 +00:00
logger.Infof("gracefully closing the storage at %s", *DataPath)
startTime := time.Now()
WG.WaitAndBlock()
stopStaleSnapshotsRemover()
2019-05-22 21:16:55 +00:00
Storage.MustClose()
logger.Infof("successfully closed the storage in %.3f seconds", time.Since(startTime).Seconds())
2019-05-22 21:16:55 +00:00
logger.Infof("the storage has been stopped")
}
// RequestHandler is a storage request handler.
func RequestHandler(w http.ResponseWriter, r *http.Request) bool {
path := r.URL.Path
if path == "/internal/force_merge" {
if !httpserver.CheckAuthFlag(w, r, *forceMergeAuthKey, "forceMergeAuthKey") {
return true
}
// Run force merge in background
partitionNamePrefix := r.FormValue("partition_prefix")
go func() {
activeForceMerges.Inc()
defer activeForceMerges.Dec()
logger.Infof("forced merge for partition_prefix=%q has been started", partitionNamePrefix)
startTime := time.Now()
if err := Storage.ForceMergePartitions(partitionNamePrefix); err != nil {
logger.Errorf("error in forced merge for partition_prefix=%q: %s", partitionNamePrefix, err)
}
logger.Infof("forced merge for partition_prefix=%q has been successfully finished in %.3f seconds", partitionNamePrefix, time.Since(startTime).Seconds())
}()
return true
}
if path == "/internal/force_flush" {
if !httpserver.CheckAuthFlag(w, r, *forceFlushAuthKey, "forceFlushAuthKey") {
return true
}
logger.Infof("flushing storage to make pending data available for reading")
Storage.DebugFlush()
return true
}
2019-05-22 21:16:55 +00:00
prometheusCompatibleResponse := false
if path == "/api/v1/admin/tsdb/snapshot" {
// Handle Prometheus API - https://prometheus.io/docs/prometheus/latest/querying/api/#snapshot .
prometheusCompatibleResponse = true
path = "/snapshot/create"
}
if !strings.HasPrefix(path, "/snapshot") {
return false
}
if !httpserver.CheckAuthFlag(w, r, *snapshotAuthKey, "snapshotAuthKey") {
2019-05-22 21:16:55 +00:00
return true
}
path = path[len("/snapshot"):]
switch path {
case "/create":
snapshotsCreateTotal.Inc()
w.Header().Set("Content-Type", "application/json")
deadline := uint64(0)
if *snapshotCreateTimeout > 0 {
deadline = fasttime.UnixTimestamp() + uint64(snapshotCreateTimeout.Seconds())
}
snapshotPath, err := Storage.CreateSnapshot(deadline)
2019-05-22 21:16:55 +00:00
if err != nil {
err = fmt.Errorf("cannot create snapshot: %w", err)
jsonResponseError(w, err)
snapshotsCreateErrorsTotal.Inc()
2019-05-22 21:16:55 +00:00
return true
}
if prometheusCompatibleResponse {
fmt.Fprintf(w, `{"status":"success","data":{"name":%q}}`, snapshotPath)
} else {
fmt.Fprintf(w, `{"status":"ok","snapshot":%q}`, snapshotPath)
}
return true
case "/list":
snapshotsListTotal.Inc()
w.Header().Set("Content-Type", "application/json")
2019-05-22 21:16:55 +00:00
snapshots, err := Storage.ListSnapshots()
if err != nil {
err = fmt.Errorf("cannot list snapshots: %w", err)
jsonResponseError(w, err)
snapshotsListErrorsTotal.Inc()
2019-05-22 21:16:55 +00:00
return true
}
fmt.Fprintf(w, `{"status":"ok","snapshots":[`)
if len(snapshots) > 0 {
for _, snapshot := range snapshots[:len(snapshots)-1] {
fmt.Fprintf(w, "\n%q,", snapshot)
}
fmt.Fprintf(w, "\n%q\n", snapshots[len(snapshots)-1])
}
fmt.Fprintf(w, `]}`)
return true
case "/delete":
snapshotsDeleteTotal.Inc()
w.Header().Set("Content-Type", "application/json")
2019-05-22 21:16:55 +00:00
snapshotName := r.FormValue("snapshot")
snapshots, err := Storage.ListSnapshots()
if err != nil {
err = fmt.Errorf("cannot list snapshots: %w", err)
jsonResponseError(w, err)
snapshotsDeleteErrorsTotal.Inc()
2019-05-22 21:16:55 +00:00
return true
}
for _, snName := range snapshots {
if snName == snapshotName {
if err := Storage.DeleteSnapshot(snName); err != nil {
err = fmt.Errorf("cannot delete snapshot %q: %w", snName, err)
jsonResponseError(w, err)
snapshotsDeleteErrorsTotal.Inc()
return true
}
fmt.Fprintf(w, `{"status":"ok"}`)
return true
}
}
err = fmt.Errorf("cannot find snapshot %q", snapshotName)
jsonResponseError(w, err)
2019-05-22 21:16:55 +00:00
return true
case "/delete_all":
snapshotsDeleteAllTotal.Inc()
w.Header().Set("Content-Type", "application/json")
2019-05-22 21:16:55 +00:00
snapshots, err := Storage.ListSnapshots()
if err != nil {
err = fmt.Errorf("cannot list snapshots: %w", err)
jsonResponseError(w, err)
snapshotsDeleteAllErrorsTotal.Inc()
2019-05-22 21:16:55 +00:00
return true
}
for _, snapshotName := range snapshots {
if err := Storage.DeleteSnapshot(snapshotName); err != nil {
err = fmt.Errorf("cannot delete snapshot %q: %w", snapshotName, err)
jsonResponseError(w, err)
snapshotsDeleteAllErrorsTotal.Inc()
2019-05-22 21:16:55 +00:00
return true
}
}
fmt.Fprintf(w, `{"status":"ok"}`)
return true
default:
return false
}
}
func initStaleSnapshotsRemover(strg *storage.Storage) {
staleSnapshotsRemoverCh = make(chan struct{})
if snapshotsMaxAge.Msecs <= 0 {
return
}
snapshotsMaxAgeDur := time.Duration(snapshotsMaxAge.Msecs) * time.Millisecond
staleSnapshotsRemoverWG.Add(1)
go func() {
defer staleSnapshotsRemoverWG.Done()
t := time.NewTicker(11 * time.Second)
defer t.Stop()
for {
select {
case <-staleSnapshotsRemoverCh:
return
case <-t.C:
}
if err := strg.DeleteStaleSnapshots(snapshotsMaxAgeDur); err != nil {
// Use logger.Errorf instead of logger.Fatalf in the hope the error is temporary.
logger.Errorf("cannot delete stale snapshots: %s", err)
}
}
}()
}
func stopStaleSnapshotsRemover() {
close(staleSnapshotsRemoverCh)
staleSnapshotsRemoverWG.Wait()
}
var (
staleSnapshotsRemoverCh chan struct{}
staleSnapshotsRemoverWG sync.WaitGroup
)
var (
activeForceMerges = metrics.NewCounter("vm_active_force_merges")
snapshotsCreateTotal = metrics.NewCounter(`vm_http_requests_total{path="/snapshot/create"}`)
snapshotsCreateErrorsTotal = metrics.NewCounter(`vm_http_request_errors_total{path="/snapshot/create"}`)
snapshotsListTotal = metrics.NewCounter(`vm_http_requests_total{path="/snapshot/list"}`)
snapshotsListErrorsTotal = metrics.NewCounter(`vm_http_request_errors_total{path="/snapshot/list"}`)
snapshotsDeleteTotal = metrics.NewCounter(`vm_http_requests_total{path="/snapshot/delete"}`)
snapshotsDeleteErrorsTotal = metrics.NewCounter(`vm_http_request_errors_total{path="/snapshot/delete"}`)
snapshotsDeleteAllTotal = metrics.NewCounter(`vm_http_requests_total{path="/snapshot/delete_all"}`)
snapshotsDeleteAllErrorsTotal = metrics.NewCounter(`vm_http_request_errors_total{path="/snapshot/delete_all"}`)
)
func newStorageMetrics(strg *storage.Storage) *metrics.Set {
storageMetrics := metrics.NewSet()
2019-05-22 21:16:55 +00:00
mCache := &storage.Metrics{}
var mCacheLock sync.Mutex
var lastUpdateTime time.Time
m := func() *storage.Metrics {
mCacheLock.Lock()
defer mCacheLock.Unlock()
if time.Since(lastUpdateTime) < time.Second {
return mCache
}
var mc storage.Metrics
strg.UpdateMetrics(&mc)
2019-05-22 21:16:55 +00:00
mCache = &mc
lastUpdateTime = time.Now()
return mCache
}
tm := func() *storage.TableMetrics {
sm := m()
return &sm.TableMetrics
}
idbm := func() *storage.IndexDBMetrics {
sm := m()
return &sm.IndexDBMetrics
}
storageMetrics.NewGauge(fmt.Sprintf(`vm_free_disk_space_bytes{path=%q}`, *DataPath), func() float64 {
return float64(fs.MustGetFreeSpace(*DataPath))
})
storageMetrics.NewGauge(fmt.Sprintf(`vm_free_disk_space_limit_bytes{path=%q}`, *DataPath), func() float64 {
return float64(minFreeDiskSpaceBytes.N)
})
storageMetrics.NewGauge(fmt.Sprintf(`vm_storage_is_read_only{path=%q}`, *DataPath), func() float64 {
if strg.IsReadOnly() {
return 1
}
return 0
})
storageMetrics.NewGauge(`vm_active_merges{type="storage/inmemory"}`, func() float64 {
return float64(tm().ActiveInmemoryMerges)
2019-05-22 21:16:55 +00:00
})
storageMetrics.NewGauge(`vm_active_merges{type="storage/small"}`, func() float64 {
2019-05-22 21:16:55 +00:00
return float64(tm().ActiveSmallMerges)
})
storageMetrics.NewGauge(`vm_active_merges{type="storage/big"}`, func() float64 {
return float64(tm().ActiveBigMerges)
})
storageMetrics.NewGauge(`vm_active_merges{type="indexdb/inmemory"}`, func() float64 {
return float64(idbm().ActiveInmemoryMerges)
})
storageMetrics.NewGauge(`vm_active_merges{type="indexdb/file"}`, func() float64 {
return float64(idbm().ActiveFileMerges)
2019-05-22 21:16:55 +00:00
})
storageMetrics.NewGauge(`vm_merges_total{type="storage/inmemory"}`, func() float64 {
return float64(tm().InmemoryMergesCount)
2019-05-22 21:16:55 +00:00
})
storageMetrics.NewGauge(`vm_merges_total{type="storage/small"}`, func() float64 {
2019-05-22 21:16:55 +00:00
return float64(tm().SmallMergesCount)
})
storageMetrics.NewGauge(`vm_merges_total{type="storage/big"}`, func() float64 {
return float64(tm().BigMergesCount)
})
storageMetrics.NewGauge(`vm_merges_total{type="indexdb/inmemory"}`, func() float64 {
return float64(idbm().InmemoryMergesCount)
})
storageMetrics.NewGauge(`vm_merges_total{type="indexdb/file"}`, func() float64 {
return float64(idbm().FileMergesCount)
2019-05-22 21:16:55 +00:00
})
storageMetrics.NewGauge(`vm_rows_merged_total{type="storage/inmemory"}`, func() float64 {
return float64(tm().InmemoryRowsMerged)
2019-05-22 21:16:55 +00:00
})
storageMetrics.NewGauge(`vm_rows_merged_total{type="storage/small"}`, func() float64 {
2019-05-22 21:16:55 +00:00
return float64(tm().SmallRowsMerged)
})
storageMetrics.NewGauge(`vm_rows_merged_total{type="storage/big"}`, func() float64 {
return float64(tm().BigRowsMerged)
})
storageMetrics.NewGauge(`vm_rows_merged_total{type="indexdb/inmemory"}`, func() float64 {
return float64(idbm().InmemoryItemsMerged)
})
storageMetrics.NewGauge(`vm_rows_merged_total{type="indexdb/file"}`, func() float64 {
return float64(idbm().FileItemsMerged)
2019-05-22 21:16:55 +00:00
})
storageMetrics.NewGauge(`vm_rows_deleted_total{type="storage/inmemory"}`, func() float64 {
return float64(tm().InmemoryRowsDeleted)
2019-05-22 21:16:55 +00:00
})
storageMetrics.NewGauge(`vm_rows_deleted_total{type="storage/small"}`, func() float64 {
2019-05-22 21:16:55 +00:00
return float64(tm().SmallRowsDeleted)
})
storageMetrics.NewGauge(`vm_rows_deleted_total{type="storage/big"}`, func() float64 {
return float64(tm().BigRowsDeleted)
})
2019-05-22 21:16:55 +00:00
storageMetrics.NewGauge(`vm_part_references{type="storage/inmemory"}`, func() float64 {
return float64(tm().InmemoryPartsRefCount)
2019-05-22 21:16:55 +00:00
})
storageMetrics.NewGauge(`vm_part_references{type="storage/small"}`, func() float64 {
2019-05-22 21:16:55 +00:00
return float64(tm().SmallPartsRefCount)
})
storageMetrics.NewGauge(`vm_part_references{type="storage/big"}`, func() float64 {
return float64(tm().BigPartsRefCount)
})
storageMetrics.NewGauge(`vm_partition_references{type="storage"}`, func() float64 {
2019-05-22 21:16:55 +00:00
return float64(tm().PartitionsRefCount)
})
storageMetrics.NewGauge(`vm_object_references{type="indexdb"}`, func() float64 {
2019-05-22 21:16:55 +00:00
return float64(idbm().IndexDBRefCount)
})
storageMetrics.NewGauge(`vm_part_references{type="indexdb"}`, func() float64 {
2019-05-22 21:16:55 +00:00
return float64(idbm().PartsRefCount)
})
storageMetrics.NewGauge(`vm_missing_tsids_for_metric_id_total`, func() float64 {
2019-05-22 21:16:55 +00:00
return float64(idbm().MissingTSIDsForMetricID)
})
storageMetrics.NewGauge(`vm_index_blocks_with_metric_ids_processed_total`, func() float64 {
return float64(idbm().IndexBlocksWithMetricIDsProcessed)
})
storageMetrics.NewGauge(`vm_index_blocks_with_metric_ids_incorrect_order_total`, func() float64 {
return float64(idbm().IndexBlocksWithMetricIDsIncorrectOrder)
})
storageMetrics.NewGauge(`vm_composite_index_min_timestamp`, func() float64 {
return float64(idbm().MinTimestampForCompositeIndex) / 1e3
})
storageMetrics.NewGauge(`vm_composite_filter_success_conversions_total`, func() float64 {
return float64(idbm().CompositeFilterSuccessConversions)
})
storageMetrics.NewGauge(`vm_composite_filter_missing_conversions_total`, func() float64 {
return float64(idbm().CompositeFilterMissingConversions)
})
2019-05-22 21:16:55 +00:00
storageMetrics.NewGauge(`vm_assisted_merges_total{type="storage/inmemory"}`, func() float64 {
return float64(tm().InmemoryAssistedMerges)
2019-05-22 21:16:55 +00:00
})
storageMetrics.NewGauge(`vm_assisted_merges_total{type="storage/small"}`, func() float64 {
return float64(tm().SmallAssistedMerges)
})
storageMetrics.NewGauge(`vm_assisted_merges_total{type="indexdb/inmemory"}`, func() float64 {
return float64(idbm().InmemoryAssistedMerges)
})
storageMetrics.NewGauge(`vm_assisted_merges_total{type="indexdb/file"}`, func() float64 {
return float64(idbm().FileAssistedMerges)
2019-05-22 21:16:55 +00:00
})
storageMetrics.NewGauge(`vm_indexdb_items_added_total`, func() float64 {
return float64(idbm().ItemsAdded)
})
storageMetrics.NewGauge(`vm_indexdb_items_added_size_bytes_total`, func() float64 {
return float64(idbm().ItemsAddedSizeBytes)
})
// See https://github.com/VictoriaMetrics/VictoriaMetrics/issues/686
storageMetrics.NewGauge(`vm_merge_need_free_disk_space`, func() float64 {
return float64(tm().MergeNeedFreeDiskSpace)
})
storageMetrics.NewGauge(`vm_pending_rows{type="storage"}`, func() float64 {
2019-05-22 21:16:55 +00:00
return float64(tm().PendingRows)
})
storageMetrics.NewGauge(`vm_pending_rows{type="indexdb"}`, func() float64 {
2019-05-22 21:16:55 +00:00
return float64(idbm().PendingItems)
})
storageMetrics.NewGauge(`vm_parts{type="storage/inmemory"}`, func() float64 {
return float64(tm().InmemoryPartsCount)
2019-05-22 21:16:55 +00:00
})
storageMetrics.NewGauge(`vm_parts{type="storage/small"}`, func() float64 {
2019-05-22 21:16:55 +00:00
return float64(tm().SmallPartsCount)
})
storageMetrics.NewGauge(`vm_parts{type="storage/big"}`, func() float64 {
return float64(tm().BigPartsCount)
})
storageMetrics.NewGauge(`vm_parts{type="indexdb/inmemory"}`, func() float64 {
return float64(idbm().InmemoryPartsCount)
})
storageMetrics.NewGauge(`vm_parts{type="indexdb/file"}`, func() float64 {
return float64(idbm().FilePartsCount)
2019-05-22 21:16:55 +00:00
})
storageMetrics.NewGauge(`vm_blocks{type="storage/inmemory"}`, func() float64 {
return float64(tm().InmemoryBlocksCount)
2019-05-22 21:16:55 +00:00
})
storageMetrics.NewGauge(`vm_blocks{type="storage/small"}`, func() float64 {
2019-05-22 21:16:55 +00:00
return float64(tm().SmallBlocksCount)
})
storageMetrics.NewGauge(`vm_blocks{type="storage/big"}`, func() float64 {
return float64(tm().BigBlocksCount)
})
storageMetrics.NewGauge(`vm_blocks{type="indexdb/inmemory"}`, func() float64 {
return float64(idbm().InmemoryBlocksCount)
})
storageMetrics.NewGauge(`vm_blocks{type="indexdb/file"}`, func() float64 {
return float64(idbm().FileBlocksCount)
2019-05-22 21:16:55 +00:00
})
storageMetrics.NewGauge(`vm_data_size_bytes{type="storage/inmemory"}`, func() float64 {
return float64(tm().InmemorySizeBytes)
})
storageMetrics.NewGauge(`vm_data_size_bytes{type="storage/small"}`, func() float64 {
return float64(tm().SmallSizeBytes)
})
storageMetrics.NewGauge(`vm_data_size_bytes{type="storage/big"}`, func() float64 {
return float64(tm().BigSizeBytes)
})
storageMetrics.NewGauge(`vm_data_size_bytes{type="indexdb/inmemory"}`, func() float64 {
return float64(idbm().InmemorySizeBytes)
})
storageMetrics.NewGauge(`vm_data_size_bytes{type="indexdb/file"}`, func() float64 {
return float64(idbm().FileSizeBytes)
})
storageMetrics.NewGauge(`vm_rows_added_to_storage_total`, func() float64 {
return float64(m().RowsAddedTotal)
})
storageMetrics.NewGauge(`vm_deduplicated_samples_total{type="merge"}`, func() float64 {
return float64(m().DedupsDuringMerge)
})
storageMetrics.NewGauge(`vm_rows_ignored_total{reason="big_timestamp"}`, func() float64 {
return float64(m().TooBigTimestampRows)
})
storageMetrics.NewGauge(`vm_rows_ignored_total{reason="small_timestamp"}`, func() float64 {
return float64(m().TooSmallTimestampRows)
})
storageMetrics.NewGauge(`vm_timeseries_repopulated_total`, func() float64 {
lib/storage: switch from global to per-day index for `MetricName -> TSID` mapping Previously all the newly ingested time series were registered in global `MetricName -> TSID` index. This index was used during data ingestion for locating the TSID (internal series id) for the given canonical metric name (the canonical metric name consists of metric name plus all its labels sorted by label names). The `MetricName -> TSID` index is stored on disk in order to make sure that the data isn't lost on VictoriaMetrics restart or unclean shutdown. The lookup in this index is relatively slow, since VictoriaMetrics needs to read the corresponding data block from disk, unpack it, put the unpacked block into `indexdb/dataBlocks` cache, and then search for the given `MetricName -> TSID` entry there. So VictoriaMetrics uses in-memory cache for speeding up the lookup for active time series. This cache is named `storage/tsid`. If this cache capacity is enough for all the currently ingested active time series, then VictoriaMetrics works fast, since it doesn't need to read the data from disk. VictoriaMetrics starts reading data from `MetricName -> TSID` on-disk index in the following cases: - If `storage/tsid` cache capacity isn't enough for active time series. Then just increase available memory for VictoriaMetrics or reduce the number of active time series ingested into VictoriaMetrics. - If new time series is ingested into VictoriaMetrics. In this case it cannot find the needed entry in the `storage/tsid` cache, so it needs to consult on-disk `MetricName -> TSID` index, since it doesn't know that the index has no the corresponding entry too. This is a typical event under high churn rate, when old time series are constantly substituted with new time series. Reading the data from `MetricName -> TSID` index is slow, so inserts, which lead to reading this index, are counted as slow inserts, and they can be monitored via `vm_slow_row_inserts_total` metric exposed by VictoriaMetrics. Prior to this commit the `MetricName -> TSID` index was global, e.g. it contained entries sorted by `MetricName` for all the time series ever ingested into VictoriaMetrics during the configured -retentionPeriod. This index can become very large under high churn rate and long retention. VictoriaMetrics caches data from this index in `indexdb/dataBlocks` in-memory cache for speeding up index lookups. The `indexdb/dataBlocks` cache may occupy significant share of available memory for storing recently accessed blocks at `MetricName -> TSID` index when searching for newly ingested time series. This commit switches from global `MetricName -> TSID` index to per-day index. This allows significantly reducing the amounts of data, which needs to be cached in `indexdb/dataBlocks`, since now VictoriaMetrics consults only the index for the current day when new time series is ingested into it. The downside of this change is increased indexdb size on disk for workloads without high churn rate, e.g. with static time series, which do no change over time, since now VictoriaMetrics needs to store identical `MetricName -> TSID` entries for static time series for every day. This change removes an optimization for reducing CPU and disk IO spikes at indexdb rotation, since it didn't work correctly - see https://github.com/VictoriaMetrics/VictoriaMetrics/issues/1401 . At the same time the change fixes the issue, which could result in lost access to time series, which stop receving new samples during the first hour after indexdb rotation - see https://github.com/VictoriaMetrics/VictoriaMetrics/issues/2698 The issue with the increased CPU and disk IO usage during indexdb rotation will be addressed in a separate commit according to https://github.com/VictoriaMetrics/VictoriaMetrics/issues/1401#issuecomment-1553488685 This is a follow-up for 1f28b46ae9350795af41cbfc3ca0e8a5af084fce
2023-07-13 22:33:41 +00:00
return float64(m().TimeseriesRepopulated)
})
storageMetrics.NewGauge(`vm_timeseries_precreated_total`, func() float64 {
lib/storage: pre-create timeseries before indexDB rotation (#4652) * lib/storage: pre-create timeseries before indexDB rotation during an hour before indexDB rotation start creating records at the next indexDB it must improve performance during switch for the next indexDB and remove ingestion issues. Since there is no need for creation new index records for timeseries already ingested into current indexDB https://github.com/VictoriaMetrics/VictoriaMetrics/issues/4563 * lib/storage: further work on indexdb rotation optimization - Document the change at docs/CHAGNELOG.md - Move back various caches from indexDB to Storage. This makes the change less intrusive. The dateMetricIDCache now takes into account indexDB generation, so it stores (date, metricID) entries for both the current and the next indexDB. - Consolidate the code responsible for idbNext pre-filling into prefillNextIndexDB() function. This improves code readability and maintainability a bit. - Rewrite and simplify the code responsible for calculating the next retention timestamp. Add various tests for corner cases of this code. - Remove indexdb pre-filling from RegisterMetricNames() function, since this function is rarely called. It is OK to add indexdb entries on demand in this function. This simplifies the code. Updates https://github.com/VictoriaMetrics/VictoriaMetrics/issues/1401 * docs/CHANGELOG.md: refer to https://github.com/VictoriaMetrics/VictoriaMetrics/issues/4563 --------- Co-authored-by: Aliaksandr Valialkin <valyala@victoriametrics.com>
2023-07-22 22:20:21 +00:00
return float64(m().TimeseriesPreCreated)
})
storageMetrics.NewGauge(`vm_new_timeseries_created_total`, func() float64 {
lib/storage: switch from global to per-day index for `MetricName -> TSID` mapping Previously all the newly ingested time series were registered in global `MetricName -> TSID` index. This index was used during data ingestion for locating the TSID (internal series id) for the given canonical metric name (the canonical metric name consists of metric name plus all its labels sorted by label names). The `MetricName -> TSID` index is stored on disk in order to make sure that the data isn't lost on VictoriaMetrics restart or unclean shutdown. The lookup in this index is relatively slow, since VictoriaMetrics needs to read the corresponding data block from disk, unpack it, put the unpacked block into `indexdb/dataBlocks` cache, and then search for the given `MetricName -> TSID` entry there. So VictoriaMetrics uses in-memory cache for speeding up the lookup for active time series. This cache is named `storage/tsid`. If this cache capacity is enough for all the currently ingested active time series, then VictoriaMetrics works fast, since it doesn't need to read the data from disk. VictoriaMetrics starts reading data from `MetricName -> TSID` on-disk index in the following cases: - If `storage/tsid` cache capacity isn't enough for active time series. Then just increase available memory for VictoriaMetrics or reduce the number of active time series ingested into VictoriaMetrics. - If new time series is ingested into VictoriaMetrics. In this case it cannot find the needed entry in the `storage/tsid` cache, so it needs to consult on-disk `MetricName -> TSID` index, since it doesn't know that the index has no the corresponding entry too. This is a typical event under high churn rate, when old time series are constantly substituted with new time series. Reading the data from `MetricName -> TSID` index is slow, so inserts, which lead to reading this index, are counted as slow inserts, and they can be monitored via `vm_slow_row_inserts_total` metric exposed by VictoriaMetrics. Prior to this commit the `MetricName -> TSID` index was global, e.g. it contained entries sorted by `MetricName` for all the time series ever ingested into VictoriaMetrics during the configured -retentionPeriod. This index can become very large under high churn rate and long retention. VictoriaMetrics caches data from this index in `indexdb/dataBlocks` in-memory cache for speeding up index lookups. The `indexdb/dataBlocks` cache may occupy significant share of available memory for storing recently accessed blocks at `MetricName -> TSID` index when searching for newly ingested time series. This commit switches from global `MetricName -> TSID` index to per-day index. This allows significantly reducing the amounts of data, which needs to be cached in `indexdb/dataBlocks`, since now VictoriaMetrics consults only the index for the current day when new time series is ingested into it. The downside of this change is increased indexdb size on disk for workloads without high churn rate, e.g. with static time series, which do no change over time, since now VictoriaMetrics needs to store identical `MetricName -> TSID` entries for static time series for every day. This change removes an optimization for reducing CPU and disk IO spikes at indexdb rotation, since it didn't work correctly - see https://github.com/VictoriaMetrics/VictoriaMetrics/issues/1401 . At the same time the change fixes the issue, which could result in lost access to time series, which stop receving new samples during the first hour after indexdb rotation - see https://github.com/VictoriaMetrics/VictoriaMetrics/issues/2698 The issue with the increased CPU and disk IO usage during indexdb rotation will be addressed in a separate commit according to https://github.com/VictoriaMetrics/VictoriaMetrics/issues/1401#issuecomment-1553488685 This is a follow-up for 1f28b46ae9350795af41cbfc3ca0e8a5af084fce
2023-07-13 22:33:41 +00:00
return float64(m().NewTimeseriesCreated)
})
storageMetrics.NewGauge(`vm_slow_row_inserts_total`, func() float64 {
return float64(m().SlowRowInserts)
})
storageMetrics.NewGauge(`vm_slow_per_day_index_inserts_total`, func() float64 {
return float64(m().SlowPerDayIndexInserts)
})
storageMetrics.NewGauge(`vm_slow_metric_name_loads_total`, func() float64 {
return float64(m().SlowMetricNameLoads)
})
if *maxHourlySeries > 0 {
storageMetrics.NewGauge(`vm_hourly_series_limit_current_series`, func() float64 {
return float64(m().HourlySeriesLimitCurrentSeries)
})
storageMetrics.NewGauge(`vm_hourly_series_limit_max_series`, func() float64 {
return float64(m().HourlySeriesLimitMaxSeries)
})
storageMetrics.NewGauge(`vm_hourly_series_limit_rows_dropped_total`, func() float64 {
return float64(m().HourlySeriesLimitRowsDropped)
})
}
if *maxDailySeries > 0 {
storageMetrics.NewGauge(`vm_daily_series_limit_current_series`, func() float64 {
return float64(m().DailySeriesLimitCurrentSeries)
})
storageMetrics.NewGauge(`vm_daily_series_limit_max_series`, func() float64 {
return float64(m().DailySeriesLimitMaxSeries)
})
storageMetrics.NewGauge(`vm_daily_series_limit_rows_dropped_total`, func() float64 {
return float64(m().DailySeriesLimitRowsDropped)
})
}
storageMetrics.NewGauge(`vm_timestamps_blocks_merged_total`, func() float64 {
return float64(m().TimestampsBlocksMerged)
})
storageMetrics.NewGauge(`vm_timestamps_bytes_saved_total`, func() float64 {
return float64(m().TimestampsBytesSaved)
})
storageMetrics.NewGauge(`vm_rows{type="storage/inmemory"}`, func() float64 {
return float64(tm().InmemoryRowsCount)
2019-05-22 21:16:55 +00:00
})
storageMetrics.NewGauge(`vm_rows{type="storage/small"}`, func() float64 {
2019-05-22 21:16:55 +00:00
return float64(tm().SmallRowsCount)
})
storageMetrics.NewGauge(`vm_rows{type="storage/big"}`, func() float64 {
return float64(tm().BigRowsCount)
})
storageMetrics.NewGauge(`vm_rows{type="indexdb/inmemory"}`, func() float64 {
return float64(idbm().InmemoryItemsCount)
})
storageMetrics.NewGauge(`vm_rows{type="indexdb/file"}`, func() float64 {
return float64(idbm().FileItemsCount)
2019-05-22 21:16:55 +00:00
})
storageMetrics.NewGauge(`vm_date_range_search_calls_total`, func() float64 {
return float64(idbm().DateRangeSearchCalls)
})
storageMetrics.NewGauge(`vm_date_range_hits_total`, func() float64 {
return float64(idbm().DateRangeSearchHits)
})
storageMetrics.NewGauge(`vm_global_search_calls_total`, func() float64 {
return float64(idbm().GlobalSearchCalls)
})
storageMetrics.NewGauge(`vm_missing_metric_names_for_metric_id_total`, func() float64 {
return float64(idbm().MissingMetricNamesForMetricID)
})
storageMetrics.NewGauge(`vm_date_metric_id_cache_syncs_total`, func() float64 {
return float64(m().DateMetricIDCacheSyncsCount)
})
storageMetrics.NewGauge(`vm_date_metric_id_cache_resets_total`, func() float64 {
return float64(m().DateMetricIDCacheResetsCount)
})
storageMetrics.NewGauge(`vm_cache_entries{type="storage/tsid"}`, func() float64 {
2019-05-22 21:16:55 +00:00
return float64(m().TSIDCacheSize)
})
storageMetrics.NewGauge(`vm_cache_entries{type="storage/metricIDs"}`, func() float64 {
2019-05-22 21:16:55 +00:00
return float64(m().MetricIDCacheSize)
})
storageMetrics.NewGauge(`vm_cache_entries{type="storage/metricName"}`, func() float64 {
2019-05-22 21:16:55 +00:00
return float64(m().MetricNameCacheSize)
})
storageMetrics.NewGauge(`vm_cache_entries{type="storage/date_metricID"}`, func() float64 {
2019-05-22 21:16:55 +00:00
return float64(m().DateMetricIDCacheSize)
})
storageMetrics.NewGauge(`vm_cache_entries{type="storage/hour_metric_ids"}`, func() float64 {
return float64(m().HourMetricIDCacheSize)
})
storageMetrics.NewGauge(`vm_cache_entries{type="storage/next_day_metric_ids"}`, func() float64 {
return float64(m().NextDayMetricIDCacheSize)
})
storageMetrics.NewGauge(`vm_cache_entries{type="storage/indexBlocks"}`, func() float64 {
return float64(tm().IndexBlocksCacheSize)
2019-05-22 21:16:55 +00:00
})
storageMetrics.NewGauge(`vm_cache_entries{type="indexdb/dataBlocks"}`, func() float64 {
2019-05-22 21:16:55 +00:00
return float64(idbm().DataBlocksCacheSize)
})
storageMetrics.NewGauge(`vm_cache_entries{type="indexdb/indexBlocks"}`, func() float64 {
2019-05-22 21:16:55 +00:00
return float64(idbm().IndexBlocksCacheSize)
})
storageMetrics.NewGauge(`vm_cache_entries{type="indexdb/tagFiltersToMetricIDs"}`, func() float64 {
return float64(idbm().TagFiltersToMetricIDsCacheSize)
2019-05-22 21:16:55 +00:00
})
storageMetrics.NewGauge(`vm_cache_entries{type="storage/regexps"}`, func() float64 {
2019-05-22 21:16:55 +00:00
return float64(storage.RegexpCacheSize())
})
storageMetrics.NewGauge(`vm_cache_entries{type="storage/regexpPrefixes"}`, func() float64 {
return float64(storage.RegexpPrefixesCacheSize())
})
storageMetrics.NewGauge(`vm_cache_entries{type="storage/prefetchedMetricIDs"}`, func() float64 {
return float64(m().PrefetchedMetricIDsSize)
})
2019-05-22 21:16:55 +00:00
storageMetrics.NewGauge(`vm_cache_size_bytes{type="storage/tsid"}`, func() float64 {
return float64(m().TSIDCacheSizeBytes)
2019-05-22 21:16:55 +00:00
})
storageMetrics.NewGauge(`vm_cache_size_bytes{type="storage/metricIDs"}`, func() float64 {
return float64(m().MetricIDCacheSizeBytes)
2019-05-22 21:16:55 +00:00
})
storageMetrics.NewGauge(`vm_cache_size_bytes{type="storage/metricName"}`, func() float64 {
return float64(m().MetricNameCacheSizeBytes)
2019-05-22 21:16:55 +00:00
})
storageMetrics.NewGauge(`vm_cache_size_bytes{type="storage/indexBlocks"}`, func() float64 {
return float64(tm().IndexBlocksCacheSizeBytes)
})
storageMetrics.NewGauge(`vm_cache_size_bytes{type="indexdb/dataBlocks"}`, func() float64 {
return float64(idbm().DataBlocksCacheSizeBytes)
})
storageMetrics.NewGauge(`vm_cache_size_bytes{type="indexdb/indexBlocks"}`, func() float64 {
return float64(idbm().IndexBlocksCacheSizeBytes)
})
storageMetrics.NewGauge(`vm_cache_size_bytes{type="storage/date_metricID"}`, func() float64 {
return float64(m().DateMetricIDCacheSizeBytes)
})
storageMetrics.NewGauge(`vm_cache_size_bytes{type="storage/hour_metric_ids"}`, func() float64 {
return float64(m().HourMetricIDCacheSizeBytes)
})
storageMetrics.NewGauge(`vm_cache_size_bytes{type="storage/next_day_metric_ids"}`, func() float64 {
return float64(m().NextDayMetricIDCacheSizeBytes)
})
storageMetrics.NewGauge(`vm_cache_size_bytes{type="indexdb/tagFiltersToMetricIDs"}`, func() float64 {
return float64(idbm().TagFiltersToMetricIDsCacheSizeBytes)
2019-05-22 21:16:55 +00:00
})
storageMetrics.NewGauge(`vm_cache_size_bytes{type="storage/regexps"}`, func() float64 {
return float64(storage.RegexpCacheSizeBytes())
})
storageMetrics.NewGauge(`vm_cache_size_bytes{type="storage/regexpPrefixes"}`, func() float64 {
return float64(storage.RegexpPrefixesCacheSizeBytes())
})
storageMetrics.NewGauge(`vm_cache_size_bytes{type="storage/prefetchedMetricIDs"}`, func() float64 {
return float64(m().PrefetchedMetricIDsSizeBytes)
})
2019-05-22 21:16:55 +00:00
storageMetrics.NewGauge(`vm_cache_size_max_bytes{type="storage/tsid"}`, func() float64 {
return float64(m().TSIDCacheSizeMaxBytes)
})
storageMetrics.NewGauge(`vm_cache_size_max_bytes{type="storage/metricIDs"}`, func() float64 {
return float64(m().MetricIDCacheSizeMaxBytes)
})
storageMetrics.NewGauge(`vm_cache_size_max_bytes{type="storage/metricName"}`, func() float64 {
return float64(m().MetricNameCacheSizeMaxBytes)
})
storageMetrics.NewGauge(`vm_cache_size_max_bytes{type="storage/indexBlocks"}`, func() float64 {
return float64(tm().IndexBlocksCacheSizeMaxBytes)
})
storageMetrics.NewGauge(`vm_cache_size_max_bytes{type="indexdb/dataBlocks"}`, func() float64 {
return float64(idbm().DataBlocksCacheSizeMaxBytes)
})
storageMetrics.NewGauge(`vm_cache_size_max_bytes{type="indexdb/indexBlocks"}`, func() float64 {
return float64(idbm().IndexBlocksCacheSizeMaxBytes)
})
storageMetrics.NewGauge(`vm_cache_size_max_bytes{type="indexdb/tagFiltersToMetricIDs"}`, func() float64 {
return float64(idbm().TagFiltersToMetricIDsCacheSizeMaxBytes)
})
storageMetrics.NewGauge(`vm_cache_size_max_bytes{type="storage/regexps"}`, func() float64 {
return float64(storage.RegexpCacheMaxSizeBytes())
})
storageMetrics.NewGauge(`vm_cache_size_max_bytes{type="storage/regexpPrefixes"}`, func() float64 {
return float64(storage.RegexpPrefixesCacheMaxSizeBytes())
})
storageMetrics.NewGauge(`vm_cache_requests_total{type="storage/tsid"}`, func() float64 {
2019-05-22 21:16:55 +00:00
return float64(m().TSIDCacheRequests)
})
storageMetrics.NewGauge(`vm_cache_requests_total{type="storage/metricIDs"}`, func() float64 {
2019-05-22 21:16:55 +00:00
return float64(m().MetricIDCacheRequests)
})
storageMetrics.NewGauge(`vm_cache_requests_total{type="storage/metricName"}`, func() float64 {
2019-05-22 21:16:55 +00:00
return float64(m().MetricNameCacheRequests)
})
storageMetrics.NewGauge(`vm_cache_requests_total{type="storage/indexBlocks"}`, func() float64 {
return float64(tm().IndexBlocksCacheRequests)
2019-05-22 21:16:55 +00:00
})
storageMetrics.NewGauge(`vm_cache_requests_total{type="indexdb/dataBlocks"}`, func() float64 {
2019-05-22 21:16:55 +00:00
return float64(idbm().DataBlocksCacheRequests)
})
storageMetrics.NewGauge(`vm_cache_requests_total{type="indexdb/indexBlocks"}`, func() float64 {
2019-05-22 21:16:55 +00:00
return float64(idbm().IndexBlocksCacheRequests)
})
storageMetrics.NewGauge(`vm_cache_requests_total{type="indexdb/tagFiltersToMetricIDs"}`, func() float64 {
return float64(idbm().TagFiltersToMetricIDsCacheRequests)
2019-05-22 21:16:55 +00:00
})
storageMetrics.NewGauge(`vm_cache_requests_total{type="storage/regexps"}`, func() float64 {
2019-05-22 21:16:55 +00:00
return float64(storage.RegexpCacheRequests())
})
storageMetrics.NewGauge(`vm_cache_requests_total{type="storage/regexpPrefixes"}`, func() float64 {
return float64(storage.RegexpPrefixesCacheRequests())
})
2019-05-22 21:16:55 +00:00
storageMetrics.NewGauge(`vm_cache_misses_total{type="storage/tsid"}`, func() float64 {
2019-05-22 21:16:55 +00:00
return float64(m().TSIDCacheMisses)
})
storageMetrics.NewGauge(`vm_cache_misses_total{type="storage/metricIDs"}`, func() float64 {
2019-05-22 21:16:55 +00:00
return float64(m().MetricIDCacheMisses)
})
storageMetrics.NewGauge(`vm_cache_misses_total{type="storage/metricName"}`, func() float64 {
2019-05-22 21:16:55 +00:00
return float64(m().MetricNameCacheMisses)
})
storageMetrics.NewGauge(`vm_cache_misses_total{type="storage/indexBlocks"}`, func() float64 {
return float64(tm().IndexBlocksCacheMisses)
2019-05-22 21:16:55 +00:00
})
storageMetrics.NewGauge(`vm_cache_misses_total{type="indexdb/dataBlocks"}`, func() float64 {
2019-05-22 21:16:55 +00:00
return float64(idbm().DataBlocksCacheMisses)
})
storageMetrics.NewGauge(`vm_cache_misses_total{type="indexdb/indexBlocks"}`, func() float64 {
2019-05-22 21:16:55 +00:00
return float64(idbm().IndexBlocksCacheMisses)
})
storageMetrics.NewGauge(`vm_cache_misses_total{type="indexdb/tagFiltersToMetricIDs"}`, func() float64 {
return float64(idbm().TagFiltersToMetricIDsCacheMisses)
2019-05-22 21:16:55 +00:00
})
storageMetrics.NewGauge(`vm_cache_misses_total{type="storage/regexps"}`, func() float64 {
2019-05-22 21:16:55 +00:00
return float64(storage.RegexpCacheMisses())
})
storageMetrics.NewGauge(`vm_cache_misses_total{type="storage/regexpPrefixes"}`, func() float64 {
return float64(storage.RegexpPrefixesCacheMisses())
})
2019-05-22 21:16:55 +00:00
storageMetrics.NewGauge(`vm_deleted_metrics_total{type="indexdb"}`, func() float64 {
2019-05-22 21:16:55 +00:00
return float64(idbm().DeletedMetricsCount)
})
storageMetrics.NewGauge(`vm_cache_collisions_total{type="storage/tsid"}`, func() float64 {
2019-05-22 21:16:55 +00:00
return float64(m().TSIDCacheCollisions)
})
storageMetrics.NewGauge(`vm_cache_collisions_total{type="storage/metricName"}`, func() float64 {
2019-05-22 21:16:55 +00:00
return float64(m().MetricNameCacheCollisions)
})
storageMetrics.NewGauge(`vm_next_retention_seconds`, func() float64 {
return float64(m().NextRetentionSeconds)
})
return storageMetrics
2019-05-22 21:16:55 +00:00
}
func jsonResponseError(w http.ResponseWriter, err error) {
logger.Errorf("%s", err)
w.WriteHeader(http.StatusInternalServerError)
fmt.Fprintf(w, `{"status":"error","msg":%q}`, err)
}