VictoriaMetrics/lib/streamaggr/sum_samples.go

79 lines
1.8 KiB
Go
Raw Normal View History

package streamaggr
import (
lib/streamaggr: huge pile of changes - Reduce memory usage by up to 5x when de-duplicating samples across big number of time series. - Reduce memory usage by up to 5x when aggregating across big number of output time series. - Add lib/promutils.LabelsCompressor, which is going to be used by other VictoriaMetrics components for reducing memory usage for marshaled []prompbmarshal.Label. - Add `dedup_interval` option at aggregation config, which allows setting individual deduplication intervals per each aggregation. - Add `keep_metric_names` option at aggregation config, which allows keeping the original metric names in the output samples. - Add `unique_samples` output, which counts the number of unique sample values. - Add `increase_prometheus` and `total_prometheus` outputs, which ignore the first sample per each newly encountered time series. - Use 64-bit hashes instead of marshaled labels as map keys when calculating `count_series` output. This makes obsolete https://github.com/VictoriaMetrics/VictoriaMetrics/pull/5579 - Expose various metrics, which may help debugging stream aggregation: - vm_streamaggr_dedup_state_size_bytes - the size of data structures responsible for deduplication - vm_streamaggr_dedup_state_items_count - the number of items in the deduplication data structures - vm_streamaggr_labels_compressor_size_bytes - the size of labels compressor data structures - vm_streamaggr_labels_compressor_items_count - the number of entries in the labels compressor - vm_streamaggr_flush_duration_seconds - a histogram, which shows the duration of stream aggregation flushes - vm_streamaggr_dedup_flush_duration_seconds - a histogram, which shows the duration of deduplication flushes - vm_streamaggr_flush_timeouts_total - counter for timed out stream aggregation flushes, which took longer than the configured interval - vm_streamaggr_dedup_flush_timeouts_total - counter for timed out deduplication flushes, which took longer than the configured dedup_interval - Actualize docs/stream-aggregation.md The memory usage reduction increases CPU usage during stream aggregation by up to 30%. This commit is based on https://github.com/VictoriaMetrics/VictoriaMetrics/pull/5850 Updates https://github.com/VictoriaMetrics/VictoriaMetrics/issues/5898
2024-03-02 00:42:26 +00:00
"strings"
"sync"
"github.com/VictoriaMetrics/VictoriaMetrics/lib/fasttime"
)
// sumSamplesAggrState calculates output=sum_samples, e.g. the sum over input samples.
type sumSamplesAggrState struct {
m sync.Map
}
type sumSamplesStateValue struct {
mu sync.Mutex
sum float64
deleted bool
}
func newSumSamplesAggrState() *sumSamplesAggrState {
return &sumSamplesAggrState{}
}
lib/streamaggr: huge pile of changes - Reduce memory usage by up to 5x when de-duplicating samples across big number of time series. - Reduce memory usage by up to 5x when aggregating across big number of output time series. - Add lib/promutils.LabelsCompressor, which is going to be used by other VictoriaMetrics components for reducing memory usage for marshaled []prompbmarshal.Label. - Add `dedup_interval` option at aggregation config, which allows setting individual deduplication intervals per each aggregation. - Add `keep_metric_names` option at aggregation config, which allows keeping the original metric names in the output samples. - Add `unique_samples` output, which counts the number of unique sample values. - Add `increase_prometheus` and `total_prometheus` outputs, which ignore the first sample per each newly encountered time series. - Use 64-bit hashes instead of marshaled labels as map keys when calculating `count_series` output. This makes obsolete https://github.com/VictoriaMetrics/VictoriaMetrics/pull/5579 - Expose various metrics, which may help debugging stream aggregation: - vm_streamaggr_dedup_state_size_bytes - the size of data structures responsible for deduplication - vm_streamaggr_dedup_state_items_count - the number of items in the deduplication data structures - vm_streamaggr_labels_compressor_size_bytes - the size of labels compressor data structures - vm_streamaggr_labels_compressor_items_count - the number of entries in the labels compressor - vm_streamaggr_flush_duration_seconds - a histogram, which shows the duration of stream aggregation flushes - vm_streamaggr_dedup_flush_duration_seconds - a histogram, which shows the duration of deduplication flushes - vm_streamaggr_flush_timeouts_total - counter for timed out stream aggregation flushes, which took longer than the configured interval - vm_streamaggr_dedup_flush_timeouts_total - counter for timed out deduplication flushes, which took longer than the configured dedup_interval - Actualize docs/stream-aggregation.md The memory usage reduction increases CPU usage during stream aggregation by up to 30%. This commit is based on https://github.com/VictoriaMetrics/VictoriaMetrics/pull/5850 Updates https://github.com/VictoriaMetrics/VictoriaMetrics/issues/5898
2024-03-02 00:42:26 +00:00
func (as *sumSamplesAggrState) pushSamples(samples []pushSample) {
for i := range samples {
s := &samples[i]
outputKey := getOutputKey(s.key)
again:
v, ok := as.m.Load(outputKey)
if !ok {
// The entry is missing in the map. Try creating it.
v = &sumSamplesStateValue{
sum: s.value,
}
outputKey = strings.Clone(outputKey)
vNew, loaded := as.m.LoadOrStore(outputKey, v)
if !loaded {
// The new entry has been successfully created.
continue
}
// Use the entry created by a concurrent goroutine.
v = vNew
}
lib/streamaggr: huge pile of changes - Reduce memory usage by up to 5x when de-duplicating samples across big number of time series. - Reduce memory usage by up to 5x when aggregating across big number of output time series. - Add lib/promutils.LabelsCompressor, which is going to be used by other VictoriaMetrics components for reducing memory usage for marshaled []prompbmarshal.Label. - Add `dedup_interval` option at aggregation config, which allows setting individual deduplication intervals per each aggregation. - Add `keep_metric_names` option at aggregation config, which allows keeping the original metric names in the output samples. - Add `unique_samples` output, which counts the number of unique sample values. - Add `increase_prometheus` and `total_prometheus` outputs, which ignore the first sample per each newly encountered time series. - Use 64-bit hashes instead of marshaled labels as map keys when calculating `count_series` output. This makes obsolete https://github.com/VictoriaMetrics/VictoriaMetrics/pull/5579 - Expose various metrics, which may help debugging stream aggregation: - vm_streamaggr_dedup_state_size_bytes - the size of data structures responsible for deduplication - vm_streamaggr_dedup_state_items_count - the number of items in the deduplication data structures - vm_streamaggr_labels_compressor_size_bytes - the size of labels compressor data structures - vm_streamaggr_labels_compressor_items_count - the number of entries in the labels compressor - vm_streamaggr_flush_duration_seconds - a histogram, which shows the duration of stream aggregation flushes - vm_streamaggr_dedup_flush_duration_seconds - a histogram, which shows the duration of deduplication flushes - vm_streamaggr_flush_timeouts_total - counter for timed out stream aggregation flushes, which took longer than the configured interval - vm_streamaggr_dedup_flush_timeouts_total - counter for timed out deduplication flushes, which took longer than the configured dedup_interval - Actualize docs/stream-aggregation.md The memory usage reduction increases CPU usage during stream aggregation by up to 30%. This commit is based on https://github.com/VictoriaMetrics/VictoriaMetrics/pull/5850 Updates https://github.com/VictoriaMetrics/VictoriaMetrics/issues/5898
2024-03-02 00:42:26 +00:00
sv := v.(*sumSamplesStateValue)
sv.mu.Lock()
deleted := sv.deleted
if !deleted {
sv.sum += s.value
}
sv.mu.Unlock()
if deleted {
// The entry has been deleted by the concurrent call to appendSeriesForFlush
// Try obtaining and updating the entry again.
goto again
}
}
}
func (as *sumSamplesAggrState) appendSeriesForFlush(ctx *flushCtx) {
currentTimeMsec := int64(fasttime.UnixTimestamp()) * 1000
m := &as.m
m.Range(func(k, v interface{}) bool {
// Atomically delete the entry from the map, so new entry is created for the next flush.
m.Delete(k)
sv := v.(*sumSamplesStateValue)
sv.mu.Lock()
sum := sv.sum
// Mark the entry as deleted, so it won't be updated anymore by concurrent pushSample() calls.
sv.deleted = true
sv.mu.Unlock()
key := k.(string)
ctx.appendSeries(key, "sum_samples", currentTimeMsec, sum)
return true
})
}