This section describes `Model` component of VictoriaMetrics Anomaly Detection (or simply [`vmanomaly`](/vmanomaly.html)) and the guide of how to define a respective section of a config to launch the service.
vmanomaly includes various [built-in models](#built-in-models) and you can integrate your custom model with vmanomaly see [custom model](#custom-model-guide)
VM Anomaly Detection (`vmanomaly` hereinafter) models support 2 groups of parameters:
- **`vmanomaly`-specific** arguments - please refer to *Parameters specific for vmanomaly* and *Default model parameters* subsections for each of the models below.
- Arguments to **inner model** (say, [Facebook's Prophet](https://facebook.github.io/prophet/docs/quick_start.html#python-api)), passed in a `args` argument as key-value pairs, that will be directly given to the model during initialization to allow granular control. Optional.
**Note**: For users who may not be familiar with Python data types such as `list[dict]`, a [dictionary](https://www.w3schools.com/python/python_dictionaries.asp) in Python is a data structure that stores data values in key-value pairs. This structure allows for efficient data retrieval and management.
* [Prophet](#prophet) - the most versatile one for production usage, especially for complex data ([trends](https://victoriametrics.com/blog/victoriametrics-anomaly-detection-handbook-chapter-1/#trend), [change points](https://victoriametrics.com/blog/victoriametrics-anomaly-detection-handbook-chapter-2/#novelties), [multi-seasonality](https://victoriametrics.com/blog/victoriametrics-anomaly-detection-handbook-chapter-1/#seasonality))
* [Z-score](#z-score) - useful for testing and for simpler data ([de-trended](https://victoriametrics.com/blog/victoriametrics-anomaly-detection-handbook-chapter-1/#trend) data without strict [seasonality](https://victoriametrics.com/blog/victoriametrics-anomaly-detection-handbook-chapter-1/#seasonality) and with anomalies of similar magnitude as your "normal" data)
* [Holt-Winters](#holt-winters) - well-suited for **data with moderate complexity**, exhibiting distinct [trends](https://victoriametrics.com/blog/victoriametrics-anomaly-detection-handbook-chapter-1/#trend) and/or [seasonal patterns](https://victoriametrics.com/blog/victoriametrics-anomaly-detection-handbook-chapter-1/#seasonality).
* [MAD (Median Absolute Deviation)](#mad-median-absolute-deviation) - similarly to Z-score, is effective for **identifying outliers in relatively consistent data** (useful for detecting sudden, stark deviations from the median)
* [Rolling Quantile](#rolling-quantile) - best for **data with evolving patterns**, as it adapts to changes over a rolling window.
* [Seasonal Trend Decomposition](#seasonal-trend-decomposition) - similarly to Holt-Winters, is best for **data with pronounced [seasonal](https://victoriametrics.com/blog/victoriametrics-anomaly-detection-handbook-chapter-1/#seasonality) and [trend](https://victoriametrics.com/blog/victoriametrics-anomaly-detection-handbook-chapter-1/#trend) components**
* [ARIMA](#arima) - use when your data shows **clear patterns or autocorrelation (the degree of correlation between values of the same series at different periods)**. However, good understanding of machine learning is required to tune.
* [Isolation forest (Multivariate)](#isolation-forest-multivariate) - useful for **metrics data interaction** (several queries/metrics -> single anomaly score) and **efficient in detecting anomalies in high-dimensional datasets**
* [Custom model](#custom-model) - benefit from your own models and expertise to better support your **unique use case**.
Here we utilize the Facebook Prophet implementation, as detailed in their [library documentation](https://facebook.github.io/prophet/docs/quick_start.html#python-api). All parameters from this library are compatible and can be passed to the model.
*`class` (string) - model class name `"model.prophet.ProphetModel"`
*`seasonalities` (list[dict], optional) - Extra seasonalities to pass to Prophet. See [`add_seasonality()`](https://facebook.github.io/prophet/docs/seasonality,_holiday_effects,_and_regressors.html#modeling-holidays-and-special-events:~:text=modeling%20the%20cycle-,Specifying,-Custom%20Seasonalities) Prophet param.
*`provide_series` (dict, optional) - model resulting metrics. If not specified [standard metrics](#vmanomaly-output) will be provided.
*`class` (string) - model class name `"model.zscore.ZscoreModel"`
*`z_threshold` (float, optional) - [standard score](https://en.wikipedia.org/wiki/Standard_score) for calculation boundaries and anomaly score. Defaults to `2.5`.
Here we use Holt-Winters Exponential Smoothing implementation from `statsmodels` [library](https://www.statsmodels.org/dev/generated/statsmodels.tsa.holtwinters.ExponentialSmoothing.html). All parameters from this library can be passed to the model.
*`frequency` (string) - Must be set equal to sampling_period. Model needs to know expected data-points frequency (e.g. '10m'). If omitted, frequency is guessed during fitting as **the median of intervals between fitting data timestamps**. During inference, if incoming data doesn't have the same frequency, then it will be interpolated. E.g. data comes at 15 seconds resolution, and our resample_freq is '1m'. Then fitting data will be downsampled to '1m' and internal model is trained at '1m' intervals. So, during inference, prediction data would be produced at '1m' intervals, but interpolated to "15s" to match with expected output, as output data must have the same timestamps. As accepted by pandas.Timedelta (e.g. '5m').
* If [parameter](https://www.statsmodels.org/dev/generated/statsmodels.tsa.holtwinters.ExponentialSmoothing.html#statsmodels.tsa.holtwinters.ExponentialSmoothing-parameters) `seasonal` is not specified, default value will be `add`.
* If [parameter](https://www.statsmodels.org/dev/generated/statsmodels.tsa.holtwinters.ExponentialSmoothing.html#statsmodels.tsa.holtwinters.ExponentialSmoothing-parameters) `initialization_method` is not specified, default value will be `estimated`.
The MAD model is a robust method for anomaly detection that is *less sensitive* to outliers in data compared to standard deviation-based models. It considers a point as an anomaly if the absolute deviation from the median is significantly large.
*`class` (string) - model class name `"model.mad.MADModel"`
*`threshold` (float, optional) - The threshold multiplier for the MAD to determine anomalies. Defaults to `2.5`. Higher values will identify fewer points as anomalies.
Here we use Seasonal Decompose implementation from `statsmodels` [library](https://www.statsmodels.org/dev/generated/statsmodels.tsa.seasonal.seasonal_decompose.html). Parameters from this library can be passed to the model. Some parameters are specifically predefined in vmanomaly and can't be changed by user(`model`='additive', `two_sided`=False).
*`provide_series` (list[string], optional) - List of columns to be produced and returned by the model. Defaults to `["anomaly_score", "yhat", "yhat_lower" "yhat_upper", "y"]`. Output can be **only a subset** of a given column list.
*`resample_freq` (string, optional) - Frequency to resample input data into, e.g. data comes at 15 seconds resolution, and resample_freq is '1m'. Then fitting data will be downsampled to '1m' and internal model is trained at '1m' intervals. So, during inference, prediction data would be produced at '1m' intervals, but interpolated to "15s" to match with expected output, as output data must have the same timestamps.
Detects anomalies using binary trees. The algorithm has a linear time complexity and a low memory requirement, which works well with high-volume data. It can be used on both univatiate and multivariate data, but it is more effective in multivariate case.
**Important**: Be aware of [the curse of dimensionality](https://en.wikipedia.org/wiki/Curse_of_dimensionality). Don't use single multivariate model if you expect your queries to return many time series of less datapoints that the number of metrics. In such case it is hard for a model to learn meaningful dependencies from too sparse data hypercube.
Here we use Isolation Forest implementation from `scikit-learn` [library](https://scikit-learn.org/stable/modules/generated/sklearn.ensemble.IsolationForest.html). All parameters from this library can be passed to the model.
*`contamination` (float or string, optional) - The amount of contamination of the data set, i.e. the proportion of outliers in the data set. Used when fitting to define the threshold on the scores of the samples. Default value - "auto". Should be either `"auto"` or be in the range (0.0, 0.5].
- It is designed in such a way that values from 0.0 to 1.0 indicate non-anomalous data.
- A value greater than 1.0 is generally classified as an anomaly, although this threshold can be adjusted in the alerting configuration.
- The decision to set the changepoint at 1 was made to ensure consistency across various models and alerting configurations, such that a score above 1 consistently signifies an anomaly.
-`yhat`: This represents the predicted expected value.
-`yhat_lower`: This indicates the predicted lower boundary.
-`yhat_upper`: This refers to the predicted upper boundary.
-`y`: This is the original value obtained from the query result.
**Important**: Be aware that if `NaN` (Not a Number) or `Inf` (Infinity) values are present in the input data during `infer` model calls, the model will produce `NaN` as the `anomaly_score` for these particular instances.
Each model exposes [several healthchecks metrics](/anomaly-detection/components/monitoring.html#models-behaviour-metrics) to its `health_path` endpoint:
Apart from vmanomaly predefined models, users can create their own custom models for anomaly detection.
Here in this guide, we will
- Make a file containing our custom model definition
- Define VictoriaMetrics Anomaly Detection config file to use our custom model
- Run service
**Note**: The file containing the model should be written in [Python language](https://www.python.org/) (3.11+)
### 1. Custom model
We'll create `custom_model.py` file with `CustomModel` class that will inherit from vmanomaly `Model` base class.
In the `CustomModel` class there should be three required methods - `__init__`, `fit` and `infer`:
*`__init__` method should initiate parameters for the model.
**Note**: if your model relies on configs that have `arg` [key-value pair argument](./models.md#section-overview), do not forget to use Python's `**kwargs` in method's signature and to explicitly call
```python
super().__init__(**kwargs)
```
to initialize the base class each model derives from
*`fit` method should contain the model training process.
*`infer` should return Pandas.DataFrame object with model's inferences.
For the sake of simplicity, the model in this example will return one of two values of `anomaly_score` - 0 or 1 depending on input parameter `percentage`.