* Supports [Prometheus querying API](https://prometheus.io/docs/prometheus/latest/querying/api/), so it can be used as Prometheus drop-in replacement in Grafana.
Additionally, VictoriaMetrics extends PromQL with opt-in [useful features](https://github.com/VictoriaMetrics/VictoriaMetrics/wiki/ExtendedPromQL).
* High performance and good scalability for both [inserts](https://medium.com/@valyala/high-cardinality-tsdb-benchmarks-victoriametrics-vs-timescaledb-vs-influxdb-13e6ee64dd6b)
and [selects](https://medium.com/@valyala/when-size-matters-benchmarking-victoriametrics-vs-timescale-and-influxdb-6035811952d4).
[Outperforms InfluxDB and TimescaleDB by up to 20x](https://medium.com/@valyala/measuring-vertical-scalability-for-time-series-databases-in-google-cloud-92550d78d8ae).
* [Uses 10x less RAM than InfluxDB](https://medium.com/@valyala/insert-benchmarks-with-inch-influxdb-vs-victoriametrics-e31a41ae2893) when working with millions of unique time series (aka high cardinality).
* High data compression, so [up to 70x more data points](https://medium.com/@valyala/when-size-matters-benchmarking-victoriametrics-vs-timescale-and-influxdb-6035811952d4)
may be crammed into a limited storage comparing to TimescaleDB.
* Optimized for storage with high-latency IO and low iops (HDD and network storage in AWS, Google Cloud, Microsoft Azure, etc). See [graphs from these benchmarks](https://medium.com/@valyala/high-cardinality-tsdb-benchmarks-victoriametrics-vs-timescaledb-vs-influxdb-13e6ee64dd6b).
* A single-node VictoriaMetrics may substitute moderately sized clusters built with competing solutions such as Thanos, Uber M3, Cortex, InfluxDB or TimescaleDB.
See [vertical scalability benchmarks](https://medium.com/@valyala/measuring-vertical-scalability-for-time-series-databases-in-google-cloud-92550d78d8ae)
and [comparing Thanos to VictoriaMetrics cluster](https://medium.com/@valyala/comparing-thanos-to-victoriametrics-cluster-b193bea1683).
* VictoriaMetrics consists of a single executable without external dependencies.
* All the configuration is done via explicit command-line flags with reasonable defaults.
* All the data is stored in a single directory pointed by `-storageDataPath` flag.
* Easy backups from [instant snapshots](https://medium.com/@valyala/how-victoriametrics-makes-instant-snapshots-for-multi-terabyte-time-series-data-e1f3fb0e0282).
* Storage is protected from corruption on unclean shutdown (i.e. hardware reset or `kill -9`) thanks to [the storage architecture](https://medium.com/@valyala/how-victoriametrics-makes-instant-snapshots-for-multi-terabyte-time-series-data-e1f3fb0e0282).
* Supports metrics' ingestion and backfilling via the following protocols:
VictoriaMetrics is able to create [instant snapshots](https://medium.com/@valyala/how-victoriametrics-makes-instant-snapshots-for-multi-terabyte-time-series-data-e1f3fb0e0282)
for all the data stored under `-storageDataPath` directory.
Send a request to `http://<victoriametrics-addr>:8428/api/v1/admin/tsdb/delete_series?match[]=<timeseries_selector_for_delete>`,
where `<timeseries_selector_for_delete>` may contain any [time series selector](https://prometheus.io/docs/prometheus/latest/querying/basics/#time-series-selectors)
for metrics to delete. After that all the time series matching the given selector are deleted. Storage space for
the deleted time series isn't freed instantly - it is freed during subsequent merges of data files.
### How to export time series?
Send a request to `http://<victoriametrics-addr>:8428/api/v1/export?match[]=<timeseries_selector_for_export>`,
where `<timeseries_selector_for_export>` may contain any [time series selector](https://prometheus.io/docs/prometheus/latest/querying/basics/#time-series-selectors)
for metrics to export. The response would contain all the data for the selected time series in [JSON streaming format](https://en.wikipedia.org/wiki/JSON_streaming#Line-delimited_JSON).
Each JSON line would contain data for a single time series. An example output:
at `http://<victoriametrics-addr>:8428/federate?match[]=<timeseries_selector_for_federation>`.
Optional `start` and `end` args may be added to the request in order to scrape the last point for each selected time series on the `[start ... end]` interval.
`start` and `end` may contain either unix timestamp in seconds or [RFC3339](https://www.ietf.org/rfc/rfc3339.txt) values. By default the last point
on the interval `[now - max_lookback ... now]` is scraped for each time series. Default value for `max_lookback` is `5m` (5 minutes), but can be overridden.
For instance, `/federate?match[]=up&max_lookback=1h` would return last points on the `[now - 1h ... now]` interval. This may be useful for time series federation
with scrape intervals exceeding `5m`.
### Capacity planning
Rough estimation of the required resources:
* RAM size: less than 1KB per active time series. So, ~1GB of RAM is required for 1M active time series.
Time series is considered active if new data points have been added to it recently or if it has been recently queried.
There is no downsampling support at the moment, but:
- VictoriaMetrics is optimized for querying big amounts of raw data. See benchmark results for heavy queries
in [this article](https://medium.com/@valyala/measuring-vertical-scalability-for-time-series-databases-in-google-cloud-92550d78d8ae).
- VictoriaMetrics has good compression for on-disk data. See [this article](https://medium.com/@valyala/victoriametrics-achieving-better-compression-for-time-series-data-than-gorilla-317bc1f95932)
for details.
These properties reduce the need in downsampling. We plan implementing downsampling in the future.
See [this issue](https://github.com/VictoriaMetrics/VictoriaMetrics/issues/36) for details.
Single-node VictoriaMetrics doesn't support multi-tenancy. Use [cluster version](https://github.com/VictoriaMetrics/VictoriaMetrics/tree/cluster) instead.
such as Thanos, Uber M3, InfluxDB or TimescaleDB. See [vertical scalability benchmarks](https://medium.com/@valyala/measuring-vertical-scalability-for-time-series-databases-in-google-cloud-92550d78d8ae).
So try single-node VictoriaMetrics at first and then [switch to cluster version](https://github.com/VictoriaMetrics/VictoriaMetrics/tree/cluster) if you still need
horizontally scalable long-term remote storage for really large Prometheus deployments.
[Contact us](mailto:info@victoriametrics.com) for paid support.
### Security
Do not forget protecting sensitive endpoints in VictoriaMetrics when exposing it to untrusted networks such as internet.
Consider setting the following command-line flags:
*`-tls`, `-tlsCertFile` and `-tlsKeyFile` for switching from HTTP to HTTPS.
*`-httpAuth.username` and `-httpAuth.password` for protecting all the HTTP endpoints
with [HTTP Basic Authentication](https://en.wikipedia.org/wiki/Basic_access_authentication).
*`-deleteAuthKey` for protecting `/api/v1/admin/tsdb/delete_series` endpoint. See [how to delete time series](#how-to-delete-time-series).
*`-snapshotAuthKey` for protecting `/snapshot*` endpoints. See [how to work with snapshots](#how-to-work-with-snapshots).
Explicitly set internal network interface for TCP and UDP ports for data ingestion with Graphite and OpenTSDB formats.
For example, substitute `-graphiteListenAddr=:2003` with `-graphiteListenAddr=<internal_iface_ip>:2003`.
### Tuning
* There is no need in VictoriaMetrics tuning, since it uses reasonable defaults for command-line flags,
which are automatically adjusted for the available CPU and RAM resources.
* There is no need in Operating System tuning, since VictoriaMetrics is optimized for default OS settings.
The only option is increasing the limit on [the number open files in the OS](https://medium.com/@muhammadtriwibowo/set-permanently-ulimit-n-open-files-in-ubuntu-4d61064429a),
so Prometheus instances could establish more connections to VictoriaMetrics.
### Monitoring
VictoriaMetrics exports internal metrics in Prometheus format on the `/metrics` page.
Add this page to Prometheus' scrape config in order to collect VictoriaMetrics metrics.
There is [an official Grafana dashboard for single-node VictoriaMetrics](https://grafana.com/dashboards/10229).
*`vm_cache_entries{type="storage/hour_metric_ids"}` - the number of time series with new data points during the last hour
aka active time series.
*`vm_rows{type="indexdb"}` - the number of rows in inverted index. Each label in each unique time series adds a single
row into the inverted index. An approximate number of time series in the database may be calculated as
`vm_rows{type="indexdb"} / (avg_labels_per_series + 1)`, where `avg_labels_per_series` is the average number of labels
per each time series.
* Sum of `vm_rows{type="storage/big"}` and `vm_rows{type="storage/small"}` - total number of `(timestamp, value)` data points
in the database.
* Sum of all the `vm_cache_size_bytes` metrics - the total size of all the caches in the database.
*`vm_allowed_memory_bytes` - the maximum allowed size for caches in the database. It is calculated as `system_memory * <-memory.allowedPercent> / 100`,
where `system_memory` is the amount of system memory and `-memory.allowedPercent` is the corresponding flag value.
*`vm_rows_inserted_total` - the total number of inserted rows since VictoriaMetrics start.