2021-09-01 09:51:42 +00:00
|
|
|
// Copyright 2017, The Go Authors. All rights reserved.
|
|
|
|
// Use of this source code is governed by a BSD-style
|
|
|
|
// license that can be found in the LICENSE file.
|
|
|
|
|
|
|
|
package cmp
|
|
|
|
|
|
|
|
import (
|
|
|
|
"fmt"
|
|
|
|
"reflect"
|
|
|
|
"strings"
|
|
|
|
"unicode"
|
|
|
|
"unicode/utf8"
|
|
|
|
|
|
|
|
"github.com/google/go-cmp/cmp/internal/value"
|
|
|
|
)
|
|
|
|
|
|
|
|
// Path is a list of PathSteps describing the sequence of operations to get
|
|
|
|
// from some root type to the current position in the value tree.
|
|
|
|
// The first Path element is always an operation-less PathStep that exists
|
|
|
|
// simply to identify the initial type.
|
|
|
|
//
|
|
|
|
// When traversing structs with embedded structs, the embedded struct will
|
|
|
|
// always be accessed as a field before traversing the fields of the
|
|
|
|
// embedded struct themselves. That is, an exported field from the
|
|
|
|
// embedded struct will never be accessed directly from the parent struct.
|
|
|
|
type Path []PathStep
|
|
|
|
|
|
|
|
// PathStep is a union-type for specific operations to traverse
|
|
|
|
// a value's tree structure. Users of this package never need to implement
|
|
|
|
// these types as values of this type will be returned by this package.
|
|
|
|
//
|
|
|
|
// Implementations of this interface are
|
|
|
|
// StructField, SliceIndex, MapIndex, Indirect, TypeAssertion, and Transform.
|
|
|
|
type PathStep interface {
|
|
|
|
String() string
|
|
|
|
|
|
|
|
// Type is the resulting type after performing the path step.
|
|
|
|
Type() reflect.Type
|
|
|
|
|
|
|
|
// Values is the resulting values after performing the path step.
|
|
|
|
// The type of each valid value is guaranteed to be identical to Type.
|
|
|
|
//
|
|
|
|
// In some cases, one or both may be invalid or have restrictions:
|
2022-09-08 15:51:49 +00:00
|
|
|
// - For StructField, both are not interface-able if the current field
|
|
|
|
// is unexported and the struct type is not explicitly permitted by
|
|
|
|
// an Exporter to traverse unexported fields.
|
|
|
|
// - For SliceIndex, one may be invalid if an element is missing from
|
|
|
|
// either the x or y slice.
|
|
|
|
// - For MapIndex, one may be invalid if an entry is missing from
|
|
|
|
// either the x or y map.
|
2021-09-01 09:51:42 +00:00
|
|
|
//
|
|
|
|
// The provided values must not be mutated.
|
|
|
|
Values() (vx, vy reflect.Value)
|
|
|
|
}
|
|
|
|
|
|
|
|
var (
|
|
|
|
_ PathStep = StructField{}
|
|
|
|
_ PathStep = SliceIndex{}
|
|
|
|
_ PathStep = MapIndex{}
|
|
|
|
_ PathStep = Indirect{}
|
|
|
|
_ PathStep = TypeAssertion{}
|
|
|
|
_ PathStep = Transform{}
|
|
|
|
)
|
|
|
|
|
|
|
|
func (pa *Path) push(s PathStep) {
|
|
|
|
*pa = append(*pa, s)
|
|
|
|
}
|
|
|
|
|
|
|
|
func (pa *Path) pop() {
|
|
|
|
*pa = (*pa)[:len(*pa)-1]
|
|
|
|
}
|
|
|
|
|
|
|
|
// Last returns the last PathStep in the Path.
|
|
|
|
// If the path is empty, this returns a non-nil PathStep that reports a nil Type.
|
|
|
|
func (pa Path) Last() PathStep {
|
|
|
|
return pa.Index(-1)
|
|
|
|
}
|
|
|
|
|
|
|
|
// Index returns the ith step in the Path and supports negative indexing.
|
|
|
|
// A negative index starts counting from the tail of the Path such that -1
|
|
|
|
// refers to the last step, -2 refers to the second-to-last step, and so on.
|
|
|
|
// If index is invalid, this returns a non-nil PathStep that reports a nil Type.
|
|
|
|
func (pa Path) Index(i int) PathStep {
|
|
|
|
if i < 0 {
|
|
|
|
i = len(pa) + i
|
|
|
|
}
|
|
|
|
if i < 0 || i >= len(pa) {
|
|
|
|
return pathStep{}
|
|
|
|
}
|
|
|
|
return pa[i]
|
|
|
|
}
|
|
|
|
|
|
|
|
// String returns the simplified path to a node.
|
|
|
|
// The simplified path only contains struct field accesses.
|
|
|
|
//
|
|
|
|
// For example:
|
2022-09-08 15:51:49 +00:00
|
|
|
//
|
2021-09-01 09:51:42 +00:00
|
|
|
// MyMap.MySlices.MyField
|
|
|
|
func (pa Path) String() string {
|
|
|
|
var ss []string
|
|
|
|
for _, s := range pa {
|
|
|
|
if _, ok := s.(StructField); ok {
|
|
|
|
ss = append(ss, s.String())
|
|
|
|
}
|
|
|
|
}
|
|
|
|
return strings.TrimPrefix(strings.Join(ss, ""), ".")
|
|
|
|
}
|
|
|
|
|
|
|
|
// GoString returns the path to a specific node using Go syntax.
|
|
|
|
//
|
|
|
|
// For example:
|
2022-09-08 15:51:49 +00:00
|
|
|
//
|
2021-09-01 09:51:42 +00:00
|
|
|
// (*root.MyMap["key"].(*mypkg.MyStruct).MySlices)[2][3].MyField
|
|
|
|
func (pa Path) GoString() string {
|
|
|
|
var ssPre, ssPost []string
|
|
|
|
var numIndirect int
|
|
|
|
for i, s := range pa {
|
|
|
|
var nextStep PathStep
|
|
|
|
if i+1 < len(pa) {
|
|
|
|
nextStep = pa[i+1]
|
|
|
|
}
|
|
|
|
switch s := s.(type) {
|
|
|
|
case Indirect:
|
|
|
|
numIndirect++
|
|
|
|
pPre, pPost := "(", ")"
|
|
|
|
switch nextStep.(type) {
|
|
|
|
case Indirect:
|
|
|
|
continue // Next step is indirection, so let them batch up
|
|
|
|
case StructField:
|
|
|
|
numIndirect-- // Automatic indirection on struct fields
|
|
|
|
case nil:
|
|
|
|
pPre, pPost = "", "" // Last step; no need for parenthesis
|
|
|
|
}
|
|
|
|
if numIndirect > 0 {
|
|
|
|
ssPre = append(ssPre, pPre+strings.Repeat("*", numIndirect))
|
|
|
|
ssPost = append(ssPost, pPost)
|
|
|
|
}
|
|
|
|
numIndirect = 0
|
|
|
|
continue
|
|
|
|
case Transform:
|
|
|
|
ssPre = append(ssPre, s.trans.name+"(")
|
|
|
|
ssPost = append(ssPost, ")")
|
|
|
|
continue
|
|
|
|
}
|
|
|
|
ssPost = append(ssPost, s.String())
|
|
|
|
}
|
|
|
|
for i, j := 0, len(ssPre)-1; i < j; i, j = i+1, j-1 {
|
|
|
|
ssPre[i], ssPre[j] = ssPre[j], ssPre[i]
|
|
|
|
}
|
|
|
|
return strings.Join(ssPre, "") + strings.Join(ssPost, "")
|
|
|
|
}
|
|
|
|
|
|
|
|
type pathStep struct {
|
|
|
|
typ reflect.Type
|
|
|
|
vx, vy reflect.Value
|
|
|
|
}
|
|
|
|
|
|
|
|
func (ps pathStep) Type() reflect.Type { return ps.typ }
|
|
|
|
func (ps pathStep) Values() (vx, vy reflect.Value) { return ps.vx, ps.vy }
|
|
|
|
func (ps pathStep) String() string {
|
|
|
|
if ps.typ == nil {
|
|
|
|
return "<nil>"
|
|
|
|
}
|
2022-09-08 15:51:49 +00:00
|
|
|
s := value.TypeString(ps.typ, false)
|
2021-09-01 09:51:42 +00:00
|
|
|
if s == "" || strings.ContainsAny(s, "{}\n") {
|
|
|
|
return "root" // Type too simple or complex to print
|
|
|
|
}
|
|
|
|
return fmt.Sprintf("{%s}", s)
|
|
|
|
}
|
|
|
|
|
|
|
|
// StructField represents a struct field access on a field called Name.
|
|
|
|
type StructField struct{ *structField }
|
|
|
|
type structField struct {
|
|
|
|
pathStep
|
|
|
|
name string
|
|
|
|
idx int
|
|
|
|
|
|
|
|
// These fields are used for forcibly accessing an unexported field.
|
|
|
|
// pvx, pvy, and field are only valid if unexported is true.
|
|
|
|
unexported bool
|
|
|
|
mayForce bool // Forcibly allow visibility
|
|
|
|
paddr bool // Was parent addressable?
|
2022-01-23 11:13:30 +00:00
|
|
|
pvx, pvy reflect.Value // Parent values (always addressable)
|
2021-09-01 09:51:42 +00:00
|
|
|
field reflect.StructField // Field information
|
|
|
|
}
|
|
|
|
|
|
|
|
func (sf StructField) Type() reflect.Type { return sf.typ }
|
|
|
|
func (sf StructField) Values() (vx, vy reflect.Value) {
|
|
|
|
if !sf.unexported {
|
|
|
|
return sf.vx, sf.vy // CanInterface reports true
|
|
|
|
}
|
|
|
|
|
|
|
|
// Forcibly obtain read-write access to an unexported struct field.
|
|
|
|
if sf.mayForce {
|
|
|
|
vx = retrieveUnexportedField(sf.pvx, sf.field, sf.paddr)
|
|
|
|
vy = retrieveUnexportedField(sf.pvy, sf.field, sf.paddr)
|
|
|
|
return vx, vy // CanInterface reports true
|
|
|
|
}
|
|
|
|
return sf.vx, sf.vy // CanInterface reports false
|
|
|
|
}
|
|
|
|
func (sf StructField) String() string { return fmt.Sprintf(".%s", sf.name) }
|
|
|
|
|
|
|
|
// Name is the field name.
|
|
|
|
func (sf StructField) Name() string { return sf.name }
|
|
|
|
|
|
|
|
// Index is the index of the field in the parent struct type.
|
|
|
|
// See reflect.Type.Field.
|
|
|
|
func (sf StructField) Index() int { return sf.idx }
|
|
|
|
|
|
|
|
// SliceIndex is an index operation on a slice or array at some index Key.
|
|
|
|
type SliceIndex struct{ *sliceIndex }
|
|
|
|
type sliceIndex struct {
|
|
|
|
pathStep
|
|
|
|
xkey, ykey int
|
|
|
|
isSlice bool // False for reflect.Array
|
|
|
|
}
|
|
|
|
|
|
|
|
func (si SliceIndex) Type() reflect.Type { return si.typ }
|
|
|
|
func (si SliceIndex) Values() (vx, vy reflect.Value) { return si.vx, si.vy }
|
|
|
|
func (si SliceIndex) String() string {
|
|
|
|
switch {
|
|
|
|
case si.xkey == si.ykey:
|
|
|
|
return fmt.Sprintf("[%d]", si.xkey)
|
|
|
|
case si.ykey == -1:
|
|
|
|
// [5->?] means "I don't know where X[5] went"
|
|
|
|
return fmt.Sprintf("[%d->?]", si.xkey)
|
|
|
|
case si.xkey == -1:
|
|
|
|
// [?->3] means "I don't know where Y[3] came from"
|
|
|
|
return fmt.Sprintf("[?->%d]", si.ykey)
|
|
|
|
default:
|
|
|
|
// [5->3] means "X[5] moved to Y[3]"
|
|
|
|
return fmt.Sprintf("[%d->%d]", si.xkey, si.ykey)
|
|
|
|
}
|
|
|
|
}
|
|
|
|
|
|
|
|
// Key is the index key; it may return -1 if in a split state
|
|
|
|
func (si SliceIndex) Key() int {
|
|
|
|
if si.xkey != si.ykey {
|
|
|
|
return -1
|
|
|
|
}
|
|
|
|
return si.xkey
|
|
|
|
}
|
|
|
|
|
|
|
|
// SplitKeys are the indexes for indexing into slices in the
|
|
|
|
// x and y values, respectively. These indexes may differ due to the
|
|
|
|
// insertion or removal of an element in one of the slices, causing
|
|
|
|
// all of the indexes to be shifted. If an index is -1, then that
|
|
|
|
// indicates that the element does not exist in the associated slice.
|
|
|
|
//
|
|
|
|
// Key is guaranteed to return -1 if and only if the indexes returned
|
|
|
|
// by SplitKeys are not the same. SplitKeys will never return -1 for
|
|
|
|
// both indexes.
|
|
|
|
func (si SliceIndex) SplitKeys() (ix, iy int) { return si.xkey, si.ykey }
|
|
|
|
|
|
|
|
// MapIndex is an index operation on a map at some index Key.
|
|
|
|
type MapIndex struct{ *mapIndex }
|
|
|
|
type mapIndex struct {
|
|
|
|
pathStep
|
|
|
|
key reflect.Value
|
|
|
|
}
|
|
|
|
|
|
|
|
func (mi MapIndex) Type() reflect.Type { return mi.typ }
|
|
|
|
func (mi MapIndex) Values() (vx, vy reflect.Value) { return mi.vx, mi.vy }
|
|
|
|
func (mi MapIndex) String() string { return fmt.Sprintf("[%#v]", mi.key) }
|
|
|
|
|
|
|
|
// Key is the value of the map key.
|
|
|
|
func (mi MapIndex) Key() reflect.Value { return mi.key }
|
|
|
|
|
|
|
|
// Indirect represents pointer indirection on the parent type.
|
|
|
|
type Indirect struct{ *indirect }
|
|
|
|
type indirect struct {
|
|
|
|
pathStep
|
|
|
|
}
|
|
|
|
|
|
|
|
func (in Indirect) Type() reflect.Type { return in.typ }
|
|
|
|
func (in Indirect) Values() (vx, vy reflect.Value) { return in.vx, in.vy }
|
|
|
|
func (in Indirect) String() string { return "*" }
|
|
|
|
|
|
|
|
// TypeAssertion represents a type assertion on an interface.
|
|
|
|
type TypeAssertion struct{ *typeAssertion }
|
|
|
|
type typeAssertion struct {
|
|
|
|
pathStep
|
|
|
|
}
|
|
|
|
|
|
|
|
func (ta TypeAssertion) Type() reflect.Type { return ta.typ }
|
|
|
|
func (ta TypeAssertion) Values() (vx, vy reflect.Value) { return ta.vx, ta.vy }
|
2022-09-08 15:51:49 +00:00
|
|
|
func (ta TypeAssertion) String() string { return fmt.Sprintf(".(%v)", value.TypeString(ta.typ, false)) }
|
2021-09-01 09:51:42 +00:00
|
|
|
|
|
|
|
// Transform is a transformation from the parent type to the current type.
|
|
|
|
type Transform struct{ *transform }
|
|
|
|
type transform struct {
|
|
|
|
pathStep
|
|
|
|
trans *transformer
|
|
|
|
}
|
|
|
|
|
|
|
|
func (tf Transform) Type() reflect.Type { return tf.typ }
|
|
|
|
func (tf Transform) Values() (vx, vy reflect.Value) { return tf.vx, tf.vy }
|
|
|
|
func (tf Transform) String() string { return fmt.Sprintf("%s()", tf.trans.name) }
|
|
|
|
|
|
|
|
// Name is the name of the Transformer.
|
|
|
|
func (tf Transform) Name() string { return tf.trans.name }
|
|
|
|
|
|
|
|
// Func is the function pointer to the transformer function.
|
|
|
|
func (tf Transform) Func() reflect.Value { return tf.trans.fnc }
|
|
|
|
|
|
|
|
// Option returns the originally constructed Transformer option.
|
|
|
|
// The == operator can be used to detect the exact option used.
|
|
|
|
func (tf Transform) Option() Option { return tf.trans }
|
|
|
|
|
|
|
|
// pointerPath represents a dual-stack of pointers encountered when
|
|
|
|
// recursively traversing the x and y values. This data structure supports
|
|
|
|
// detection of cycles and determining whether the cycles are equal.
|
|
|
|
// In Go, cycles can occur via pointers, slices, and maps.
|
|
|
|
//
|
|
|
|
// The pointerPath uses a map to represent a stack; where descension into a
|
|
|
|
// pointer pushes the address onto the stack, and ascension from a pointer
|
|
|
|
// pops the address from the stack. Thus, when traversing into a pointer from
|
|
|
|
// reflect.Ptr, reflect.Slice element, or reflect.Map, we can detect cycles
|
|
|
|
// by checking whether the pointer has already been visited. The cycle detection
|
|
|
|
// uses a separate stack for the x and y values.
|
|
|
|
//
|
|
|
|
// If a cycle is detected we need to determine whether the two pointers
|
|
|
|
// should be considered equal. The definition of equality chosen by Equal
|
|
|
|
// requires two graphs to have the same structure. To determine this, both the
|
|
|
|
// x and y values must have a cycle where the previous pointers were also
|
|
|
|
// encountered together as a pair.
|
|
|
|
//
|
|
|
|
// Semantically, this is equivalent to augmenting Indirect, SliceIndex, and
|
|
|
|
// MapIndex with pointer information for the x and y values.
|
|
|
|
// Suppose px and py are two pointers to compare, we then search the
|
|
|
|
// Path for whether px was ever encountered in the Path history of x, and
|
|
|
|
// similarly so with py. If either side has a cycle, the comparison is only
|
|
|
|
// equal if both px and py have a cycle resulting from the same PathStep.
|
|
|
|
//
|
|
|
|
// Using a map as a stack is more performant as we can perform cycle detection
|
|
|
|
// in O(1) instead of O(N) where N is len(Path).
|
|
|
|
type pointerPath struct {
|
|
|
|
// mx is keyed by x pointers, where the value is the associated y pointer.
|
|
|
|
mx map[value.Pointer]value.Pointer
|
|
|
|
// my is keyed by y pointers, where the value is the associated x pointer.
|
|
|
|
my map[value.Pointer]value.Pointer
|
|
|
|
}
|
|
|
|
|
|
|
|
func (p *pointerPath) Init() {
|
|
|
|
p.mx = make(map[value.Pointer]value.Pointer)
|
|
|
|
p.my = make(map[value.Pointer]value.Pointer)
|
|
|
|
}
|
|
|
|
|
|
|
|
// Push indicates intent to descend into pointers vx and vy where
|
|
|
|
// visited reports whether either has been seen before. If visited before,
|
|
|
|
// equal reports whether both pointers were encountered together.
|
|
|
|
// Pop must be called if and only if the pointers were never visited.
|
|
|
|
//
|
|
|
|
// The pointers vx and vy must be a reflect.Ptr, reflect.Slice, or reflect.Map
|
|
|
|
// and be non-nil.
|
|
|
|
func (p pointerPath) Push(vx, vy reflect.Value) (equal, visited bool) {
|
|
|
|
px := value.PointerOf(vx)
|
|
|
|
py := value.PointerOf(vy)
|
|
|
|
_, ok1 := p.mx[px]
|
|
|
|
_, ok2 := p.my[py]
|
|
|
|
if ok1 || ok2 {
|
|
|
|
equal = p.mx[px] == py && p.my[py] == px // Pointers paired together
|
|
|
|
return equal, true
|
|
|
|
}
|
|
|
|
p.mx[px] = py
|
|
|
|
p.my[py] = px
|
|
|
|
return false, false
|
|
|
|
}
|
|
|
|
|
|
|
|
// Pop ascends from pointers vx and vy.
|
|
|
|
func (p pointerPath) Pop(vx, vy reflect.Value) {
|
|
|
|
delete(p.mx, value.PointerOf(vx))
|
|
|
|
delete(p.my, value.PointerOf(vy))
|
|
|
|
}
|
|
|
|
|
|
|
|
// isExported reports whether the identifier is exported.
|
|
|
|
func isExported(id string) bool {
|
|
|
|
r, _ := utf8.DecodeRuneInString(id)
|
|
|
|
return unicode.IsUpper(r)
|
|
|
|
}
|