VictoriaMetrics/app/vmctl/vm/timeseries.go

93 lines
2.2 KiB
Go
Raw Normal View History

package vm
import (
"fmt"
"io"
)
// TimeSeries represents a time series.
type TimeSeries struct {
Name string
LabelPairs []LabelPair
Timestamps []int64
Values []float64
}
// LabelPair represents a label
type LabelPair struct {
Name string
Value string
}
// String returns user-readable ts.
func (ts TimeSeries) String() string {
s := ts.Name
if len(ts.LabelPairs) < 1 {
return s
}
var labels string
for i, lp := range ts.LabelPairs {
labels += fmt.Sprintf("%s=%q", lp.Name, lp.Value)
if i < len(ts.LabelPairs)-1 {
labels += ","
}
}
return fmt.Sprintf("%s{%s}", s, labels)
}
// cWriter used to avoid error checking
// while doing Write calls.
// cWriter caches the first error if any
// and discards all sequential write calls
type cWriter struct {
w io.Writer
n int
err error
}
func (cw *cWriter) printf(format string, args ...any) {
if cw.err != nil {
return
}
n, err := fmt.Fprintf(cw.w, format, args...)
cw.n += n
cw.err = err
}
// "{"metric":{"__name__":"cpu_usage_guest","arch":"x64","hostname":"host_19",},"timestamps":[1567296000000,1567296010000],"values":[1567296000000,66]}
func (ts *TimeSeries) write(w io.Writer) (int, error) {
timestamps := ts.Timestamps
values := ts.Values
cw := &cWriter{w: w}
for len(timestamps) > 0 {
// Split long lines with more than 10K samples into multiple JSON lines.
// This should limit memory usage at VictoriaMetrics during data ingestion,
// since it allocates memory for the whole JSON line and processes it in one go.
batchSize := 10000
if batchSize > len(timestamps) {
batchSize = len(timestamps)
}
timestampsBatch := timestamps[:batchSize]
valuesBatch := values[:batchSize]
timestamps = timestamps[batchSize:]
values = values[batchSize:]
cw.printf(`{"metric":{"__name__":%q`, ts.Name)
for _, lp := range ts.LabelPairs {
cw.printf(",%q:%q", lp.Name, lp.Value)
}
pointsCount := len(timestampsBatch)
cw.printf(`},"timestamps":[`)
for i := 0; i < pointsCount-1; i++ {
cw.printf(`%d,`, timestampsBatch[i])
}
cw.printf(`%d],"values":[`, timestampsBatch[pointsCount-1])
for i := 0; i < pointsCount-1; i++ {
cw.printf(`%v,`, valuesBatch[i])
}
cw.printf("%v]}\n", valuesBatch[pointsCount-1])
}
return cw.n, cw.err
}