VictoriaMetrics/vendor/github.com/grafana/regexp/regexp.go

1286 lines
38 KiB
Go
Raw Normal View History

// Copyright 2009 The Go Authors. All rights reserved.
// Use of this source code is governed by a BSD-style
// license that can be found in the LICENSE file.
// Package regexp implements regular expression search.
//
// The syntax of the regular expressions accepted is the same
// general syntax used by Perl, Python, and other languages.
// More precisely, it is the syntax accepted by RE2 and described at
// https://golang.org/s/re2syntax, except for \C.
// For an overview of the syntax, run
//
// go doc regexp/syntax
//
// The regexp implementation provided by this package is
// guaranteed to run in time linear in the size of the input.
// (This is a property not guaranteed by most open source
// implementations of regular expressions.) For more information
// about this property, see
//
// https://swtch.com/~rsc/regexp/regexp1.html
//
// or any book about automata theory.
//
// All characters are UTF-8-encoded code points.
// Following utf8.DecodeRune, each byte of an invalid UTF-8 sequence
// is treated as if it encoded utf8.RuneError (U+FFFD).
//
// There are 16 methods of Regexp that match a regular expression and identify
// the matched text. Their names are matched by this regular expression:
//
// Find(All)?(String)?(Submatch)?(Index)?
//
// If 'All' is present, the routine matches successive non-overlapping
// matches of the entire expression. Empty matches abutting a preceding
// match are ignored. The return value is a slice containing the successive
// return values of the corresponding non-'All' routine. These routines take
// an extra integer argument, n. If n >= 0, the function returns at most n
// matches/submatches; otherwise, it returns all of them.
//
// If 'String' is present, the argument is a string; otherwise it is a slice
// of bytes; return values are adjusted as appropriate.
//
// If 'Submatch' is present, the return value is a slice identifying the
// successive submatches of the expression. Submatches are matches of
// parenthesized subexpressions (also known as capturing groups) within the
// regular expression, numbered from left to right in order of opening
// parenthesis. Submatch 0 is the match of the entire expression, submatch 1 is
// the match of the first parenthesized subexpression, and so on.
//
// If 'Index' is present, matches and submatches are identified by byte index
// pairs within the input string: result[2*n:2*n+2] identifies the indexes of
// the nth submatch. The pair for n==0 identifies the match of the entire
// expression. If 'Index' is not present, the match is identified by the text
// of the match/submatch. If an index is negative or text is nil, it means that
// subexpression did not match any string in the input. For 'String' versions
// an empty string means either no match or an empty match.
//
// There is also a subset of the methods that can be applied to text read
// from a RuneReader:
//
// MatchReader, FindReaderIndex, FindReaderSubmatchIndex
//
// This set may grow. Note that regular expression matches may need to
// examine text beyond the text returned by a match, so the methods that
// match text from a RuneReader may read arbitrarily far into the input
// before returning.
//
// (There are a few other methods that do not match this pattern.)
package regexp
import (
"bytes"
"io"
"regexp/syntax"
"strconv"
"strings"
"sync"
"unicode"
"unicode/utf8"
)
// Regexp is the representation of a compiled regular expression.
// A Regexp is safe for concurrent use by multiple goroutines,
// except for configuration methods, such as Longest.
type Regexp struct {
expr string // as passed to Compile
prog *syntax.Prog // compiled program
onepass *onePassProg // onepass program or nil
numSubexp int
maxBitStateLen int
subexpNames []string
prefix string // required prefix in unanchored matches
prefixBytes []byte // prefix, as a []byte
prefixRune rune // first rune in prefix
prefixEnd uint32 // pc for last rune in prefix
mpool int // pool for machines
matchcap int // size of recorded match lengths
prefixComplete bool // prefix is the entire regexp
cond syntax.EmptyOp // empty-width conditions required at start of match
minInputLen int // minimum length of the input in bytes
// This field can be modified by the Longest method,
// but it is otherwise read-only.
longest bool // whether regexp prefers leftmost-longest match
}
// String returns the source text used to compile the regular expression.
func (re *Regexp) String() string {
return re.expr
}
// Copy returns a new Regexp object copied from re.
// Calling Longest on one copy does not affect another.
//
// Deprecated: In earlier releases, when using a Regexp in multiple goroutines,
// giving each goroutine its own copy helped to avoid lock contention.
// As of Go 1.12, using Copy is no longer necessary to avoid lock contention.
// Copy may still be appropriate if the reason for its use is to make
// two copies with different Longest settings.
func (re *Regexp) Copy() *Regexp {
re2 := *re
return &re2
}
// Compile parses a regular expression and returns, if successful,
// a Regexp object that can be used to match against text.
//
// When matching against text, the regexp returns a match that
// begins as early as possible in the input (leftmost), and among those
// it chooses the one that a backtracking search would have found first.
// This so-called leftmost-first matching is the same semantics
// that Perl, Python, and other implementations use, although this
// package implements it without the expense of backtracking.
// For POSIX leftmost-longest matching, see CompilePOSIX.
func Compile(expr string) (*Regexp, error) {
return compile(expr, syntax.Perl, false)
}
// CompilePOSIX is like Compile but restricts the regular expression
// to POSIX ERE (egrep) syntax and changes the match semantics to
// leftmost-longest.
//
// That is, when matching against text, the regexp returns a match that
// begins as early as possible in the input (leftmost), and among those
// it chooses a match that is as long as possible.
// This so-called leftmost-longest matching is the same semantics
// that early regular expression implementations used and that POSIX
// specifies.
//
// However, there can be multiple leftmost-longest matches, with different
// submatch choices, and here this package diverges from POSIX.
// Among the possible leftmost-longest matches, this package chooses
// the one that a backtracking search would have found first, while POSIX
// specifies that the match be chosen to maximize the length of the first
// subexpression, then the second, and so on from left to right.
// The POSIX rule is computationally prohibitive and not even well-defined.
// See https://swtch.com/~rsc/regexp/regexp2.html#posix for details.
func CompilePOSIX(expr string) (*Regexp, error) {
return compile(expr, syntax.POSIX, true)
}
// Longest makes future searches prefer the leftmost-longest match.
// That is, when matching against text, the regexp returns a match that
// begins as early as possible in the input (leftmost), and among those
// it chooses a match that is as long as possible.
// This method modifies the Regexp and may not be called concurrently
// with any other methods.
func (re *Regexp) Longest() {
re.longest = true
}
func compile(expr string, mode syntax.Flags, longest bool) (*Regexp, error) {
re, err := syntax.Parse(expr, mode)
if err != nil {
return nil, err
}
maxCap := re.MaxCap()
capNames := re.CapNames()
re = re.Simplify()
prog, err := syntax.Compile(re)
if err != nil {
return nil, err
}
matchcap := prog.NumCap
if matchcap < 2 {
matchcap = 2
}
regexp := &Regexp{
expr: expr,
prog: prog,
onepass: compileOnePass(prog),
numSubexp: maxCap,
subexpNames: capNames,
cond: prog.StartCond(),
longest: longest,
matchcap: matchcap,
minInputLen: minInputLen(re),
}
if regexp.onepass == nil {
regexp.prefix, regexp.prefixComplete = prog.Prefix()
regexp.maxBitStateLen = maxBitStateLen(prog)
} else {
regexp.prefix, regexp.prefixComplete, regexp.prefixEnd = onePassPrefix(prog)
}
if regexp.prefix != "" {
// TODO(rsc): Remove this allocation by adding
// IndexString to package bytes.
regexp.prefixBytes = []byte(regexp.prefix)
regexp.prefixRune, _ = utf8.DecodeRuneInString(regexp.prefix)
}
n := len(prog.Inst)
i := 0
for matchSize[i] != 0 && matchSize[i] < n {
i++
}
regexp.mpool = i
return regexp, nil
}
// Pools of *machine for use during (*Regexp).doExecute,
// split up by the size of the execution queues.
// matchPool[i] machines have queue size matchSize[i].
// On a 64-bit system each queue entry is 16 bytes,
// so matchPool[0] has 16*2*128 = 4kB queues, etc.
// The final matchPool is a catch-all for very large queues.
var (
matchSize = [...]int{128, 512, 2048, 16384, 0}
matchPool [len(matchSize)]sync.Pool
)
// get returns a machine to use for matching re.
// It uses the re's machine cache if possible, to avoid
// unnecessary allocation.
func (re *Regexp) get() *machine {
m, ok := matchPool[re.mpool].Get().(*machine)
if !ok {
m = new(machine)
}
m.re = re
m.p = re.prog
if cap(m.matchcap) < re.matchcap {
m.matchcap = make([]int, re.matchcap)
for _, t := range m.pool {
t.cap = make([]int, re.matchcap)
}
}
// Allocate queues if needed.
// Or reallocate, for "large" match pool.
n := matchSize[re.mpool]
if n == 0 { // large pool
n = len(re.prog.Inst)
}
if len(m.q0.sparse) < n {
m.q0 = queue{make([]uint32, n), make([]entry, 0, n)}
m.q1 = queue{make([]uint32, n), make([]entry, 0, n)}
}
return m
}
// put returns a machine to the correct machine pool.
func (re *Regexp) put(m *machine) {
m.re = nil
m.p = nil
m.inputs.clear()
matchPool[re.mpool].Put(m)
}
// minInputLen walks the regexp to find the minimum length of any matchable input
func minInputLen(re *syntax.Regexp) int {
switch re.Op {
default:
return 0
case syntax.OpAnyChar, syntax.OpAnyCharNotNL, syntax.OpCharClass:
return 1
case syntax.OpLiteral:
l := 0
for _, r := range re.Rune {
if r == utf8.RuneError {
l++
} else {
l += utf8.RuneLen(r)
}
}
return l
case syntax.OpCapture, syntax.OpPlus:
return minInputLen(re.Sub[0])
case syntax.OpRepeat:
return re.Min * minInputLen(re.Sub[0])
case syntax.OpConcat:
l := 0
for _, sub := range re.Sub {
l += minInputLen(sub)
}
return l
case syntax.OpAlternate:
l := minInputLen(re.Sub[0])
var lnext int
for _, sub := range re.Sub[1:] {
lnext = minInputLen(sub)
if lnext < l {
l = lnext
}
}
return l
}
}
// MustCompile is like Compile but panics if the expression cannot be parsed.
// It simplifies safe initialization of global variables holding compiled regular
// expressions.
func MustCompile(str string) *Regexp {
regexp, err := Compile(str)
if err != nil {
panic(`regexp: Compile(` + quote(str) + `): ` + err.Error())
}
return regexp
}
// MustCompilePOSIX is like CompilePOSIX but panics if the expression cannot be parsed.
// It simplifies safe initialization of global variables holding compiled regular
// expressions.
func MustCompilePOSIX(str string) *Regexp {
regexp, err := CompilePOSIX(str)
if err != nil {
panic(`regexp: CompilePOSIX(` + quote(str) + `): ` + err.Error())
}
return regexp
}
func quote(s string) string {
if strconv.CanBackquote(s) {
return "`" + s + "`"
}
return strconv.Quote(s)
}
// NumSubexp returns the number of parenthesized subexpressions in this Regexp.
func (re *Regexp) NumSubexp() int {
return re.numSubexp
}
// SubexpNames returns the names of the parenthesized subexpressions
// in this Regexp. The name for the first sub-expression is names[1],
// so that if m is a match slice, the name for m[i] is SubexpNames()[i].
// Since the Regexp as a whole cannot be named, names[0] is always
// the empty string. The slice should not be modified.
func (re *Regexp) SubexpNames() []string {
return re.subexpNames
}
// SubexpIndex returns the index of the first subexpression with the given name,
// or -1 if there is no subexpression with that name.
//
// Note that multiple subexpressions can be written using the same name, as in
// (?P<bob>a+)(?P<bob>b+), which declares two subexpressions named "bob".
// In this case, SubexpIndex returns the index of the leftmost such subexpression
// in the regular expression.
func (re *Regexp) SubexpIndex(name string) int {
if name != "" {
for i, s := range re.subexpNames {
if name == s {
return i
}
}
}
return -1
}
const endOfText rune = -1
// input abstracts different representations of the input text. It provides
// one-character lookahead.
type input interface {
step(pos int) (r rune, width int) // advance one rune
canCheckPrefix() bool // can we look ahead without losing info?
hasPrefix(re *Regexp) bool
index(re *Regexp, pos int) int
context(pos int) lazyFlag
}
// inputString scans a string.
type inputString struct {
str string
}
func (i *inputString) step(pos int) (rune, int) {
if pos < len(i.str) {
c := i.str[pos]
if c < utf8.RuneSelf {
return rune(c), 1
}
return utf8.DecodeRuneInString(i.str[pos:])
}
return endOfText, 0
}
func (i *inputString) canCheckPrefix() bool {
return true
}
func (i *inputString) hasPrefix(re *Regexp) bool {
return strings.HasPrefix(i.str, re.prefix)
}
func (i *inputString) index(re *Regexp, pos int) int {
return strings.Index(i.str[pos:], re.prefix)
}
func (i *inputString) context(pos int) lazyFlag {
r1, r2 := endOfText, endOfText
// 0 < pos && pos <= len(i.str)
if uint(pos-1) < uint(len(i.str)) {
r1 = rune(i.str[pos-1])
if r1 >= utf8.RuneSelf {
r1, _ = utf8.DecodeLastRuneInString(i.str[:pos])
}
}
// 0 <= pos && pos < len(i.str)
if uint(pos) < uint(len(i.str)) {
r2 = rune(i.str[pos])
if r2 >= utf8.RuneSelf {
r2, _ = utf8.DecodeRuneInString(i.str[pos:])
}
}
return newLazyFlag(r1, r2)
}
// inputBytes scans a byte slice.
type inputBytes struct {
str []byte
}
func (i *inputBytes) step(pos int) (rune, int) {
if pos < len(i.str) {
c := i.str[pos]
if c < utf8.RuneSelf {
return rune(c), 1
}
return utf8.DecodeRune(i.str[pos:])
}
return endOfText, 0
}
func (i *inputBytes) canCheckPrefix() bool {
return true
}
func (i *inputBytes) hasPrefix(re *Regexp) bool {
return bytes.HasPrefix(i.str, re.prefixBytes)
}
func (i *inputBytes) index(re *Regexp, pos int) int {
return bytes.Index(i.str[pos:], re.prefixBytes)
}
func (i *inputBytes) context(pos int) lazyFlag {
r1, r2 := endOfText, endOfText
// 0 < pos && pos <= len(i.str)
if uint(pos-1) < uint(len(i.str)) {
r1 = rune(i.str[pos-1])
if r1 >= utf8.RuneSelf {
r1, _ = utf8.DecodeLastRune(i.str[:pos])
}
}
// 0 <= pos && pos < len(i.str)
if uint(pos) < uint(len(i.str)) {
r2 = rune(i.str[pos])
if r2 >= utf8.RuneSelf {
r2, _ = utf8.DecodeRune(i.str[pos:])
}
}
return newLazyFlag(r1, r2)
}
// inputReader scans a RuneReader.
type inputReader struct {
r io.RuneReader
atEOT bool
pos int
}
func (i *inputReader) step(pos int) (rune, int) {
if !i.atEOT && pos != i.pos {
return endOfText, 0
}
r, w, err := i.r.ReadRune()
if err != nil {
i.atEOT = true
return endOfText, 0
}
i.pos += w
return r, w
}
func (i *inputReader) canCheckPrefix() bool {
return false
}
func (i *inputReader) hasPrefix(re *Regexp) bool {
return false
}
func (i *inputReader) index(re *Regexp, pos int) int {
return -1
}
func (i *inputReader) context(pos int) lazyFlag {
return 0 // not used
}
// LiteralPrefix returns a literal string that must begin any match
// of the regular expression re. It returns the boolean true if the
// literal string comprises the entire regular expression.
func (re *Regexp) LiteralPrefix() (prefix string, complete bool) {
return re.prefix, re.prefixComplete
}
// MatchReader reports whether the text returned by the RuneReader
// contains any match of the regular expression re.
func (re *Regexp) MatchReader(r io.RuneReader) bool {
return re.doMatch(r, nil, "")
}
// MatchString reports whether the string s
// contains any match of the regular expression re.
func (re *Regexp) MatchString(s string) bool {
return re.doMatch(nil, nil, s)
}
// Match reports whether the byte slice b
// contains any match of the regular expression re.
func (re *Regexp) Match(b []byte) bool {
return re.doMatch(nil, b, "")
}
// MatchReader reports whether the text returned by the RuneReader
// contains any match of the regular expression pattern.
// More complicated queries need to use Compile and the full Regexp interface.
func MatchReader(pattern string, r io.RuneReader) (matched bool, err error) {
re, err := Compile(pattern)
if err != nil {
return false, err
}
return re.MatchReader(r), nil
}
// MatchString reports whether the string s
// contains any match of the regular expression pattern.
// More complicated queries need to use Compile and the full Regexp interface.
func MatchString(pattern string, s string) (matched bool, err error) {
re, err := Compile(pattern)
if err != nil {
return false, err
}
return re.MatchString(s), nil
}
// Match reports whether the byte slice b
// contains any match of the regular expression pattern.
// More complicated queries need to use Compile and the full Regexp interface.
func Match(pattern string, b []byte) (matched bool, err error) {
re, err := Compile(pattern)
if err != nil {
return false, err
}
return re.Match(b), nil
}
// ReplaceAllString returns a copy of src, replacing matches of the Regexp
// with the replacement string repl. Inside repl, $ signs are interpreted as
// in Expand, so for instance $1 represents the text of the first submatch.
func (re *Regexp) ReplaceAllString(src, repl string) string {
n := 2
if strings.Contains(repl, "$") {
n = 2 * (re.numSubexp + 1)
}
b := re.replaceAll(nil, src, n, func(dst []byte, match []int) []byte {
return re.expand(dst, repl, nil, src, match)
})
return string(b)
}
// ReplaceAllLiteralString returns a copy of src, replacing matches of the Regexp
// with the replacement string repl. The replacement repl is substituted directly,
// without using Expand.
func (re *Regexp) ReplaceAllLiteralString(src, repl string) string {
return string(re.replaceAll(nil, src, 2, func(dst []byte, match []int) []byte {
return append(dst, repl...)
}))
}
// ReplaceAllStringFunc returns a copy of src in which all matches of the
// Regexp have been replaced by the return value of function repl applied
// to the matched substring. The replacement returned by repl is substituted
// directly, without using Expand.
func (re *Regexp) ReplaceAllStringFunc(src string, repl func(string) string) string {
b := re.replaceAll(nil, src, 2, func(dst []byte, match []int) []byte {
return append(dst, repl(src[match[0]:match[1]])...)
})
return string(b)
}
func (re *Regexp) replaceAll(bsrc []byte, src string, nmatch int, repl func(dst []byte, m []int) []byte) []byte {
lastMatchEnd := 0 // end position of the most recent match
searchPos := 0 // position where we next look for a match
var buf []byte
var endPos int
if bsrc != nil {
endPos = len(bsrc)
} else {
endPos = len(src)
}
if nmatch > re.prog.NumCap {
nmatch = re.prog.NumCap
}
var dstCap [2]int
for searchPos <= endPos {
a := re.doExecute(nil, bsrc, src, searchPos, nmatch, dstCap[:0])
if len(a) == 0 {
break // no more matches
}
// Copy the unmatched characters before this match.
if bsrc != nil {
buf = append(buf, bsrc[lastMatchEnd:a[0]]...)
} else {
buf = append(buf, src[lastMatchEnd:a[0]]...)
}
// Now insert a copy of the replacement string, but not for a
// match of the empty string immediately after another match.
// (Otherwise, we get double replacement for patterns that
// match both empty and nonempty strings.)
if a[1] > lastMatchEnd || a[0] == 0 {
buf = repl(buf, a)
}
lastMatchEnd = a[1]
// Advance past this match; always advance at least one character.
var width int
if bsrc != nil {
_, width = utf8.DecodeRune(bsrc[searchPos:])
} else {
_, width = utf8.DecodeRuneInString(src[searchPos:])
}
if searchPos+width > a[1] {
searchPos += width
} else if searchPos+1 > a[1] {
// This clause is only needed at the end of the input
// string. In that case, DecodeRuneInString returns width=0.
searchPos++
} else {
searchPos = a[1]
}
}
// Copy the unmatched characters after the last match.
if bsrc != nil {
buf = append(buf, bsrc[lastMatchEnd:]...)
} else {
buf = append(buf, src[lastMatchEnd:]...)
}
return buf
}
// ReplaceAll returns a copy of src, replacing matches of the Regexp
// with the replacement text repl. Inside repl, $ signs are interpreted as
// in Expand, so for instance $1 represents the text of the first submatch.
func (re *Regexp) ReplaceAll(src, repl []byte) []byte {
n := 2
if bytes.IndexByte(repl, '$') >= 0 {
n = 2 * (re.numSubexp + 1)
}
srepl := ""
b := re.replaceAll(src, "", n, func(dst []byte, match []int) []byte {
if len(srepl) != len(repl) {
srepl = string(repl)
}
return re.expand(dst, srepl, src, "", match)
})
return b
}
// ReplaceAllLiteral returns a copy of src, replacing matches of the Regexp
// with the replacement bytes repl. The replacement repl is substituted directly,
// without using Expand.
func (re *Regexp) ReplaceAllLiteral(src, repl []byte) []byte {
return re.replaceAll(src, "", 2, func(dst []byte, match []int) []byte {
return append(dst, repl...)
})
}
// ReplaceAllFunc returns a copy of src in which all matches of the
// Regexp have been replaced by the return value of function repl applied
// to the matched byte slice. The replacement returned by repl is substituted
// directly, without using Expand.
func (re *Regexp) ReplaceAllFunc(src []byte, repl func([]byte) []byte) []byte {
return re.replaceAll(src, "", 2, func(dst []byte, match []int) []byte {
return append(dst, repl(src[match[0]:match[1]])...)
})
}
// Bitmap used by func special to check whether a character needs to be escaped.
var specialBytes [16]byte
// special reports whether byte b needs to be escaped by QuoteMeta.
func special(b byte) bool {
return b < utf8.RuneSelf && specialBytes[b%16]&(1<<(b/16)) != 0
}
func init() {
for _, b := range []byte(`\.+*?()|[]{}^$`) {
specialBytes[b%16] |= 1 << (b / 16)
}
}
// QuoteMeta returns a string that escapes all regular expression metacharacters
// inside the argument text; the returned string is a regular expression matching
// the literal text.
func QuoteMeta(s string) string {
// A byte loop is correct because all metacharacters are ASCII.
var i int
for i = 0; i < len(s); i++ {
if special(s[i]) {
break
}
}
// No meta characters found, so return original string.
if i >= len(s) {
return s
}
b := make([]byte, 2*len(s)-i)
copy(b, s[:i])
j := i
for ; i < len(s); i++ {
if special(s[i]) {
b[j] = '\\'
j++
}
b[j] = s[i]
j++
}
return string(b[:j])
}
// The number of capture values in the program may correspond
// to fewer capturing expressions than are in the regexp.
// For example, "(a){0}" turns into an empty program, so the
// maximum capture in the program is 0 but we need to return
// an expression for \1. Pad appends -1s to the slice a as needed.
func (re *Regexp) pad(a []int) []int {
if a == nil {
// No match.
return nil
}
n := (1 + re.numSubexp) * 2
for len(a) < n {
a = append(a, -1)
}
return a
}
// allMatches calls deliver at most n times
// with the location of successive matches in the input text.
// The input text is b if non-nil, otherwise s.
func (re *Regexp) allMatches(s string, b []byte, n int, deliver func([]int)) {
var end int
if b == nil {
end = len(s)
} else {
end = len(b)
}
for pos, i, prevMatchEnd := 0, 0, -1; i < n && pos <= end; {
matches := re.doExecute(nil, b, s, pos, re.prog.NumCap, nil)
if len(matches) == 0 {
break
}
accept := true
if matches[1] == pos {
// We've found an empty match.
if matches[0] == prevMatchEnd {
// We don't allow an empty match right
// after a previous match, so ignore it.
accept = false
}
var width int
if b == nil {
is := inputString{str: s}
_, width = is.step(pos)
} else {
ib := inputBytes{str: b}
_, width = ib.step(pos)
}
if width > 0 {
pos += width
} else {
pos = end + 1
}
} else {
pos = matches[1]
}
prevMatchEnd = matches[1]
if accept {
deliver(re.pad(matches))
i++
}
}
}
// Find returns a slice holding the text of the leftmost match in b of the regular expression.
// A return value of nil indicates no match.
func (re *Regexp) Find(b []byte) []byte {
var dstCap [2]int
a := re.doExecute(nil, b, "", 0, 2, dstCap[:0])
if a == nil {
return nil
}
return b[a[0]:a[1]:a[1]]
}
// FindIndex returns a two-element slice of integers defining the location of
// the leftmost match in b of the regular expression. The match itself is at
// b[loc[0]:loc[1]].
// A return value of nil indicates no match.
func (re *Regexp) FindIndex(b []byte) (loc []int) {
a := re.doExecute(nil, b, "", 0, 2, nil)
if a == nil {
return nil
}
return a[0:2]
}
// FindString returns a string holding the text of the leftmost match in s of the regular
// expression. If there is no match, the return value is an empty string,
// but it will also be empty if the regular expression successfully matches
// an empty string. Use FindStringIndex or FindStringSubmatch if it is
// necessary to distinguish these cases.
func (re *Regexp) FindString(s string) string {
var dstCap [2]int
a := re.doExecute(nil, nil, s, 0, 2, dstCap[:0])
if a == nil {
return ""
}
return s[a[0]:a[1]]
}
// FindStringIndex returns a two-element slice of integers defining the
// location of the leftmost match in s of the regular expression. The match
// itself is at s[loc[0]:loc[1]].
// A return value of nil indicates no match.
func (re *Regexp) FindStringIndex(s string) (loc []int) {
a := re.doExecute(nil, nil, s, 0, 2, nil)
if a == nil {
return nil
}
return a[0:2]
}
// FindReaderIndex returns a two-element slice of integers defining the
// location of the leftmost match of the regular expression in text read from
// the RuneReader. The match text was found in the input stream at
// byte offset loc[0] through loc[1]-1.
// A return value of nil indicates no match.
func (re *Regexp) FindReaderIndex(r io.RuneReader) (loc []int) {
a := re.doExecute(r, nil, "", 0, 2, nil)
if a == nil {
return nil
}
return a[0:2]
}
// FindSubmatch returns a slice of slices holding the text of the leftmost
// match of the regular expression in b and the matches, if any, of its
// subexpressions, as defined by the 'Submatch' descriptions in the package
// comment.
// A return value of nil indicates no match.
func (re *Regexp) FindSubmatch(b []byte) [][]byte {
var dstCap [4]int
a := re.doExecute(nil, b, "", 0, re.prog.NumCap, dstCap[:0])
if a == nil {
return nil
}
ret := make([][]byte, 1+re.numSubexp)
for i := range ret {
if 2*i < len(a) && a[2*i] >= 0 {
ret[i] = b[a[2*i]:a[2*i+1]:a[2*i+1]]
}
}
return ret
}
// Expand appends template to dst and returns the result; during the
// append, Expand replaces variables in the template with corresponding
// matches drawn from src. The match slice should have been returned by
// FindSubmatchIndex.
//
// In the template, a variable is denoted by a substring of the form
// $name or ${name}, where name is a non-empty sequence of letters,
// digits, and underscores. A purely numeric name like $1 refers to
// the submatch with the corresponding index; other names refer to
// capturing parentheses named with the (?P<name>...) syntax. A
// reference to an out of range or unmatched index or a name that is not
// present in the regular expression is replaced with an empty slice.
//
// In the $name form, name is taken to be as long as possible: $1x is
// equivalent to ${1x}, not ${1}x, and, $10 is equivalent to ${10}, not ${1}0.
//
// To insert a literal $ in the output, use $$ in the template.
func (re *Regexp) Expand(dst []byte, template []byte, src []byte, match []int) []byte {
return re.expand(dst, string(template), src, "", match)
}
// ExpandString is like Expand but the template and source are strings.
// It appends to and returns a byte slice in order to give the calling
// code control over allocation.
func (re *Regexp) ExpandString(dst []byte, template string, src string, match []int) []byte {
return re.expand(dst, template, nil, src, match)
}
func (re *Regexp) expand(dst []byte, template string, bsrc []byte, src string, match []int) []byte {
for len(template) > 0 {
before, after, ok := strings.Cut(template, "$")
if !ok {
break
}
dst = append(dst, before...)
template = after
if template != "" && template[0] == '$' {
// Treat $$ as $.
dst = append(dst, '$')
template = template[1:]
continue
}
name, num, rest, ok := extract(template)
if !ok {
// Malformed; treat $ as raw text.
dst = append(dst, '$')
continue
}
template = rest
if num >= 0 {
if 2*num+1 < len(match) && match[2*num] >= 0 {
if bsrc != nil {
dst = append(dst, bsrc[match[2*num]:match[2*num+1]]...)
} else {
dst = append(dst, src[match[2*num]:match[2*num+1]]...)
}
}
} else {
for i, namei := range re.subexpNames {
if name == namei && 2*i+1 < len(match) && match[2*i] >= 0 {
if bsrc != nil {
dst = append(dst, bsrc[match[2*i]:match[2*i+1]]...)
} else {
dst = append(dst, src[match[2*i]:match[2*i+1]]...)
}
break
}
}
}
}
dst = append(dst, template...)
return dst
}
// extract returns the name from a leading "name" or "{name}" in str.
// (The $ has already been removed by the caller.)
// If it is a number, extract returns num set to that number; otherwise num = -1.
func extract(str string) (name string, num int, rest string, ok bool) {
if str == "" {
return
}
brace := false
if str[0] == '{' {
brace = true
str = str[1:]
}
i := 0
for i < len(str) {
rune, size := utf8.DecodeRuneInString(str[i:])
if !unicode.IsLetter(rune) && !unicode.IsDigit(rune) && rune != '_' {
break
}
i += size
}
if i == 0 {
// empty name is not okay
return
}
name = str[:i]
if brace {
if i >= len(str) || str[i] != '}' {
// missing closing brace
return
}
i++
}
// Parse number.
num = 0
for i := 0; i < len(name); i++ {
if name[i] < '0' || '9' < name[i] || num >= 1e8 {
num = -1
break
}
num = num*10 + int(name[i]) - '0'
}
// Disallow leading zeros.
if name[0] == '0' && len(name) > 1 {
num = -1
}
rest = str[i:]
ok = true
return
}
// FindSubmatchIndex returns a slice holding the index pairs identifying the
// leftmost match of the regular expression in b and the matches, if any, of
// its subexpressions, as defined by the 'Submatch' and 'Index' descriptions
// in the package comment.
// A return value of nil indicates no match.
func (re *Regexp) FindSubmatchIndex(b []byte) []int {
return re.pad(re.doExecute(nil, b, "", 0, re.prog.NumCap, nil))
}
// FindStringSubmatch returns a slice of strings holding the text of the
// leftmost match of the regular expression in s and the matches, if any, of
// its subexpressions, as defined by the 'Submatch' description in the
// package comment.
// A return value of nil indicates no match.
func (re *Regexp) FindStringSubmatch(s string) []string {
var dstCap [4]int
a := re.doExecute(nil, nil, s, 0, re.prog.NumCap, dstCap[:0])
if a == nil {
return nil
}
ret := make([]string, 1+re.numSubexp)
for i := range ret {
if 2*i < len(a) && a[2*i] >= 0 {
ret[i] = s[a[2*i]:a[2*i+1]]
}
}
return ret
}
// FindStringSubmatchIndex returns a slice holding the index pairs
// identifying the leftmost match of the regular expression in s and the
// matches, if any, of its subexpressions, as defined by the 'Submatch' and
// 'Index' descriptions in the package comment.
// A return value of nil indicates no match.
func (re *Regexp) FindStringSubmatchIndex(s string) []int {
return re.pad(re.doExecute(nil, nil, s, 0, re.prog.NumCap, nil))
}
// FindReaderSubmatchIndex returns a slice holding the index pairs
// identifying the leftmost match of the regular expression of text read by
// the RuneReader, and the matches, if any, of its subexpressions, as defined
// by the 'Submatch' and 'Index' descriptions in the package comment. A
// return value of nil indicates no match.
func (re *Regexp) FindReaderSubmatchIndex(r io.RuneReader) []int {
return re.pad(re.doExecute(r, nil, "", 0, re.prog.NumCap, nil))
}
const startSize = 10 // The size at which to start a slice in the 'All' routines.
// FindAll is the 'All' version of Find; it returns a slice of all successive
// matches of the expression, as defined by the 'All' description in the
// package comment.
// A return value of nil indicates no match.
func (re *Regexp) FindAll(b []byte, n int) [][]byte {
if n < 0 {
n = len(b) + 1
}
var result [][]byte
re.allMatches("", b, n, func(match []int) {
if result == nil {
result = make([][]byte, 0, startSize)
}
result = append(result, b[match[0]:match[1]:match[1]])
})
return result
}
// FindAllIndex is the 'All' version of FindIndex; it returns a slice of all
// successive matches of the expression, as defined by the 'All' description
// in the package comment.
// A return value of nil indicates no match.
func (re *Regexp) FindAllIndex(b []byte, n int) [][]int {
if n < 0 {
n = len(b) + 1
}
var result [][]int
re.allMatches("", b, n, func(match []int) {
if result == nil {
result = make([][]int, 0, startSize)
}
result = append(result, match[0:2])
})
return result
}
// FindAllString is the 'All' version of FindString; it returns a slice of all
// successive matches of the expression, as defined by the 'All' description
// in the package comment.
// A return value of nil indicates no match.
func (re *Regexp) FindAllString(s string, n int) []string {
if n < 0 {
n = len(s) + 1
}
var result []string
re.allMatches(s, nil, n, func(match []int) {
if result == nil {
result = make([]string, 0, startSize)
}
result = append(result, s[match[0]:match[1]])
})
return result
}
// FindAllStringIndex is the 'All' version of FindStringIndex; it returns a
// slice of all successive matches of the expression, as defined by the 'All'
// description in the package comment.
// A return value of nil indicates no match.
func (re *Regexp) FindAllStringIndex(s string, n int) [][]int {
if n < 0 {
n = len(s) + 1
}
var result [][]int
re.allMatches(s, nil, n, func(match []int) {
if result == nil {
result = make([][]int, 0, startSize)
}
result = append(result, match[0:2])
})
return result
}
// FindAllSubmatch is the 'All' version of FindSubmatch; it returns a slice
// of all successive matches of the expression, as defined by the 'All'
// description in the package comment.
// A return value of nil indicates no match.
func (re *Regexp) FindAllSubmatch(b []byte, n int) [][][]byte {
if n < 0 {
n = len(b) + 1
}
var result [][][]byte
re.allMatches("", b, n, func(match []int) {
if result == nil {
result = make([][][]byte, 0, startSize)
}
slice := make([][]byte, len(match)/2)
for j := range slice {
if match[2*j] >= 0 {
slice[j] = b[match[2*j]:match[2*j+1]:match[2*j+1]]
}
}
result = append(result, slice)
})
return result
}
// FindAllSubmatchIndex is the 'All' version of FindSubmatchIndex; it returns
// a slice of all successive matches of the expression, as defined by the
// 'All' description in the package comment.
// A return value of nil indicates no match.
func (re *Regexp) FindAllSubmatchIndex(b []byte, n int) [][]int {
if n < 0 {
n = len(b) + 1
}
var result [][]int
re.allMatches("", b, n, func(match []int) {
if result == nil {
result = make([][]int, 0, startSize)
}
result = append(result, match)
})
return result
}
// FindAllStringSubmatch is the 'All' version of FindStringSubmatch; it
// returns a slice of all successive matches of the expression, as defined by
// the 'All' description in the package comment.
// A return value of nil indicates no match.
func (re *Regexp) FindAllStringSubmatch(s string, n int) [][]string {
if n < 0 {
n = len(s) + 1
}
var result [][]string
re.allMatches(s, nil, n, func(match []int) {
if result == nil {
result = make([][]string, 0, startSize)
}
slice := make([]string, len(match)/2)
for j := range slice {
if match[2*j] >= 0 {
slice[j] = s[match[2*j]:match[2*j+1]]
}
}
result = append(result, slice)
})
return result
}
// FindAllStringSubmatchIndex is the 'All' version of
// FindStringSubmatchIndex; it returns a slice of all successive matches of
// the expression, as defined by the 'All' description in the package
// comment.
// A return value of nil indicates no match.
func (re *Regexp) FindAllStringSubmatchIndex(s string, n int) [][]int {
if n < 0 {
n = len(s) + 1
}
var result [][]int
re.allMatches(s, nil, n, func(match []int) {
if result == nil {
result = make([][]int, 0, startSize)
}
result = append(result, match)
})
return result
}
// Split slices s into substrings separated by the expression and returns a slice of
// the substrings between those expression matches.
//
// The slice returned by this method consists of all the substrings of s
// not contained in the slice returned by FindAllString. When called on an expression
// that contains no metacharacters, it is equivalent to strings.SplitN.
//
// Example:
//
// s := regexp.MustCompile("a*").Split("abaabaccadaaae", 5)
// // s: ["", "b", "b", "c", "cadaaae"]
//
// The count determines the number of substrings to return:
//
// n > 0: at most n substrings; the last substring will be the unsplit remainder.
// n == 0: the result is nil (zero substrings)
// n < 0: all substrings
func (re *Regexp) Split(s string, n int) []string {
if n == 0 {
return nil
}
if len(re.expr) > 0 && len(s) == 0 {
return []string{""}
}
matches := re.FindAllStringIndex(s, n)
strings := make([]string, 0, len(matches))
beg := 0
end := 0
for _, match := range matches {
if n > 0 && len(strings) >= n-1 {
break
}
end = match[0]
if match[1] != 0 {
strings = append(strings, s[beg:end])
}
beg = match[1]
}
if end != len(s) {
strings = append(strings, s[beg:])
}
return strings
}