mirror of
https://github.com/VictoriaMetrics/VictoriaMetrics.git
synced 2024-11-21 14:44:00 +00:00
152 lines
4.2 KiB
Go
152 lines
4.2 KiB
Go
|
// Copyright 2011 The Go Authors. All rights reserved.
|
||
|
// Use of this source code is governed by a BSD-style
|
||
|
// license that can be found in the LICENSE file.
|
||
|
|
||
|
package syntax
|
||
|
|
||
|
// Simplify returns a regexp equivalent to re but without counted repetitions
|
||
|
// and with various other simplifications, such as rewriting /(?:a+)+/ to /a+/.
|
||
|
// The resulting regexp will execute correctly but its string representation
|
||
|
// will not produce the same parse tree, because capturing parentheses
|
||
|
// may have been duplicated or removed. For example, the simplified form
|
||
|
// for /(x){1,2}/ is /(x)(x)?/ but both parentheses capture as $1.
|
||
|
// The returned regexp may share structure with or be the original.
|
||
|
func (re *Regexp) Simplify() *Regexp {
|
||
|
if re == nil {
|
||
|
return nil
|
||
|
}
|
||
|
switch re.Op {
|
||
|
case OpCapture, OpConcat, OpAlternate:
|
||
|
// Simplify children, building new Regexp if children change.
|
||
|
nre := re
|
||
|
for i, sub := range re.Sub {
|
||
|
nsub := sub.Simplify()
|
||
|
if nre == re && nsub != sub {
|
||
|
// Start a copy.
|
||
|
nre = new(Regexp)
|
||
|
*nre = *re
|
||
|
nre.Rune = nil
|
||
|
nre.Sub = append(nre.Sub0[:0], re.Sub[:i]...)
|
||
|
}
|
||
|
if nre != re {
|
||
|
nre.Sub = append(nre.Sub, nsub)
|
||
|
}
|
||
|
}
|
||
|
return nre
|
||
|
|
||
|
case OpStar, OpPlus, OpQuest:
|
||
|
sub := re.Sub[0].Simplify()
|
||
|
return simplify1(re.Op, re.Flags, sub, re)
|
||
|
|
||
|
case OpRepeat:
|
||
|
// Special special case: x{0} matches the empty string
|
||
|
// and doesn't even need to consider x.
|
||
|
if re.Min == 0 && re.Max == 0 {
|
||
|
return &Regexp{Op: OpEmptyMatch}
|
||
|
}
|
||
|
|
||
|
// The fun begins.
|
||
|
sub := re.Sub[0].Simplify()
|
||
|
|
||
|
// x{n,} means at least n matches of x.
|
||
|
if re.Max == -1 {
|
||
|
// Special case: x{0,} is x*.
|
||
|
if re.Min == 0 {
|
||
|
return simplify1(OpStar, re.Flags, sub, nil)
|
||
|
}
|
||
|
|
||
|
// Special case: x{1,} is x+.
|
||
|
if re.Min == 1 {
|
||
|
return simplify1(OpPlus, re.Flags, sub, nil)
|
||
|
}
|
||
|
|
||
|
// General case: x{4,} is xxxx+.
|
||
|
nre := &Regexp{Op: OpConcat}
|
||
|
nre.Sub = nre.Sub0[:0]
|
||
|
for i := 0; i < re.Min-1; i++ {
|
||
|
nre.Sub = append(nre.Sub, sub)
|
||
|
}
|
||
|
nre.Sub = append(nre.Sub, simplify1(OpPlus, re.Flags, sub, nil))
|
||
|
return nre
|
||
|
}
|
||
|
|
||
|
// Special case x{0} handled above.
|
||
|
|
||
|
// Special case: x{1} is just x.
|
||
|
if re.Min == 1 && re.Max == 1 {
|
||
|
return sub
|
||
|
}
|
||
|
|
||
|
// General case: x{n,m} means n copies of x and m copies of x?
|
||
|
// The machine will do less work if we nest the final m copies,
|
||
|
// so that x{2,5} = xx(x(x(x)?)?)?
|
||
|
|
||
|
// Build leading prefix: xx.
|
||
|
var prefix *Regexp
|
||
|
if re.Min > 0 {
|
||
|
prefix = &Regexp{Op: OpConcat}
|
||
|
prefix.Sub = prefix.Sub0[:0]
|
||
|
for i := 0; i < re.Min; i++ {
|
||
|
prefix.Sub = append(prefix.Sub, sub)
|
||
|
}
|
||
|
}
|
||
|
|
||
|
// Build and attach suffix: (x(x(x)?)?)?
|
||
|
if re.Max > re.Min {
|
||
|
suffix := simplify1(OpQuest, re.Flags, sub, nil)
|
||
|
for i := re.Min + 1; i < re.Max; i++ {
|
||
|
nre2 := &Regexp{Op: OpConcat}
|
||
|
nre2.Sub = append(nre2.Sub0[:0], sub, suffix)
|
||
|
suffix = simplify1(OpQuest, re.Flags, nre2, nil)
|
||
|
}
|
||
|
if prefix == nil {
|
||
|
return suffix
|
||
|
}
|
||
|
prefix.Sub = append(prefix.Sub, suffix)
|
||
|
}
|
||
|
if prefix != nil {
|
||
|
return prefix
|
||
|
}
|
||
|
|
||
|
// Some degenerate case like min > max or min < max < 0.
|
||
|
// Handle as impossible match.
|
||
|
return &Regexp{Op: OpNoMatch}
|
||
|
}
|
||
|
|
||
|
return re
|
||
|
}
|
||
|
|
||
|
// simplify1 implements Simplify for the unary OpStar,
|
||
|
// OpPlus, and OpQuest operators. It returns the simple regexp
|
||
|
// equivalent to
|
||
|
//
|
||
|
// Regexp{Op: op, Flags: flags, Sub: {sub}}
|
||
|
//
|
||
|
// under the assumption that sub is already simple, and
|
||
|
// without first allocating that structure. If the regexp
|
||
|
// to be returned turns out to be equivalent to re, simplify1
|
||
|
// returns re instead.
|
||
|
//
|
||
|
// simplify1 is factored out of Simplify because the implementation
|
||
|
// for other operators generates these unary expressions.
|
||
|
// Letting them call simplify1 makes sure the expressions they
|
||
|
// generate are simple.
|
||
|
func simplify1(op Op, flags Flags, sub, re *Regexp) *Regexp {
|
||
|
// Special case: repeat the empty string as much as
|
||
|
// you want, but it's still the empty string.
|
||
|
if sub.Op == OpEmptyMatch {
|
||
|
return sub
|
||
|
}
|
||
|
// The operators are idempotent if the flags match.
|
||
|
if op == sub.Op && flags&NonGreedy == sub.Flags&NonGreedy {
|
||
|
return sub
|
||
|
}
|
||
|
if re != nil && re.Op == op && re.Flags&NonGreedy == flags&NonGreedy && sub == re.Sub[0] {
|
||
|
return re
|
||
|
}
|
||
|
|
||
|
re = &Regexp{Op: op, Flags: flags}
|
||
|
re.Sub = append(re.Sub0[:0], sub)
|
||
|
return re
|
||
|
}
|