mirror of
https://github.com/VictoriaMetrics/VictoriaMetrics.git
synced 2025-01-10 15:14:09 +00:00
app/vmselect/promql: add range_stdvar()
and range_stddev()
functions for calculating variance and deviation over time series on the selected time range
This commit is contained in:
parent
facf7efa3a
commit
0cc59b9f95
10 changed files with 113 additions and 32 deletions
|
@ -6390,19 +6390,39 @@ func TestExecSuccess(t *testing.T) {
|
||||||
q := `range_quantile(0.5, time())`
|
q := `range_quantile(0.5, time())`
|
||||||
r := netstorage.Result{
|
r := netstorage.Result{
|
||||||
MetricName: metricNameExpected,
|
MetricName: metricNameExpected,
|
||||||
// time() results in [1000 1200 1400 1600 1800 2000]
|
|
||||||
Values: []float64{1500, 1500, 1500, 1500, 1500, 1500},
|
Values: []float64{1500, 1500, 1500, 1500, 1500, 1500},
|
||||||
Timestamps: timestampsExpected,
|
Timestamps: timestampsExpected,
|
||||||
}
|
}
|
||||||
resultExpected := []netstorage.Result{r}
|
resultExpected := []netstorage.Result{r}
|
||||||
f(q, resultExpected)
|
f(q, resultExpected)
|
||||||
})
|
})
|
||||||
|
t.Run(`range_stddev()`, func(t *testing.T) {
|
||||||
|
t.Parallel()
|
||||||
|
q := `round(range_stddev(time()),0.01)`
|
||||||
|
r := netstorage.Result{
|
||||||
|
MetricName: metricNameExpected,
|
||||||
|
Values: []float64{341.57, 341.57, 341.57, 341.57, 341.57, 341.57},
|
||||||
|
Timestamps: timestampsExpected,
|
||||||
|
}
|
||||||
|
resultExpected := []netstorage.Result{r}
|
||||||
|
f(q, resultExpected)
|
||||||
|
})
|
||||||
|
t.Run(`range_stdvar()`, func(t *testing.T) {
|
||||||
|
t.Parallel()
|
||||||
|
q := `round(range_stdvar(time()),0.01)`
|
||||||
|
r := netstorage.Result{
|
||||||
|
MetricName: metricNameExpected,
|
||||||
|
Values: []float64{116666.67, 116666.67, 116666.67, 116666.67, 116666.67, 116666.67},
|
||||||
|
Timestamps: timestampsExpected,
|
||||||
|
}
|
||||||
|
resultExpected := []netstorage.Result{r}
|
||||||
|
f(q, resultExpected)
|
||||||
|
})
|
||||||
t.Run(`range_median()`, func(t *testing.T) {
|
t.Run(`range_median()`, func(t *testing.T) {
|
||||||
t.Parallel()
|
t.Parallel()
|
||||||
q := `range_median(time())`
|
q := `range_median(time())`
|
||||||
r := netstorage.Result{
|
r := netstorage.Result{
|
||||||
MetricName: metricNameExpected,
|
MetricName: metricNameExpected,
|
||||||
// time() results in [1000 1200 1400 1600 1800 2000]
|
|
||||||
Values: []float64{1500, 1500, 1500, 1500, 1500, 1500},
|
Values: []float64{1500, 1500, 1500, 1500, 1500, 1500},
|
||||||
Timestamps: timestampsExpected,
|
Timestamps: timestampsExpected,
|
||||||
}
|
}
|
||||||
|
@ -8093,6 +8113,8 @@ func TestExecError(t *testing.T) {
|
||||||
f(`nonexisting()`)
|
f(`nonexisting()`)
|
||||||
|
|
||||||
// Invalid number of args
|
// Invalid number of args
|
||||||
|
f(`range_stddev()`)
|
||||||
|
f(`range_stdvar()`)
|
||||||
f(`range_quantile()`)
|
f(`range_quantile()`)
|
||||||
f(`range_quantile(1, 2, 3)`)
|
f(`range_quantile(1, 2, 3)`)
|
||||||
f(`range_median()`)
|
f(`range_median()`)
|
||||||
|
|
|
@ -1475,16 +1475,20 @@ func rollupStaleSamples(rfa *rollupFuncArg) float64 {
|
||||||
}
|
}
|
||||||
|
|
||||||
func rollupStddev(rfa *rollupFuncArg) float64 {
|
func rollupStddev(rfa *rollupFuncArg) float64 {
|
||||||
stdvar := rollupStdvar(rfa)
|
return stddev(rfa.values)
|
||||||
return math.Sqrt(stdvar)
|
|
||||||
}
|
}
|
||||||
|
|
||||||
func rollupStdvar(rfa *rollupFuncArg) float64 {
|
func rollupStdvar(rfa *rollupFuncArg) float64 {
|
||||||
// See `Rapid calculation methods` at https://en.wikipedia.org/wiki/Standard_deviation
|
return stdvar(rfa.values)
|
||||||
|
}
|
||||||
|
|
||||||
// There is no need in handling NaNs here, since they must be cleaned up
|
func stddev(values []float64) float64 {
|
||||||
// before calling rollup funcs.
|
v := stdvar(values)
|
||||||
values := rfa.values
|
return math.Sqrt(v)
|
||||||
|
}
|
||||||
|
|
||||||
|
func stdvar(values []float64) float64 {
|
||||||
|
// See `Rapid calculation methods` at https://en.wikipedia.org/wiki/Standard_deviation
|
||||||
if len(values) == 0 {
|
if len(values) == 0 {
|
||||||
return nan
|
return nan
|
||||||
}
|
}
|
||||||
|
@ -1496,11 +1500,17 @@ func rollupStdvar(rfa *rollupFuncArg) float64 {
|
||||||
var count float64
|
var count float64
|
||||||
var q float64
|
var q float64
|
||||||
for _, v := range values {
|
for _, v := range values {
|
||||||
|
if math.IsNaN(v) {
|
||||||
|
continue
|
||||||
|
}
|
||||||
count++
|
count++
|
||||||
avgNew := avg + (v-avg)/count
|
avgNew := avg + (v-avg)/count
|
||||||
q += (v - avg) * (v - avgNew)
|
q += (v - avg) * (v - avgNew)
|
||||||
avg = avgNew
|
avg = avgNew
|
||||||
}
|
}
|
||||||
|
if count == 0 {
|
||||||
|
return nan
|
||||||
|
}
|
||||||
return q / count
|
return q / count
|
||||||
}
|
}
|
||||||
|
|
||||||
|
|
|
@ -388,7 +388,7 @@ func TestRollupPredictLinear(t *testing.T) {
|
||||||
func TestLinearRegression(t *testing.T) {
|
func TestLinearRegression(t *testing.T) {
|
||||||
f := func(values []float64, timestamps []int64, expV, expK float64) {
|
f := func(values []float64, timestamps []int64, expV, expK float64) {
|
||||||
t.Helper()
|
t.Helper()
|
||||||
v, k := linearRegression(values, timestamps, timestamps[0] + 100)
|
v, k := linearRegression(values, timestamps, timestamps[0]+100)
|
||||||
if err := compareValues([]float64{v}, []float64{expV}); err != nil {
|
if err := compareValues([]float64{v}, []float64{expV}); err != nil {
|
||||||
t.Fatalf("unexpected v err: %s", err)
|
t.Fatalf("unexpected v err: %s", err)
|
||||||
}
|
}
|
||||||
|
|
|
@ -92,6 +92,8 @@ var transformFuncs = map[string]transformFunc{
|
||||||
"range_max": newTransformFuncRange(runningMax),
|
"range_max": newTransformFuncRange(runningMax),
|
||||||
"range_min": newTransformFuncRange(runningMin),
|
"range_min": newTransformFuncRange(runningMin),
|
||||||
"range_quantile": transformRangeQuantile,
|
"range_quantile": transformRangeQuantile,
|
||||||
|
"range_stddev": transformRangeStddev,
|
||||||
|
"range_stdvar": transformRangeStdvar,
|
||||||
"range_sum": newTransformFuncRange(runningSum),
|
"range_sum": newTransformFuncRange(runningSum),
|
||||||
"remove_resets": transformRemoveResets,
|
"remove_resets": transformRemoveResets,
|
||||||
"round": transformRound,
|
"round": transformRound,
|
||||||
|
@ -126,26 +128,28 @@ var transformFuncs = map[string]transformFunc{
|
||||||
// These functions don't change physical meaning of input time series,
|
// These functions don't change physical meaning of input time series,
|
||||||
// so they don't drop metric name
|
// so they don't drop metric name
|
||||||
var transformFuncsKeepMetricName = map[string]bool{
|
var transformFuncsKeepMetricName = map[string]bool{
|
||||||
"ceil": true,
|
"ceil": true,
|
||||||
"clamp": true,
|
"clamp": true,
|
||||||
"clamp_max": true,
|
"clamp_max": true,
|
||||||
"clamp_min": true,
|
"clamp_min": true,
|
||||||
"floor": true,
|
"floor": true,
|
||||||
"interpolate": true,
|
"interpolate": true,
|
||||||
"keep_last_value": true,
|
"keep_last_value": true,
|
||||||
"keep_next_value": true,
|
"keep_next_value": true,
|
||||||
"range_avg": true,
|
"range_avg": true,
|
||||||
"range_first": true,
|
"range_first": true,
|
||||||
"range_last": true,
|
"range_last": true,
|
||||||
"range_linear_regression": true,
|
"range_linear_regression": true,
|
||||||
"range_max": true,
|
"range_max": true,
|
||||||
"range_min": true,
|
"range_min": true,
|
||||||
"range_quantile": true,
|
"range_quantile": true,
|
||||||
"round": true,
|
"range_stdvar": true,
|
||||||
"running_avg": true,
|
"range_sddev": true,
|
||||||
"running_max": true,
|
"round": true,
|
||||||
"running_min": true,
|
"running_avg": true,
|
||||||
"smooth_exponential": true,
|
"running_max": true,
|
||||||
|
"running_min": true,
|
||||||
|
"smooth_exponential": true,
|
||||||
}
|
}
|
||||||
|
|
||||||
func getTransformFunc(s string) transformFunc {
|
func getTransformFunc(s string) transformFunc {
|
||||||
|
@ -1257,6 +1261,38 @@ func transformRangeLinearRegression(tfa *transformFuncArg) ([]*timeseries, error
|
||||||
return rvs, nil
|
return rvs, nil
|
||||||
}
|
}
|
||||||
|
|
||||||
|
func transformRangeStddev(tfa *transformFuncArg) ([]*timeseries, error) {
|
||||||
|
args := tfa.args
|
||||||
|
if err := expectTransformArgsNum(args, 1); err != nil {
|
||||||
|
return nil, err
|
||||||
|
}
|
||||||
|
rvs := args[0]
|
||||||
|
for _, ts := range rvs {
|
||||||
|
values := ts.Values
|
||||||
|
v := stddev(values)
|
||||||
|
for i := range values {
|
||||||
|
values[i] = v
|
||||||
|
}
|
||||||
|
}
|
||||||
|
return rvs, nil
|
||||||
|
}
|
||||||
|
|
||||||
|
func transformRangeStdvar(tfa *transformFuncArg) ([]*timeseries, error) {
|
||||||
|
args := tfa.args
|
||||||
|
if err := expectTransformArgsNum(args, 1); err != nil {
|
||||||
|
return nil, err
|
||||||
|
}
|
||||||
|
rvs := args[0]
|
||||||
|
for _, ts := range rvs {
|
||||||
|
values := ts.Values
|
||||||
|
v := stdvar(values)
|
||||||
|
for i := range values {
|
||||||
|
values[i] = v
|
||||||
|
}
|
||||||
|
}
|
||||||
|
return rvs, nil
|
||||||
|
}
|
||||||
|
|
||||||
func transformRangeQuantile(tfa *transformFuncArg) ([]*timeseries, error) {
|
func transformRangeQuantile(tfa *transformFuncArg) ([]*timeseries, error) {
|
||||||
args := tfa.args
|
args := tfa.args
|
||||||
if err := expectTransformArgsNum(args, 2); err != nil {
|
if err := expectTransformArgsNum(args, 2); err != nil {
|
||||||
|
|
|
@ -16,6 +16,7 @@ The following tip changes can be tested by building VictoriaMetrics components f
|
||||||
## tip
|
## tip
|
||||||
|
|
||||||
* FEATURE: [MetricsQL](https://docs.victoriametrics.com/MetricsQL.html): add [range_linear_regression](https://docs.victoriametrics.com/MetricsQL.html#range_linear_regression) function for calculating [simple linear regression](https://en.wikipedia.org/wiki/Simple_linear_regression) over the input time series on the selected time range. This function is useful for predictions and capacity planning. For example, `range_linear_regression(process_resident_memory_bytes)` can predict future memory usage based on the past memory usage.
|
* FEATURE: [MetricsQL](https://docs.victoriametrics.com/MetricsQL.html): add [range_linear_regression](https://docs.victoriametrics.com/MetricsQL.html#range_linear_regression) function for calculating [simple linear regression](https://en.wikipedia.org/wiki/Simple_linear_regression) over the input time series on the selected time range. This function is useful for predictions and capacity planning. For example, `range_linear_regression(process_resident_memory_bytes)` can predict future memory usage based on the past memory usage.
|
||||||
|
* FEATURE: [MetricsQL](https://docs.victoriametrics.com/MetricsQL.html): add [range_stddev](https://docs.victoriametrics.com/MetricsQL.html#range_stddev) and [range_stdvar](https://docs.victoriametrics.com/MetricsQL.html#range_stdvar) functions.
|
||||||
|
|
||||||
## [v1.83.1](https://github.com/VictoriaMetrics/VictoriaMetrics/releases/tag/v1.83.1)
|
## [v1.83.1](https://github.com/VictoriaMetrics/VictoriaMetrics/releases/tag/v1.83.1)
|
||||||
|
|
||||||
|
|
|
@ -1225,6 +1225,16 @@ over the selected time range per each time series returned by `q`. This function
|
||||||
`range_quantile(phi, q)` is a [transform function](#transform-functions), which returns `phi`-quantile across points per each time series returned by `q`.
|
`range_quantile(phi, q)` is a [transform function](#transform-functions), which returns `phi`-quantile across points per each time series returned by `q`.
|
||||||
`phi` must be in the range `[0...1]`.
|
`phi` must be in the range `[0...1]`.
|
||||||
|
|
||||||
|
#### range_stddev
|
||||||
|
|
||||||
|
`range_stddev(q)` is a [transform function](#transform-functions), which calculates [standard deviation](https://en.wikipedia.org/wiki/Standard_deviation)
|
||||||
|
per each time series returned by `q` on the selected time range.
|
||||||
|
|
||||||
|
#### range_stdvar
|
||||||
|
|
||||||
|
`range_stdvar(q)` is a [transform function](#transform-functions), which calculates [standard variance](https://en.wikipedia.org/wiki/Variance)
|
||||||
|
per each time series returned by `q` on the selected time range.
|
||||||
|
|
||||||
#### range_sum
|
#### range_sum
|
||||||
|
|
||||||
`range_sum(q)` is a [transform function](#transform-functions), which calculates the sum of points per each time series returned by `q`.
|
`range_sum(q)` is a [transform function](#transform-functions), which calculates the sum of points per each time series returned by `q`.
|
||||||
|
|
2
go.mod
2
go.mod
|
@ -12,7 +12,7 @@ require (
|
||||||
// like https://github.com/valyala/fasthttp/commit/996610f021ff45fdc98c2ce7884d5fa4e7f9199b
|
// like https://github.com/valyala/fasthttp/commit/996610f021ff45fdc98c2ce7884d5fa4e7f9199b
|
||||||
github.com/VictoriaMetrics/fasthttp v1.1.0
|
github.com/VictoriaMetrics/fasthttp v1.1.0
|
||||||
github.com/VictoriaMetrics/metrics v1.23.0
|
github.com/VictoriaMetrics/metrics v1.23.0
|
||||||
github.com/VictoriaMetrics/metricsql v0.46.0
|
github.com/VictoriaMetrics/metricsql v0.47.0
|
||||||
github.com/aws/aws-sdk-go-v2 v1.17.1
|
github.com/aws/aws-sdk-go-v2 v1.17.1
|
||||||
github.com/aws/aws-sdk-go-v2/config v1.17.10
|
github.com/aws/aws-sdk-go-v2/config v1.17.10
|
||||||
github.com/aws/aws-sdk-go-v2/feature/s3/manager v1.11.37
|
github.com/aws/aws-sdk-go-v2/feature/s3/manager v1.11.37
|
||||||
|
|
4
go.sum
4
go.sum
|
@ -100,8 +100,8 @@ github.com/VictoriaMetrics/fasthttp v1.1.0/go.mod h1:/7DMcogqd+aaD3G3Hg5kFgoFwlR
|
||||||
github.com/VictoriaMetrics/metrics v1.18.1/go.mod h1:ArjwVz7WpgpegX/JpB0zpNF2h2232kErkEnzH1sxMmA=
|
github.com/VictoriaMetrics/metrics v1.18.1/go.mod h1:ArjwVz7WpgpegX/JpB0zpNF2h2232kErkEnzH1sxMmA=
|
||||||
github.com/VictoriaMetrics/metrics v1.23.0 h1:WzfqyzCaxUZip+OBbg1+lV33WChDSu4ssYII3nxtpeA=
|
github.com/VictoriaMetrics/metrics v1.23.0 h1:WzfqyzCaxUZip+OBbg1+lV33WChDSu4ssYII3nxtpeA=
|
||||||
github.com/VictoriaMetrics/metrics v1.23.0/go.mod h1:rAr/llLpEnAdTehiNlUxKgnjcOuROSzpw0GvjpEbvFc=
|
github.com/VictoriaMetrics/metrics v1.23.0/go.mod h1:rAr/llLpEnAdTehiNlUxKgnjcOuROSzpw0GvjpEbvFc=
|
||||||
github.com/VictoriaMetrics/metricsql v0.46.0 h1:UeY+3vykSflhShmBmMemYvDVlqISraiCc8uMtyAc+PI=
|
github.com/VictoriaMetrics/metricsql v0.47.0 h1:PQwadjoQnKKkaUiupkDq0ZbCAHX2qP8OOexJ9oJwupo=
|
||||||
github.com/VictoriaMetrics/metricsql v0.46.0/go.mod h1:6pP1ZeLVJHqJrHlF6Ij3gmpQIznSsgktEcZgsAWYel0=
|
github.com/VictoriaMetrics/metricsql v0.47.0/go.mod h1:6pP1ZeLVJHqJrHlF6Ij3gmpQIznSsgktEcZgsAWYel0=
|
||||||
github.com/VividCortex/ewma v1.1.1/go.mod h1:2Tkkvm3sRDVXaiyucHiACn4cqf7DpdyLvmxzcbUokwA=
|
github.com/VividCortex/ewma v1.1.1/go.mod h1:2Tkkvm3sRDVXaiyucHiACn4cqf7DpdyLvmxzcbUokwA=
|
||||||
github.com/VividCortex/ewma v1.2.0 h1:f58SaIzcDXrSy3kWaHNvuJgJ3Nmz59Zji6XoJR/q1ow=
|
github.com/VividCortex/ewma v1.2.0 h1:f58SaIzcDXrSy3kWaHNvuJgJ3Nmz59Zji6XoJR/q1ow=
|
||||||
github.com/VividCortex/ewma v1.2.0/go.mod h1:nz4BbCtbLyFDeC9SUHbtcT5644juEuWfUAUnGx7j5l4=
|
github.com/VividCortex/ewma v1.2.0/go.mod h1:nz4BbCtbLyFDeC9SUHbtcT5644juEuWfUAUnGx7j5l4=
|
||||||
|
|
2
vendor/github.com/VictoriaMetrics/metricsql/transform.go
generated
vendored
2
vendor/github.com/VictoriaMetrics/metricsql/transform.go
generated
vendored
|
@ -77,6 +77,8 @@ var transformFuncs = map[string]bool{
|
||||||
"range_max": true,
|
"range_max": true,
|
||||||
"range_min": true,
|
"range_min": true,
|
||||||
"range_quantile": true,
|
"range_quantile": true,
|
||||||
|
"range_stddev": true,
|
||||||
|
"range_stdvar": true,
|
||||||
"range_sum": true,
|
"range_sum": true,
|
||||||
"remove_resets": true,
|
"remove_resets": true,
|
||||||
"round": true,
|
"round": true,
|
||||||
|
|
2
vendor/modules.txt
vendored
2
vendor/modules.txt
vendored
|
@ -69,7 +69,7 @@ github.com/VictoriaMetrics/fasthttp/stackless
|
||||||
# github.com/VictoriaMetrics/metrics v1.23.0
|
# github.com/VictoriaMetrics/metrics v1.23.0
|
||||||
## explicit; go 1.15
|
## explicit; go 1.15
|
||||||
github.com/VictoriaMetrics/metrics
|
github.com/VictoriaMetrics/metrics
|
||||||
# github.com/VictoriaMetrics/metricsql v0.46.0
|
# github.com/VictoriaMetrics/metricsql v0.47.0
|
||||||
## explicit; go 1.13
|
## explicit; go 1.13
|
||||||
github.com/VictoriaMetrics/metricsql
|
github.com/VictoriaMetrics/metricsql
|
||||||
github.com/VictoriaMetrics/metricsql/binaryop
|
github.com/VictoriaMetrics/metricsql/binaryop
|
||||||
|
|
Loading…
Reference in a new issue