mirror of
https://github.com/VictoriaMetrics/VictoriaMetrics.git
synced 2024-11-21 14:44:00 +00:00
lib/streamaggr: follow-up for 9c3d44c8c9
- Consistently enumerate stream aggregation outputs in alphabetical order across the source code and docs. This should simplify future maintenance of the corresponding code and docs. - Fix the link to `rate_sum()` at `see also` section of `rate_avg()` docs. - Make more clear the docs for `rate_sum()` and `rate_avg()` outputs. - Encapsulate output metric suffix inside rateAggrState. This eliminates possible bugs related to incorrect suffix passing to newRateAggrState(). - Rename rateAggrState.total field to less misleading rateAggrState.increase name, since it calculates counter increase in the current aggregation window. - Set rateLastValueState.prevTimestamp on the first sample in time series instead of the second sample. This makes more clear the code logic. - Move the code for removing outdated entries at rateAggrState into removeOldEntries() function. This make the code logic inside rateAggrState.flushState() more clear. - Do not write output sample with zero value if there are no input series, which could be used for calculating the rate, e.g. if only a single sample is registered for every input series. - Do not take into account input series with a single registered sample when calculating rate_avg(), since this leads to incorrect results. - Move {rate,total}AggrState.flushState() function to the end of rate.go and total.go files, so they look more similar. This shuld simplify future mantenance. Updates https://github.com/VictoriaMetrics/VictoriaMetrics/pull/6243
This commit is contained in:
parent
4921ec5604
commit
21f049e211
5 changed files with 310 additions and 198 deletions
|
@ -562,14 +562,14 @@ Below are aggregation functions that can be put in the `outputs` list at [stream
|
|||
* [avg](#avg)
|
||||
* [count_samples](#count_samples)
|
||||
* [count_series](#count_series)
|
||||
* [histogram_bucket](#histogram_bucket)
|
||||
* [increase](#increase)
|
||||
* [increase_prometheus](#increase_prometheus)
|
||||
* [rate_sum](#rate_sum)
|
||||
* [rate_avg](#rate_avg)
|
||||
* [histogram_bucket](#histogram_bucket)
|
||||
* [last](#last)
|
||||
* [max](#max)
|
||||
* [min](#min)
|
||||
* [rate_avg](#rate_avg)
|
||||
* [rate_sum](#rate_sum)
|
||||
* [stddev](#stddev)
|
||||
* [stdvar](#stdvar)
|
||||
* [sum_samples](#sum_samples)
|
||||
|
@ -593,7 +593,13 @@ For example, see below time series produced by config with aggregation interval
|
|||
|
||||
<img alt="avg aggregation" src="stream-aggregation-check-avg.webp">
|
||||
|
||||
See also [min](#min), [max](#max), [sum_samples](#sum_samples) and [count_samples](#count_samples).
|
||||
See also:
|
||||
|
||||
- [max](#max)
|
||||
- [min](#min)
|
||||
- [quantiles](#quantiles)
|
||||
- [sum_samples](#sum_samples)
|
||||
- [count_samples](#count_samples)
|
||||
|
||||
### count_samples
|
||||
|
||||
|
@ -605,7 +611,10 @@ The results of `count_samples` is equal to the following [MetricsQL](https://doc
|
|||
sum(count_over_time(some_metric[interval]))
|
||||
```
|
||||
|
||||
See also [count_series](#count_series) and [sum_samples](#sum_samples).
|
||||
See also:
|
||||
|
||||
- [count_series](#count_series)
|
||||
- [sum_samples](#sum_samples)
|
||||
|
||||
### count_series
|
||||
|
||||
|
@ -617,7 +626,33 @@ The results of `count_series` is equal to the following [MetricsQL](https://docs
|
|||
count(last_over_time(some_metric[interval]))
|
||||
```
|
||||
|
||||
See also [count_samples](#count_samples) and [unique_samples](#unique_samples).
|
||||
See also:
|
||||
|
||||
- [count_samples](#count_samples)
|
||||
- [unique_samples](#unique_samples)
|
||||
|
||||
### histogram_bucket
|
||||
|
||||
`histogram_bucket` returns [VictoriaMetrics histogram buckets](https://valyala.medium.com/improving-histogram-usability-for-prometheus-and-grafana-bc7e5df0e350)
|
||||
for the input [sample values](https://docs.victoriametrics.com/keyconcepts/#raw-samples) over the given `interval`.
|
||||
`histogram_bucket` makes sense only for aggregating [gauges](https://docs.victoriametrics.com/keyconcepts/#gauge).
|
||||
See how to aggregate regular histograms [here](#aggregating-histograms).
|
||||
|
||||
The results of `histogram_bucket` is equal to the following [MetricsQL](https://docs.victoriametrics.com/metricsql/) query:
|
||||
|
||||
Aggregating irregular and sporadic metrics (received from [Lambdas](https://aws.amazon.com/lambda/)
|
||||
or [Cloud Functions](https://cloud.google.com/functions)) can be controlled via [staleness_interval](#staleness) option.
|
||||
|
||||
```metricsql
|
||||
sum(histogram_over_time(some_histogram_bucket[interval])) by (vmrange)
|
||||
```
|
||||
|
||||
See also:
|
||||
|
||||
- [quantiles](#quantiles)
|
||||
- [avg](#avg)
|
||||
- [max](#max)
|
||||
- [min](#min)
|
||||
|
||||
### increase
|
||||
|
||||
|
@ -641,33 +676,12 @@ For example, see below time series produced by config with aggregation interval
|
|||
Aggregating irregular and sporadic metrics (received from [Lambdas](https://aws.amazon.com/lambda/)
|
||||
or [Cloud Functions](https://cloud.google.com/functions)) can be controlled via [staleness_interval](#staleness) option.
|
||||
|
||||
See also [increase_prometheus](#increase_prometheus) and [total](#total).
|
||||
See also:
|
||||
|
||||
### rate_sum
|
||||
|
||||
`rate_sum` returns the sum of average per-second change of input [time series](https://docs.victoriametrics.com/keyconcepts/#time-series) over the given `interval`.
|
||||
`rate_sum` makes sense only for aggregating [counters](https://docs.victoriametrics.com/keyconcepts/#counter).
|
||||
|
||||
The results of `rate_sum` are equal to the following [MetricsQL](https://docs.victoriametrics.com/metricsql/) query:
|
||||
|
||||
```metricsql
|
||||
sum(rate(some_counter[interval]))
|
||||
```
|
||||
|
||||
See also [rate_avg](#rate_avg) and [total](#total) outputs.
|
||||
|
||||
### rate_avg
|
||||
|
||||
`rate_avg` returns the average of average per-second of input [time series](https://docs.victoriametrics.com/keyconcepts/#time-series) over the given `interval`.
|
||||
`rate_avg` makes sense only for aggregating [counters](https://docs.victoriametrics.com/keyconcepts/#counter).
|
||||
|
||||
The results of `rate_avg` are equal to the following [MetricsQL](https://docs.victoriametrics.com/metricsql/) query:
|
||||
|
||||
```metricsql
|
||||
avg(rate(some_counter[interval]))
|
||||
```
|
||||
|
||||
See also [rate_sum](#rate_avg) and [total](#total) outputs.
|
||||
- [increase_prometheus](#increase_prometheus)
|
||||
- [total](#total)
|
||||
- [rate_avg](#rate_avg)
|
||||
- [rate_sum](#rate_sum)
|
||||
|
||||
### increase_prometheus
|
||||
|
||||
|
@ -686,25 +700,13 @@ If you need taking into account the first sample per time series, then take a lo
|
|||
Aggregating irregular and sporadic metrics (received from [Lambdas](https://aws.amazon.com/lambda/)
|
||||
or [Cloud Functions](https://cloud.google.com/functions)) can be controlled via [staleness_interval](#staleness) option.
|
||||
|
||||
See also [increase](#increase), [total](#total) and [total_prometheus](#total_prometheus).
|
||||
See also:
|
||||
|
||||
### histogram_bucket
|
||||
|
||||
`histogram_bucket` returns [VictoriaMetrics histogram buckets](https://valyala.medium.com/improving-histogram-usability-for-prometheus-and-grafana-bc7e5df0e350)
|
||||
for the input [sample values](https://docs.victoriametrics.com/keyconcepts/#raw-samples) over the given `interval`.
|
||||
`histogram_bucket` makes sense only for aggregating [gauges](https://docs.victoriametrics.com/keyconcepts/#gauge).
|
||||
See how to aggregate regular histograms [here](#aggregating-histograms).
|
||||
|
||||
The results of `histogram_bucket` is equal to the following [MetricsQL](https://docs.victoriametrics.com/metricsql/) query:
|
||||
|
||||
Aggregating irregular and sporadic metrics (received from [Lambdas](https://aws.amazon.com/lambda/)
|
||||
or [Cloud Functions](https://cloud.google.com/functions)) can be controlled via [staleness_interval](#staleness) option.
|
||||
|
||||
```metricsql
|
||||
sum(histogram_over_time(some_histogram_bucket[interval])) by (vmrange)
|
||||
```
|
||||
|
||||
See also [quantiles](#quantiles), [min](#min), [max](#max) and [avg](#avg).
|
||||
- [increase](#increase)
|
||||
- [rate_avg](#rate_avg)
|
||||
- [rate_sum](#rate_sum)
|
||||
- [total](#total)
|
||||
- [total_prometheus](#total_prometheus)
|
||||
|
||||
### last
|
||||
|
||||
|
@ -716,7 +718,12 @@ The results of `last` is roughly equal to the following [MetricsQL](https://docs
|
|||
last_over_time(some_metric[interval])
|
||||
```
|
||||
|
||||
See also [min](#min), [max](#max) and [avg](#avg).
|
||||
See also:
|
||||
|
||||
- [avg](#avg)
|
||||
- [max](#max)
|
||||
- [min](#min)
|
||||
- [quantiles](#quantiles)
|
||||
|
||||
### max
|
||||
|
||||
|
@ -732,7 +739,12 @@ For example, see below time series produced by config with aggregation interval
|
|||
|
||||
<img alt="total aggregation" src="stream-aggregation-check-max.webp">
|
||||
|
||||
See also [min](#min) and [avg](#avg).
|
||||
See also:
|
||||
|
||||
- [min](#min)
|
||||
- [avg](#avg)
|
||||
- [last](#last)
|
||||
- [quantiles](#quantiles)
|
||||
|
||||
### min
|
||||
|
||||
|
@ -748,7 +760,46 @@ For example, see below time series produced by config with aggregation interval
|
|||
|
||||
<img alt="min aggregation" src="stream-aggregation-check-min.webp">
|
||||
|
||||
See also [max](#max) and [avg](#avg).
|
||||
See also:
|
||||
|
||||
- [max](#max)
|
||||
- [avg](#avg)
|
||||
- [last](#last)
|
||||
- [quantiles](#quantiles)
|
||||
|
||||
### rate_avg
|
||||
|
||||
`rate_avg` returns the average of average per-second increase rates across input [time series](https://docs.victoriametrics.com/keyconcepts/#time-series) over the given `interval`.
|
||||
`rate_avg` makes sense only for aggregating [counters](https://docs.victoriametrics.com/keyconcepts/#counter).
|
||||
|
||||
The results of `rate_avg` are equal to the following [MetricsQL](https://docs.victoriametrics.com/metricsql/) query:
|
||||
|
||||
```metricsql
|
||||
avg(rate(some_counter[interval]))
|
||||
```
|
||||
|
||||
See also:
|
||||
|
||||
- [rate_sum](#rate_sum)
|
||||
- [increase](#increase)
|
||||
- [total](#total)
|
||||
|
||||
### rate_sum
|
||||
|
||||
`rate_sum` returns the sum of average per-second increase rates across input [time series](https://docs.victoriametrics.com/keyconcepts/#time-series) over the given `interval`.
|
||||
`rate_sum` makes sense only for aggregating [counters](https://docs.victoriametrics.com/keyconcepts/#counter).
|
||||
|
||||
The results of `rate_sum` are equal to the following [MetricsQL](https://docs.victoriametrics.com/metricsql/) query:
|
||||
|
||||
```metricsql
|
||||
sum(rate(some_counter[interval]))
|
||||
```
|
||||
|
||||
See also:
|
||||
|
||||
- [rate_avg](#rate_avg)
|
||||
- [increase](#increase)
|
||||
- [total](#total)
|
||||
|
||||
### stddev
|
||||
|
||||
|
@ -762,7 +813,11 @@ The results of `stddev` is roughly equal to the following [MetricsQL](https://do
|
|||
histogram_stddev(sum(histogram_over_time(some_metric[interval])) by (vmrange))
|
||||
```
|
||||
|
||||
See also [stdvar](#stdvar) and [avg](#avg).
|
||||
See also:
|
||||
|
||||
- [stdvar](#stdvar)
|
||||
- [avg](#avg)
|
||||
- [quantiles](#quantiles)
|
||||
|
||||
### stdvar
|
||||
|
||||
|
@ -780,7 +835,11 @@ For example, see below time series produced by config with aggregation interval
|
|||
|
||||
<img alt="stdvar aggregation" src="stream-aggregation-check-stdvar.webp">
|
||||
|
||||
See also [stddev](#stddev) and [avg](#avg).
|
||||
See also:
|
||||
|
||||
- [stddev](#stddev)
|
||||
- [avg](#avg)
|
||||
- [quantiles](#quantiles)
|
||||
|
||||
### sum_samples
|
||||
|
||||
|
@ -797,7 +856,10 @@ For example, see below time series produced by config with aggregation interval
|
|||
|
||||
<img alt="sum_samples aggregation" src="stream-aggregation-check-sum-samples.webp">
|
||||
|
||||
See also [count_samples](#count_samples) and [count_series](#count_series).
|
||||
See also:
|
||||
|
||||
- [count_samples](#count_samples)
|
||||
- [count_series](#count_series)
|
||||
|
||||
### total
|
||||
|
||||
|
@ -834,7 +896,13 @@ This changes pod name label, but the `total` accounts for such a scenario and do
|
|||
Aggregating irregular and sporadic metrics (received from [Lambdas](https://aws.amazon.com/lambda/)
|
||||
or [Cloud Functions](https://cloud.google.com/functions)) can be controlled via [staleness_interval](#staleness) option.
|
||||
|
||||
See also [total_prometheus](#total_prometheus), [increase](#increase) and [increase_prometheus](#increase_prometheus).
|
||||
See also:
|
||||
|
||||
- [total_prometheus](#total_prometheus)
|
||||
- [increase](#increase)
|
||||
- [increase_prometheus](#increase_prometheus)
|
||||
- [rate_sum](#rate_sum)
|
||||
- [rate_avg](#rate_avg)
|
||||
|
||||
### total_prometheus
|
||||
|
||||
|
@ -857,7 +925,13 @@ The counters are most often reset when the application is restarted.
|
|||
Aggregating irregular and sporadic metrics (received from [Lambdas](https://aws.amazon.com/lambda/)
|
||||
or [Cloud Functions](https://cloud.google.com/functions)) can be controlled via [staleness_interval](#staleness) option.
|
||||
|
||||
See also [total](#total), [increase](#increase) and [increase_prometheus](#increase_prometheus).
|
||||
See also:
|
||||
|
||||
- [total](#total)
|
||||
- [increase](#increase)
|
||||
- [increase_prometheus](#increase_prometheus)
|
||||
- [rate_sum](#rate_sum)
|
||||
- [rate_avg](#rate_avg)
|
||||
|
||||
### unique_samples
|
||||
|
||||
|
@ -870,7 +944,10 @@ The results of `unique_samples` is equal to the following [MetricsQL](https://do
|
|||
count(count_values_over_time(some_metric[interval]))
|
||||
```
|
||||
|
||||
See also [sum_samples](#sum_samples) and [count_series](#count_series).
|
||||
See also:
|
||||
|
||||
- [sum_samples](#sum_samples)
|
||||
- [count_series](#count_series)
|
||||
|
||||
### quantiles
|
||||
|
||||
|
@ -885,7 +962,12 @@ The results of `quantiles(phi1, ..., phiN)` is equal to the following [MetricsQL
|
|||
histogram_quantiles("quantile", phi1, ..., phiN, sum(histogram_over_time(some_metric[interval])) by (vmrange))
|
||||
```
|
||||
|
||||
See also [histogram_bucket](#histogram_bucket), [min](#min), [max](#max) and [avg](#avg).
|
||||
See also:
|
||||
|
||||
- [histogram_bucket](#histogram_bucket)
|
||||
- [avg](#avg)
|
||||
- [max](#max)
|
||||
- [min](#min)
|
||||
|
||||
|
||||
## Aggregating by labels
|
||||
|
@ -962,11 +1044,13 @@ specified individually per each `-remoteWrite.url`:
|
|||
|
||||
# staleness_interval is an optional interval for resetting the per-series state if no new samples
|
||||
# are received during this interval for the following outputs:
|
||||
# - total
|
||||
# - total_prometheus
|
||||
# - histogram_bucket
|
||||
# - increase
|
||||
# - increase_prometheus
|
||||
# - histogram_bucket
|
||||
# - rate_avg
|
||||
# - rate_sum
|
||||
# - total
|
||||
# - total_prometheus
|
||||
# See https://docs.victoriametrics.com/stream-aggregation/#staleness for more details.
|
||||
#
|
||||
# staleness_interval: 2m
|
||||
|
@ -1071,13 +1155,13 @@ support the following approaches for hot reloading stream aggregation configs fr
|
|||
|
||||
The following outputs track the last seen per-series values in order to properly calculate output values:
|
||||
|
||||
- [rate_sum](#rate_sum)
|
||||
- [rate_avg](#rate_avg)
|
||||
- [total](#total)
|
||||
- [total_prometheus](#total_prometheus)
|
||||
- [histogram_bucket](#histogram_bucket)
|
||||
- [increase](#increase)
|
||||
- [increase_prometheus](#increase_prometheus)
|
||||
- [histogram_bucket](#histogram_bucket)
|
||||
- [rate_avg](#rate_avg)
|
||||
- [rate_sum](#rate_sum)
|
||||
- [total](#total)
|
||||
- [total_prometheus](#total_prometheus)
|
||||
|
||||
The last seen per-series value is dropped if no new samples are received for the given time series during two consecutive aggregation
|
||||
intervals specified in [stream aggregation config](#stream-aggregation-config) via `interval` option.
|
||||
|
|
|
@ -8,11 +8,12 @@ import (
|
|||
"github.com/VictoriaMetrics/VictoriaMetrics/lib/fasttime"
|
||||
)
|
||||
|
||||
// rateAggrState calculates output=rate, e.g. the counter per-second change.
|
||||
// rateAggrState calculates output=rate_avg and rate_sum, e.g. the average per-second increase rate for counter metrics.
|
||||
type rateAggrState struct {
|
||||
m sync.Map
|
||||
|
||||
suffix string
|
||||
// isAvg is set to true if rate_avg() must be calculated instead of rate_sum().
|
||||
isAvg bool
|
||||
|
||||
// Time series state is dropped if no new samples are received during stalenessSecs.
|
||||
stalenessSecs uint64
|
||||
|
@ -30,18 +31,17 @@ type rateLastValueState struct {
|
|||
timestamp int64
|
||||
deleteDeadline uint64
|
||||
|
||||
// total stores cumulative difference between registered values
|
||||
// in the aggregation interval
|
||||
total float64
|
||||
// prevTimestamp stores timestamp of the last registered value
|
||||
// in the previous aggregation interval
|
||||
// increase stores cumulative increase for the current time series on the current aggregation interval
|
||||
increase float64
|
||||
|
||||
// prevTimestamp is the timestamp of the last registered sample in the previous aggregation interval
|
||||
prevTimestamp int64
|
||||
}
|
||||
|
||||
func newRateAggrState(stalenessInterval time.Duration, suffix string) *rateAggrState {
|
||||
func newRateAggrState(stalenessInterval time.Duration, isAvg bool) *rateAggrState {
|
||||
stalenessSecs := roundDurationToSecs(stalenessInterval)
|
||||
return &rateAggrState{
|
||||
suffix: suffix,
|
||||
isAvg: isAvg,
|
||||
stalenessSecs: stalenessSecs,
|
||||
}
|
||||
}
|
||||
|
@ -78,15 +78,15 @@ func (as *rateAggrState) pushSamples(samples []pushSample) {
|
|||
sv.mu.Unlock()
|
||||
continue
|
||||
}
|
||||
if lv.prevTimestamp == 0 {
|
||||
lv.prevTimestamp = lv.timestamp
|
||||
}
|
||||
|
||||
if s.value >= lv.value {
|
||||
lv.total += s.value - lv.value
|
||||
lv.increase += s.value - lv.value
|
||||
} else {
|
||||
// counter reset
|
||||
lv.total += s.value
|
||||
lv.increase += s.value
|
||||
}
|
||||
} else {
|
||||
lv.prevTimestamp = s.timestamp
|
||||
}
|
||||
lv.value = s.value
|
||||
lv.timestamp = s.timestamp
|
||||
|
@ -108,54 +108,77 @@ func (as *rateAggrState) pushSamples(samples []pushSample) {
|
|||
func (as *rateAggrState) flushState(ctx *flushCtx, _ bool) {
|
||||
currentTime := fasttime.UnixTimestamp()
|
||||
currentTimeMsec := int64(currentTime) * 1000
|
||||
var staleOutputSamples, staleInputSamples int
|
||||
|
||||
suffix := "rate_sum"
|
||||
if as.isAvg {
|
||||
suffix = "rate_avg"
|
||||
}
|
||||
|
||||
as.removeOldEntries(ctx, suffix, currentTime)
|
||||
|
||||
m := &as.m
|
||||
m.Range(func(k, v any) bool {
|
||||
sv := v.(*rateStateValue)
|
||||
sv.mu.Lock()
|
||||
|
||||
// check for stale entries
|
||||
deleted := currentTime > sv.deleteDeadline
|
||||
if deleted {
|
||||
// Mark the current entry as deleted
|
||||
sv.deleted = deleted
|
||||
sv.mu.Lock()
|
||||
lvs := sv.lastValues
|
||||
sumRate := 0.0
|
||||
countSeries := 0
|
||||
for k1, lv := range lvs {
|
||||
d := float64(lv.timestamp-lv.prevTimestamp) / 1000
|
||||
if d > 0 {
|
||||
sumRate += lv.increase / d
|
||||
countSeries++
|
||||
}
|
||||
lv.prevTimestamp = lv.timestamp
|
||||
lv.increase = 0
|
||||
lvs[k1] = lv
|
||||
}
|
||||
sv.mu.Unlock()
|
||||
|
||||
if countSeries == 0 {
|
||||
// Nothing to update
|
||||
return true
|
||||
}
|
||||
|
||||
result := sumRate
|
||||
if as.isAvg {
|
||||
result /= float64(countSeries)
|
||||
}
|
||||
|
||||
key := k.(string)
|
||||
ctx.appendSeries(key, suffix, currentTimeMsec, result)
|
||||
return true
|
||||
})
|
||||
}
|
||||
|
||||
func (as *rateAggrState) removeOldEntries(ctx *flushCtx, suffix string, currentTime uint64) {
|
||||
m := &as.m
|
||||
var staleOutputSamples, staleInputSamples int
|
||||
m.Range(func(k, v any) bool {
|
||||
sv := v.(*rateStateValue)
|
||||
|
||||
sv.mu.Lock()
|
||||
if currentTime > sv.deleteDeadline {
|
||||
// Mark the current entry as deleted
|
||||
sv.deleted = true
|
||||
staleOutputSamples++
|
||||
sv.mu.Unlock()
|
||||
m.Delete(k)
|
||||
return true
|
||||
}
|
||||
|
||||
// Delete outdated entries in sv.lastValues
|
||||
var rate float64
|
||||
lvs := sv.lastValues
|
||||
for k1, v1 := range lvs {
|
||||
if currentTime > v1.deleteDeadline {
|
||||
for k1, lv := range lvs {
|
||||
if currentTime > lv.deleteDeadline {
|
||||
delete(lvs, k1)
|
||||
staleInputSamples++
|
||||
continue
|
||||
}
|
||||
rateInterval := v1.timestamp - v1.prevTimestamp
|
||||
if v1.prevTimestamp > 0 && rateInterval > 0 {
|
||||
// calculate rate only if value was seen at least twice with different timestamps
|
||||
rate += v1.total * 1000 / float64(rateInterval)
|
||||
v1.prevTimestamp = v1.timestamp
|
||||
v1.total = 0
|
||||
lvs[k1] = v1
|
||||
}
|
||||
}
|
||||
// capture m length after deleted items were removed
|
||||
totalItems := len(lvs)
|
||||
sv.mu.Unlock()
|
||||
|
||||
if as.suffix == "rate_avg" && totalItems > 0 {
|
||||
rate /= float64(totalItems)
|
||||
}
|
||||
|
||||
key := k.(string)
|
||||
ctx.appendSeries(key, as.suffix, currentTimeMsec, rate)
|
||||
return true
|
||||
})
|
||||
ctx.a.staleOutputSamples[as.suffix].Add(staleOutputSamples)
|
||||
ctx.a.staleInputSamples[as.suffix].Add(staleInputSamples)
|
||||
ctx.a.staleInputSamples[suffix].Add(staleInputSamples)
|
||||
ctx.a.staleOutputSamples[suffix].Add(staleOutputSamples)
|
||||
}
|
||||
|
|
|
@ -27,24 +27,24 @@ import (
|
|||
)
|
||||
|
||||
var supportedOutputs = []string{
|
||||
"rate_sum",
|
||||
"rate_avg",
|
||||
"total",
|
||||
"total_prometheus",
|
||||
"avg",
|
||||
"count_samples",
|
||||
"count_series",
|
||||
"histogram_bucket",
|
||||
"increase",
|
||||
"increase_prometheus",
|
||||
"count_series",
|
||||
"count_samples",
|
||||
"unique_samples",
|
||||
"sum_samples",
|
||||
"last",
|
||||
"min",
|
||||
"max",
|
||||
"avg",
|
||||
"min",
|
||||
"quantiles(phi1, ..., phiN)",
|
||||
"rate_avg",
|
||||
"rate_sum",
|
||||
"stddev",
|
||||
"stdvar",
|
||||
"histogram_bucket",
|
||||
"quantiles(phi1, ..., phiN)",
|
||||
"sum_samples",
|
||||
"total",
|
||||
"total_prometheus",
|
||||
"unique_samples",
|
||||
}
|
||||
|
||||
// maxLabelValueLen is maximum match expression label value length in stream aggregation metrics
|
||||
|
@ -175,24 +175,24 @@ type Config struct {
|
|||
//
|
||||
// The following names are allowed:
|
||||
//
|
||||
// - rate_sum - calculates sum of rate for input counters
|
||||
// - rate_avg - calculates average of rate for input counters
|
||||
// - total - aggregates input counters
|
||||
// - total_prometheus - aggregates input counters, ignoring the first sample in new time series
|
||||
// - avg - the average value across all the samples
|
||||
// - count_samples - counts the input samples
|
||||
// - count_series - counts the number of unique input series
|
||||
// - histogram_bucket - creates VictoriaMetrics histogram for input samples
|
||||
// - increase - calculates the increase over input series
|
||||
// - increase_prometheus - calculates the increase over input series, ignoring the first sample in new time series
|
||||
// - count_series - counts the number of unique input series
|
||||
// - count_samples - counts the input samples
|
||||
// - unique_samples - counts the number of unique sample values
|
||||
// - sum_samples - sums the input sample values
|
||||
// - last - the last biggest sample value
|
||||
// - min - the minimum sample value
|
||||
// - max - the maximum sample value
|
||||
// - avg - the average value across all the samples
|
||||
// - min - the minimum sample value
|
||||
// - quantiles(phi1, ..., phiN) - quantiles' estimation for phi in the range [0..1]
|
||||
// - rate_avg - calculates average of rate for input counters
|
||||
// - rate_sum - calculates sum of rate for input counters
|
||||
// - stddev - standard deviation across all the samples
|
||||
// - stdvar - standard variance across all the samples
|
||||
// - histogram_bucket - creates VictoriaMetrics histogram for input samples
|
||||
// - quantiles(phi1, ..., phiN) - quantiles' estimation for phi in the range [0..1]
|
||||
// - sum_samples - sums the input sample values
|
||||
// - total - aggregates input counters
|
||||
// - total_prometheus - aggregates input counters, ignoring the first sample in new time series
|
||||
// - unique_samples - counts the number of unique sample values
|
||||
//
|
||||
// The output time series will have the following names by default:
|
||||
//
|
||||
|
@ -562,40 +562,40 @@ func newAggregator(cfg *Config, pushFunc PushFunc, ms *metrics.Set, opts Options
|
|||
continue
|
||||
}
|
||||
switch output {
|
||||
case "total":
|
||||
aggrStates[output] = newTotalAggrState(stalenessInterval, false, true)
|
||||
case "total_prometheus":
|
||||
aggrStates[output] = newTotalAggrState(stalenessInterval, false, false)
|
||||
case "avg":
|
||||
aggrStates[output] = newAvgAggrState()
|
||||
case "count_samples":
|
||||
aggrStates[output] = newCountSamplesAggrState()
|
||||
case "count_series":
|
||||
aggrStates[output] = newCountSeriesAggrState()
|
||||
case "histogram_bucket":
|
||||
aggrStates[output] = newHistogramBucketAggrState(stalenessInterval)
|
||||
case "increase":
|
||||
aggrStates[output] = newTotalAggrState(stalenessInterval, true, true)
|
||||
case "increase_prometheus":
|
||||
aggrStates[output] = newTotalAggrState(stalenessInterval, true, false)
|
||||
case "rate_sum":
|
||||
aggrStates[output] = newRateAggrState(stalenessInterval, "rate_sum")
|
||||
case "rate_avg":
|
||||
aggrStates[output] = newRateAggrState(stalenessInterval, "rate_avg")
|
||||
case "count_series":
|
||||
aggrStates[output] = newCountSeriesAggrState()
|
||||
case "count_samples":
|
||||
aggrStates[output] = newCountSamplesAggrState()
|
||||
case "unique_samples":
|
||||
aggrStates[output] = newUniqueSamplesAggrState()
|
||||
case "sum_samples":
|
||||
aggrStates[output] = newSumSamplesAggrState()
|
||||
case "last":
|
||||
aggrStates[output] = newLastAggrState()
|
||||
case "min":
|
||||
aggrStates[output] = newMinAggrState()
|
||||
case "max":
|
||||
aggrStates[output] = newMaxAggrState()
|
||||
case "avg":
|
||||
aggrStates[output] = newAvgAggrState()
|
||||
case "min":
|
||||
aggrStates[output] = newMinAggrState()
|
||||
case "rate_avg":
|
||||
aggrStates[output] = newRateAggrState(stalenessInterval, true)
|
||||
case "rate_sum":
|
||||
aggrStates[output] = newRateAggrState(stalenessInterval, false)
|
||||
case "stddev":
|
||||
aggrStates[output] = newStddevAggrState()
|
||||
case "stdvar":
|
||||
aggrStates[output] = newStdvarAggrState()
|
||||
case "histogram_bucket":
|
||||
aggrStates[output] = newHistogramBucketAggrState(stalenessInterval)
|
||||
case "sum_samples":
|
||||
aggrStates[output] = newSumSamplesAggrState()
|
||||
case "total":
|
||||
aggrStates[output] = newTotalAggrState(stalenessInterval, false, true)
|
||||
case "total_prometheus":
|
||||
aggrStates[output] = newTotalAggrState(stalenessInterval, false, false)
|
||||
case "unique_samples":
|
||||
aggrStates[output] = newUniqueSamplesAggrState()
|
||||
default:
|
||||
return nil, fmt.Errorf("unsupported output=%q; supported values: %s;", output, supportedOutputs)
|
||||
}
|
||||
|
|
|
@ -891,21 +891,28 @@ foo{abc="123", cde="1"} 4
|
|||
foo{abc="123", cde="1"} 8.5 10
|
||||
foo{abc="456", cde="1"} 8
|
||||
foo{abc="456", cde="1"} 10 10
|
||||
foo 12 34
|
||||
`, `foo:1m_by_cde_rate_avg{cde="1"} 0.325
|
||||
foo:1m_by_cde_rate_sum{cde="1"} 0.65
|
||||
`, "1111")
|
||||
`, "11111")
|
||||
|
||||
// rate with duplicated events
|
||||
// rate_sum and rate_avg with duplicated events
|
||||
f(`
|
||||
- interval: 1m
|
||||
by: [cde]
|
||||
outputs: [rate_sum, rate_avg]
|
||||
`, `
|
||||
foo{abc="123", cde="1"} 4 10
|
||||
foo{abc="123", cde="1"} 4 10
|
||||
`, `foo:1m_by_cde_rate_avg{cde="1"} 0
|
||||
foo:1m_by_cde_rate_sum{cde="1"} 0
|
||||
`, "11")
|
||||
`, ``, "11")
|
||||
|
||||
// rate_sum and rate_avg for a single sample
|
||||
f(`
|
||||
- interval: 1m
|
||||
outputs: [rate_sum, rate_avg]
|
||||
`, `
|
||||
foo 4 10
|
||||
bar 5 10
|
||||
`, ``, "11")
|
||||
|
||||
// unique_samples output
|
||||
f(`
|
||||
|
|
|
@ -9,7 +9,7 @@ import (
|
|||
"github.com/VictoriaMetrics/VictoriaMetrics/lib/fasttime"
|
||||
)
|
||||
|
||||
// totalAggrState calculates output=total, e.g. the summary counter over input counters.
|
||||
// totalAggrState calculates output=total, total_prometheus, increase and increase_prometheus.
|
||||
type totalAggrState struct {
|
||||
m sync.Map
|
||||
|
||||
|
@ -124,39 +124,6 @@ func (as *totalAggrState) pushSamples(samples []pushSample) {
|
|||
}
|
||||
}
|
||||
|
||||
func (as *totalAggrState) removeOldEntries(ctx *flushCtx, currentTime uint64) {
|
||||
m := &as.m
|
||||
var staleInputSamples, staleOutputSamples int
|
||||
m.Range(func(k, v any) bool {
|
||||
sv := v.(*totalStateValue)
|
||||
|
||||
sv.mu.Lock()
|
||||
deleted := currentTime > sv.deleteDeadline
|
||||
if deleted {
|
||||
// Mark the current entry as deleted
|
||||
sv.deleted = deleted
|
||||
staleOutputSamples++
|
||||
} else {
|
||||
// Delete outdated entries in sv.lastValues
|
||||
m := sv.lastValues
|
||||
for k1, v1 := range m {
|
||||
if currentTime > v1.deleteDeadline {
|
||||
delete(m, k1)
|
||||
staleInputSamples++
|
||||
}
|
||||
}
|
||||
}
|
||||
sv.mu.Unlock()
|
||||
|
||||
if deleted {
|
||||
m.Delete(k)
|
||||
}
|
||||
return true
|
||||
})
|
||||
ctx.a.staleInputSamples[as.suffix].Add(staleInputSamples)
|
||||
ctx.a.staleOutputSamples[as.suffix].Add(staleOutputSamples)
|
||||
}
|
||||
|
||||
func (as *totalAggrState) flushState(ctx *flushCtx, resetState bool) {
|
||||
currentTime := fasttime.UnixTimestamp()
|
||||
currentTimeMsec := int64(currentTime) * 1000
|
||||
|
@ -185,3 +152,34 @@ func (as *totalAggrState) flushState(ctx *flushCtx, resetState bool) {
|
|||
return true
|
||||
})
|
||||
}
|
||||
|
||||
func (as *totalAggrState) removeOldEntries(ctx *flushCtx, currentTime uint64) {
|
||||
m := &as.m
|
||||
var staleInputSamples, staleOutputSamples int
|
||||
m.Range(func(k, v any) bool {
|
||||
sv := v.(*totalStateValue)
|
||||
|
||||
sv.mu.Lock()
|
||||
if currentTime > sv.deleteDeadline {
|
||||
// Mark the current entry as deleted
|
||||
sv.deleted = true
|
||||
staleOutputSamples++
|
||||
sv.mu.Unlock()
|
||||
m.Delete(k)
|
||||
return true
|
||||
}
|
||||
|
||||
// Delete outdated entries in sv.lastValues
|
||||
lvs := sv.lastValues
|
||||
for k1, lv := range lvs {
|
||||
if currentTime > lv.deleteDeadline {
|
||||
delete(lvs, k1)
|
||||
staleInputSamples++
|
||||
}
|
||||
}
|
||||
sv.mu.Unlock()
|
||||
return true
|
||||
})
|
||||
ctx.a.staleInputSamples[as.suffix].Add(staleInputSamples)
|
||||
ctx.a.staleOutputSamples[as.suffix].Add(staleOutputSamples)
|
||||
}
|
||||
|
|
Loading…
Reference in a new issue