Merge branch 'public-single-node' into pmm-6401-read-prometheus-data-files

This commit is contained in:
Aliaksandr Valialkin 2022-08-21 19:17:23 +03:00
commit 3600c97ad7
No known key found for this signature in database
GPG key ID: A72BEC6CD3D0DED1
29 changed files with 1920 additions and 449 deletions

View file

@ -610,8 +610,8 @@ For example, `/api/put?extra_label=foo=bar` would add `{foo="bar"}` label to all
VictoriaMetrics supports the following handlers from [Prometheus querying API](https://prometheus.io/docs/prometheus/latest/querying/api/):
* [/api/v1/query](https://prometheus.io/docs/prometheus/latest/querying/api/#instant-queries)
* [/api/v1/query_range](https://prometheus.io/docs/prometheus/latest/querying/api/#range-queries)
* [/api/v1/query](https://docs.victoriametrics.com/keyConcepts.html#instant-query)
* [/api/v1/query_range](https://docs.victoriametrics.com/keyConcepts.html#range-query)
* [/api/v1/series](https://prometheus.io/docs/prometheus/latest/querying/api/#finding-series-by-label-matchers)
* [/api/v1/labels](https://prometheus.io/docs/prometheus/latest/querying/api/#getting-label-names)
* [/api/v1/label/.../values](https://prometheus.io/docs/prometheus/latest/querying/api/#querying-label-values)

View file

@ -205,12 +205,12 @@ The following variables are available in templating:
| $labels or .Labels | The list of labels of the current alert. Use as ".Labels.<label_name>". | {% raw %}"Too high number of connections for {{ .Labels.instance }}"{% endraw %} |
| $alertID or .AlertID | The current alert's ID generated by vmalert. | {% raw %}"Link: vmalert/alert?group_id={{.GroupID}}&alert_id={{.AlertID}}"{% endraw %} |
| $groupID or .GroupID | The current alert's group ID generated by vmalert. | {% raw %}"Link: vmalert/alert?group_id={{.GroupID}}&alert_id={{.AlertID}}"{% endraw %} |
| $expr or .Expr | Alert's expression. Can be used for generating links to Grafana or other systems. | {% raw %}"/api/v1/query?query={{ $expr&vert;quotesEscape&vert;queryEscape }}"{% endraw %} |
| $expr or .Expr | Alert's expression. Can be used for generating links to Grafana or other systems. | {% raw %}"/api/v1/query?query={{ $expr&#124;quotesEscape&#124;queryEscape }}"{% endraw %} |
| $externalLabels or .ExternalLabels | List of labels configured via `-external.label` command-line flag. | {% raw %}"Issues with {{ $labels.instance }} (datacenter-{{ $externalLabels.dc }})"{% endraw %} |
| $externalURL or .ExternalURL | URL configured via `-external.url` command-line flag. Used for cases when vmalert is hidden behind proxy. | {% raw %}"Visit {{ $externalURL }} for more details"{% endraw %} |
Additionally, `vmalert` provides some extra templating functions
listed [here](https://github.com/VictoriaMetrics/VictoriaMetrics/blob/master/app/vmalert/notifier/template_func.go)
listed [here](https://github.com/VictoriaMetrics/VictoriaMetrics/blob/master/app/vmalert/templates/template.go)
and [reusable templates](#reusable-templates).
#### Reusable templates

View file

@ -40,7 +40,7 @@ services:
restart: always
grafana:
container_name: grafana
image: grafana/grafana:9.0.6
image: grafana/grafana:9.1.0
depends_on:
- "victoriametrics"
ports:

View file

@ -16,11 +16,13 @@ The following tip changes can be tested by building VictoriaMetrics components f
## tip
**Update note 1:** [vmalert](https://docs.victoriametrics.com/vmalert.html) by default hides values of `-remoteWrite.url`, `-remoteRead.url` and `-datasource.url` in logs and at `http://vmalert:8880/flags` for security reasons. See the corresponding SECURITY change in the Chagelog below for additional info.
**Update note 2:** [vmalert](https://docs.victoriametrics.com/vmalert.html) by default points alert source url to `/vmalert/alert?...` aka [web UI](https://docs.victoriametrics.com/vmalert.html#web) instead of `/vmalert/api/v1/alert?...` aka JSON handler. The old behavior can be returned back by seting `-external.alert.source=vmalert/api/v1/alert?group_id={{.GroupID}}&alert_id={{.AlertID}}` command-line flag.
**Update note 2:** [vmalert](https://docs.victoriametrics.com/vmalert.html) by default points alert source url to `/vmalert/alert?...` aka [web UI](https://docs.victoriametrics.com/vmalert.html#web) instead of `/vmalert/api/v1/alert?...` aka JSON handler. The old behavior can be achieved by setting {% raw %}`-external.alert.source=vmalert/api/v1/alert?group_id={{.GroupID}}&alert_id={{.AlertID}}`{% endraw %} command-line flag.
* SECURITY: [vmalert](https://docs.victoriametrics.com/vmalert.html): do not expose `-remoteWrite.url`, `-remoteRead.url` and `-datasource.url` command-line flag values in logs and at `http://vmalert:8880/flags` page by default, since they may contain sensitive data such as auth keys. This aligns `vmalert` behaviour with [vmagent](https://docs.victoriametrics.com/vmagent.html), which doesn't expose `-remoteWrite.url` command-line flag value in logs and at `http://vmagent:8429/flags` page by default. Specify `-remoteWrite.showURL`, `-remoteRead.showURL` and `-datasource.showURL` command-line flags for showing values for the corresponding `-*.url` flags in logs. Thanks to @mble for [the pull request](https://github.com/VictoriaMetrics/VictoriaMetrics/pull/2965).
* FEATURE: return shorter error messages to Grafana and to other clients requesting [/api/v1/query](https://prometheus.io/docs/prometheus/latest/querying/api/#instant-queries) and [/api/v1/query_range](https://prometheus.io/docs/prometheus/latest/querying/api/#range-queries) endpoints. This should simplify reading these errors by humans. The long error message with full context is still written to logs.
* FEATURE: return shorter error messages to Grafana and to other clients requesting [/api/v1/query](https://docs.victoriametrics.com/keyConcepts.html#instant-query) and [/api/v1/query_range](https://docs.victoriametrics.com/keyConcepts.html#range-query) endpoints. This should simplify reading these errors by humans. The long error message with full context is still written to logs.
* FEATURE: [VictoriaMetrics cluster](https://docs.victoriametrics.com/Cluster-VictoriaMetrics.html): reduce the amounts of logging at `vmstorage` when `vmselect` connects/disconnects to `vmstorage`.
* FEATURE: [VictoriaMetrics cluster](https://docs.victoriametrics.com/Cluster-VictoriaMetrics.html): improve performance for heavy queries on systems with many CPU cores.
* FEATURE: [vmagent](https://docs.victoriametrics.com/vmagent.html): generate additional per-target metrics - `scrape_series_limit`, `scrape_series_current` and `scrape_series_limit_samples_dropped` if series limit is set according to [these docs](https://docs.victoriametrics.com/vmagent.html#cardinality-limiter). This simplifies alerting on targets with the exceeded series limit. See [these docs](https://docs.victoriametrics.com/vmagent.html#automatically-generated-metrics) for details on these metrics.
* FEATURE: [vmagent](https://docs.victoriametrics.com/vmagent.html): add support for MX record types in [dns_sd_configs](https://docs.victoriametrics.com/sd_configs.html#dns_sd_configs) in the same way as Prometheus 2.38 [does](https://github.com/prometheus/prometheus/pull/10099).
@ -30,7 +32,7 @@ The following tip changes can be tested by building VictoriaMetrics components f
* FEATURE: [vmui](https://docs.victoriametrics.com/#vmui): add a legend in the top right corner for shortcut keys. See [this feature request](https://github.com/VictoriaMetrics/VictoriaMetrics/issues/2813).
* FEATURE: [vmalert](https://docs.victoriametrics.com/vmalert.html): add `toTime()` template function in the same way as Prometheus 2.38 [does](https://github.com/prometheus/prometheus/pull/10993). See [these docs](https://prometheus.io/docs/prometheus/latest/configuration/template_reference/#numbers).
* FEATURE: [vmalert](https://docs.victoriametrics.com/vmalert.html): add `$alertID` and `$groupID` template variables. These variables may be used for templating annotations or `-external.alert.source` command-line flag. See the full list of supported variables [here](https://docs.victoriametrics.com/vmalert.html#templating).
* FEATURE: [vmalert](https://docs.victoriametrics.com/vmalert.html): point alert source to [vmalert's UI](https://docs.victoriametrics.com/vmalert.html#web) at `/vmalert/alert?...` instead of JSON handler at `/vmalert/api/v1/alert?...`. This improves user experience. The old behavior can be returned back by setting `-external.alert.source=vmalert/api/v1/alert?group_id={{.GroupID}}&alert_id={{.AlertID}}` command-line flag.
* FEATURE: [vmalert](https://docs.victoriametrics.com/vmalert.html): point alert source to [vmalert's UI](https://docs.victoriametrics.com/vmalert.html#web) at `/vmalert/alert?...` instead of JSON handler at `/vmalert/api/v1/alert?...`. This improves user experience. The old behavior can be achieved by setting {% raw %}`-external.alert.source=vmalert/api/v1/alert?group_id={{.GroupID}}&alert_id={{.AlertID}}`{% endraw %} command-line flag.
* BUGFIX: prevent from excess CPU usage when the storage enters [read-only mode](https://docs.victoriametrics.com/Cluster-VictoriaMetrics.html#readonly-mode).
* BUGFIX: improve performance for requests to [/api/v1/labels](https://docs.victoriametrics.com/url-examples.html#apiv1labels) and [/api/v1/label/.../values](https://docs.victoriametrics.com/url-examples.html#apiv1labelvalues) when the filter in the `match[]` query arg matches small number of time series. The performance for this case has been reduced in [v1.78.0](https://docs.victoriametrics.com/CHANGELOG.html#v1780). See [this](https://github.com/VictoriaMetrics/VictoriaMetrics/issues/2978) and [this](https://github.com/VictoriaMetrics/VictoriaMetrics/issues/1533) issues.
@ -140,7 +142,7 @@ scrape_configs:
* FEATURE: expose additional histogram metrics at `http://victoriametrics:8428/metrics`, which may help understanding query workload:
* `vm_rows_read_per_query` - the number of raw samples read per query.
* `vm_rows_scanned_per_query` - the number of raw samples scanned per query. This number can exceed `vm_rows_read_per_query` if `step` query arg passed to [/api/v1/query_range](https://prometheus.io/docs/prometheus/latest/querying/api/#range-queries) is smaller than the lookbehind window set in square brackets of [rollup function](https://docs.victoriametrics.com/MetricsQL.html#rollup-functions). For example, if `increase(some_metric[1h])` is executed with the `step=5m`, then the same raw samples on a hour time range are scanned `1h/5m=12` times. See [this article](https://valyala.medium.com/how-to-optimize-promql-and-metricsql-queries-85a1b75bf986) for details.
* `vm_rows_scanned_per_query` - the number of raw samples scanned per query. This number can exceed `vm_rows_read_per_query` if `step` query arg passed to [/api/v1/query_range](https://docs.victoriametrics.com/keyConcepts.html#range-query) is smaller than the lookbehind window set in square brackets of [rollup function](https://docs.victoriametrics.com/MetricsQL.html#rollup-functions). For example, if `increase(some_metric[1h])` is executed with the `step=5m`, then the same raw samples on a hour time range are scanned `1h/5m=12` times. See [this article](https://valyala.medium.com/how-to-optimize-promql-and-metricsql-queries-85a1b75bf986) for details.
* `vm_rows_read_per_series` - the number of raw samples read per queried series.
* `vm_series_read_per_query` - the number of series read per query.
@ -167,7 +169,7 @@ scrape_configs:
* BUGFIX: [VictoriaMetrics cluster](https://docs.victoriametrics.com/Cluster-VictoriaMetrics.html): assume that the response is complete if `-search.denyPartialResponse` is enabled and up to `-replicationFactor - 1` `vmstorage` nodes are unavailable. See [this issue](https://github.com/VictoriaMetrics/VictoriaMetrics/issues/1767).
* BUGFIX: [vmselect](https://docs.victoriametrics.com/#vmselect): update `vm_partial_results_total` metric labels to be consistent with `vm_requests_total` labels.
* BUGFIX: accept tags without values when reading data in [DataDog format](https://docs.victoriametrics.com/Single-server-VictoriaMetrics.html#how-to-send-data-from-datadog-agent). Thanks to @PerGon for the [pull request](https://github.com/VictoriaMetrics/VictoriaMetrics/pull/2839).
* BUGFIX: [vmui](https://docs.victoriametrics.com/#vmui): properly pass the end of the selected time range to `time` query arg to [/api/v1/query](https://prometheus.io/docs/prometheus/latest/querying/api/#instant-queries) when displaying the requested data in JSON and table views. Previously the `time` query arg wasn't set, so `/api/v1/query` was always returning query results for the current time regardless of the selected time range. See [this issue](https://github.com/VictoriaMetrics/VictoriaMetrics/issues/2781).
* BUGFIX: [vmui](https://docs.victoriametrics.com/#vmui): properly pass the end of the selected time range to `time` query arg to [/api/v1/query](https://docs.victoriametrics.com/keyConcepts.html#instant-query) when displaying the requested data in JSON and table views. Previously the `time` query arg wasn't set, so `/api/v1/query` was always returning query results for the current time regardless of the selected time range. See [this issue](https://github.com/VictoriaMetrics/VictoriaMetrics/issues/2781).
* BUGFIX: [vmui](https://docs.victoriametrics.com/#vmui): allow clicking on the suggestion from autocomplete list. See [this issue](https://github.com/VictoriaMetrics/VictoriaMetrics/issues/2804).
* BUGFIX: [vmui](https://docs.victoriametrics.com/#vmui): apply the selected time range in date picker only after clicking the `Apply` button. See [this issue](https://github.com/VictoriaMetrics/VictoriaMetrics/issues/2811).

View file

@ -219,8 +219,8 @@ See [trobuleshooting docs](https://docs.victoriametrics.com/Troubleshooting.html
- URLs for [Prometheus querying API](https://prometheus.io/docs/prometheus/latest/querying/api/): `http://<vmselect>:8481/select/<accountID>/prometheus/<suffix>`, where:
- `<accountID>` is an arbitrary number identifying data namespace for the query (aka tenant)
- `<suffix>` may have the following values:
- `api/v1/query` - performs [PromQL instant query](https://prometheus.io/docs/prometheus/latest/querying/api/#instant-queries).
- `api/v1/query_range` - performs [PromQL range query](https://prometheus.io/docs/prometheus/latest/querying/api/#range-queries).
- `api/v1/query` - performs [PromQL instant query](https://docs.victoriametrics.com/keyConcepts.html#instant-query).
- `api/v1/query_range` - performs [PromQL range query](https://docs.victoriametrics.com/keyConcepts.html#range-query).
- `api/v1/series` - performs [series query](https://prometheus.io/docs/prometheus/latest/querying/api/#finding-series-by-label-matchers).
- `api/v1/labels` - returns a [list of label names](https://prometheus.io/docs/prometheus/latest/querying/api/#getting-label-names).
- `api/v1/label/<label_name>/values` - returns values for the given `<label_name>` according [to API](https://prometheus.io/docs/prometheus/latest/querying/api/#querying-label-values).
@ -305,11 +305,50 @@ the update process. See [cluster availability](#cluster-availability) section fo
## Cluster availability
- HTTP load balancer must stop routing requests to unavailable `vminsert` and `vmselect` nodes.
- The cluster remains available if at least a single `vmstorage` node exists:
VictoriaMetrics cluster architecture prioritizes availability over data consistency.
This means that the cluster remains available for data ingestion and data querying
if some of its components are temporarily unavailable.
- `vminsert` re-routes incoming data from unavailable `vmstorage` nodes to healthy `vmstorage` nodes
- `vmselect` continues serving partial responses if at least a single `vmstorage` node is available. If consistency over availability is preferred, then either pass `-search.denyPartialResponse` command-line flag to `vmselect` or pass `deny_partial_response=1` query arg in requests to `vmselect`.
VictoriaMetrics cluster remains available if the following conditions are met:
- HTTP load balancer must stop routing requests to unavailable `vminsert` and `vmselect` nodes.
- At least a single `vminsert` node must remain available in the cluster for processing data ingestion workload.
The remaining active `vminsert` nodes must have enough compute capacity (CPU, RAM, network bandwidth)
for handling the current data ingestion workload.
If the remaining active `vminsert` nodes have no enough resources for processing the data ingestion workload,
then arbitrary delays may occur during data ingestion.
See [capacity planning](#capacity-planning) and [cluster resizing](#cluster-resizing-and-scalability) docs for more details.
- At least a single `vmselect` node must remain available in the cluster for processing query workload.
The remaining active `vmselect` nodes must have enough compute capacity (CPU, RAM, network bandwidth, disk IO)
for handling the current query workload.
If the remaining active `vmselect` nodes have no enough resources for processing query workload,
then arbitrary failures and delays may occur during query processing.
See [capacity planning](#capacity-planning) and [cluster resizing](#cluster-resizing-and-scalability) docs for more details.
- At least a single `vmstorage` node must remain available in the cluster for accepting newly ingested data
and for processing incoming queries. The remaining active `vmstorage` nodes must have enough compute capacity
(CPU, RAM, network bandwidth, disk IO, free disk space) for handling the current workload.
If the remaining active `vmstorage` nodes have no enough resources for processing query workload,
then arbitrary failures and delay may occur during data ingestion and query processing.
See [capacity planning](#capacity-planning) and [cluster resizing](#cluster-resizing-and-scalability) docs for more details.
The cluster works in the following way when some of `vmstorage` nodes are unavailable:
- `vminsert` re-routes newly ingested data from unavailable `vmstorage` nodes to remaining healthy `vmstorage` nodes.
This guarantees that the newly ingested data is properly saved if the healthy `vmstorage` nodes have enough CPU, RAM, disk IO and network bandwidth
for processing the increased data ingestion workload.
`vminsert` spreads evenly the additional data among the healthy `vmstorage` nodes in order to spread evenly
the increased load on these nodes.
- `vmselect` continues serving queries if at least a single `vmstorage` nodes is available.
It marks responses as partial for queries served from the remaining healthy `vmstorage` nodes,
since such responses may miss historical data stored on the temporarily unavailable `vmstorage` nodes.
Every partial JSON response contains `"isPartial": true` option.
If you prefer consistency over availability, then run `vmselect` nodes with `-search.denyPartialResponse` command-line flag.
In this case `vmselect` returns an error if at least a single `vmstorage` node is unavailable.
Another option is to pass `deny_partial_response=1` query arg to requests to `vmselect` nodes.
`vmselect` doesn't serve partial responses for API handlers returning raw datapoints - [`/api/v1/export*` endpoints](https://docs.victoriametrics.com/#how-to-export-time-series), since users usually expect this data is always complete.

View file

@ -104,6 +104,11 @@ VictoriaMetrics also [uses less RAM than Thanos components](https://github.com/t
* QuestDB [supports a smaller range of popular data ingestion protocols](https://questdb.io/docs/develop/insert-data) compared to VictoriaMetrics (compare to [the list of supported data ingestion protocols for VictoriaMetrics](https://docs.victoriametrics.com/#how-to-import-time-series-data)).
* [VictoriaMetrics supports backfilling (e.g. storing historical data) out of the box](https://docs.victoriametrics.com/#backfilling), while QuestDB provides [very limited support for backfilling](https://questdb.io/blog/2021/05/10/questdb-release-6-0-tsbs-benchmark#the-problem-with-out-of-order-data).
## What is the difference between VictoriaMetrics and [Grafana Mimir](https://github.com/grafana/mimir)?
Grafana Mimir is a [Cortex](https://github.com/cortexproject/cortex) fork, so it has the same differences
as Cortex. See [what is the difference between VictoriaMetrics and Cortex](#what-is-the-difference-between-victoriametrics-and-cortex).
## What is the difference between VictoriaMetrics and [Cortex](https://github.com/cortexproject/cortex)?
VictoriaMetrics is similar to Cortex in the following aspects:

View file

@ -610,8 +610,8 @@ For example, `/api/put?extra_label=foo=bar` would add `{foo="bar"}` label to all
VictoriaMetrics supports the following handlers from [Prometheus querying API](https://prometheus.io/docs/prometheus/latest/querying/api/):
* [/api/v1/query](https://prometheus.io/docs/prometheus/latest/querying/api/#instant-queries)
* [/api/v1/query_range](https://prometheus.io/docs/prometheus/latest/querying/api/#range-queries)
* [/api/v1/query](https://docs.victoriametrics.com/keyConcepts.html#instant-query)
* [/api/v1/query_range](https://docs.victoriametrics.com/keyConcepts.html#range-query)
* [/api/v1/series](https://prometheus.io/docs/prometheus/latest/querying/api/#finding-series-by-label-matchers)
* [/api/v1/labels](https://prometheus.io/docs/prometheus/latest/querying/api/#getting-label-names)
* [/api/v1/label/.../values](https://prometheus.io/docs/prometheus/latest/querying/api/#querying-label-values)

View file

@ -614,8 +614,8 @@ For example, `/api/put?extra_label=foo=bar` would add `{foo="bar"}` label to all
VictoriaMetrics supports the following handlers from [Prometheus querying API](https://prometheus.io/docs/prometheus/latest/querying/api/):
* [/api/v1/query](https://prometheus.io/docs/prometheus/latest/querying/api/#instant-queries)
* [/api/v1/query_range](https://prometheus.io/docs/prometheus/latest/querying/api/#range-queries)
* [/api/v1/query](https://docs.victoriametrics.com/keyConcepts.html#instant-query)
* [/api/v1/query_range](https://docs.victoriametrics.com/keyConcepts.html#range-query)
* [/api/v1/series](https://prometheus.io/docs/prometheus/latest/querying/api/#finding-series-by-label-matchers)
* [/api/v1/labels](https://prometheus.io/docs/prometheus/latest/querying/api/#getting-label-names)
* [/api/v1/label/.../values](https://prometheus.io/docs/prometheus/latest/querying/api/#querying-label-values)

View file

@ -45,8 +45,8 @@ If you see unexpected or unreliable query results from VictoriaMetrics, then try
curl http://victoriametrics:8428/api/v1/export -d 'match[]=http_requests_total' -d 'start=...' -d 'end=...'
```
Note that responses returned from [/api/v1/query](https://prometheus.io/docs/prometheus/latest/querying/api/#instant-queries)
and from [/api/v1/query_range](https://prometheus.io/docs/prometheus/latest/querying/api/#range-queries) contain **evaluated** data
Note that responses returned from [/api/v1/query](https://docs.victoriametrics.com/keyConcepts.html#instant-query)
and from [/api/v1/query_range](https://docs.victoriametrics.com/keyConcepts.html#range-query) contain **evaluated** data
instead of raw samples stored in VictoriaMetrics. See [these docs](https://prometheus.io/docs/prometheus/latest/querying/basics/#staleness)
for details.

View file

@ -204,7 +204,7 @@ behavior by adding `fill(previous)` to the query.
VictoriaMetrics fills the gaps on the graph assuming time series are always continious and not discrete.
To limit the interval on which VictoriaMetrics will try to fill the gaps, set `-search.setLookbackToStep`
command-line flag. This limits the gap filling to a single `step` interval passed to
[/api/v1/query_range](https://prometheus.io/docs/prometheus/latest/querying/api/#range-queries).
[/api/v1/query_range](https://docs.victoriametrics.com/keyConcepts.html#range-query).
This behavior is close to InfluxDB data model.

View file

@ -8,9 +8,7 @@ sort: 22
### What is a metric
Simply put, `metric` - is a measure or observation of something. The measurement can be used to describe the process,
compare it to other processes, perform some calculations with it, or even define events to trigger on reaching
user-defined thresholds.
Simply put, `metric` is a numeric measure or observation of something.
The most common use-cases for metrics are:
@ -19,8 +17,6 @@ The most common use-cases for metrics are:
- observe or forecast trends;
- trigger events (alerts) if the metric exceeds a threshold.
Collecting and analyzing metrics provides advantages that are difficult to overestimate.
### Structure of a metric
Let's start with an example. To track how many requests our application serves, we'll define a metric with the
@ -28,16 +24,16 @@ name `requests_total`.
You can be more specific here by saying `requests_success_total` (for only successful requests)
or `request_errors_total` (for requests which failed). Choosing a metric name is very important and supposed to clarify
what is actually measured to every person who reads it, just like variable names in programming.
what is actually measured to every person who reads it, just like **variable names** in programming.
Every metric can contain additional meta information in the form of label-value pairs:
Every metric can contain additional meta-information in the form of label-value pairs:
```
requests_total{path="/", code="200"}
requests_total{path="/", code="403"}
```
The meta-information (set of `labels` in curly braces) gives us a context for which `path` and with what `code`
The meta-information - set of `labels` in curly braces - gives us a context for which `path` and with what `code`
the `request` was served. Label-value pairs are always of a `string` type. VictoriaMetrics data model is schemaless,
which means there is no need to define metric names or their labels in advance. User is free to add or change ingested
metrics anytime.
@ -51,59 +47,73 @@ requests_total{path="/", code="200"}
#### Time series
A combination of a metric name and its labels defines a `time series`. For
example, `requests_total{path="/", code="200"}` and `requests_total{path="/", code="403"}`
are two different time series.
A combination of a metric name and its labels defines a `time series`. For example,
`requests_total{path="/", code="200"}` and `requests_total{path="/", code="403"}`
are two different time series because they have different values for `code` label.
Number of time series has an impact on database resource usage. See
also [What is an active time series?](https://docs.victoriametrics.com/FAQ.html#what-is-an-active-time-series)
and [What is high churn rate?](https://docs.victoriametrics.com/FAQ.html#what-is-high-churn-rate).
The number of unique time series has an impact on database resource usage.
See [what is an active time series](https://docs.victoriametrics.com/FAQ.html#what-is-an-active-time-series) and
[what is high churn rate](https://docs.victoriametrics.com/FAQ.html#what-is-high-churn-rate) docs for details.
#### Cardinality
The number of all unique label combinations for one metric defines its `cardinality`. For example, if `requests_total`
has 3 unique `path` values and 5 unique `code` values, then its cardinality will be `3*5=15` of unique time series. If
you add one more unique `path` value, cardinality will bump to `20`. See more in
[What is cardinality](https://docs.victoriametrics.com/FAQ.html#what-is-high-cardinality).
The number of unique [time series](#time-series) is named `cardinality`. Too big number of unique time series is named `high cardinality`.
High cardinality may result in increased resource usage at VictoriaMetrics.
See [these docs](https://docs.victoriametrics.com/FAQ.html#what-is-high-cardinality) for more details.
#### Data points
#### Raw samples
Every time series consists of `data points` (also called `samples`). A `data point` is value-timestamp pair associated
with the specific series:
Every unique time series may consist of arbitrary number of `(value, timestamp)` data points (aka `raw samples`) sorted by `timestamp`.
The `value` is a [double-precision floating-point number](https://en.wikipedia.org/wiki/Double-precision_floating-point_format).
The `timestamp` is a [unix timestamp](https://en.wikipedia.org/wiki/Unix_time) with millisecond precision.
Below is an example of a single raw sample
in [Prometheus text exposition format](https://github.com/prometheus/docs/blob/main/content/docs/instrumenting/exposition_formats.md#text-based-format):
```
requests_total{path="/", code="200"} <float64 value> <unixtimestamp>
requests_total{path="/", code="200"} 123 4567890
```
In VictoriaMetrics data model, data point's value is always of type `float64`. And timestamp is unix time with
milliseconds precision. Each series can contain an infinite number of data points.
- The `requests_total{path="/", code="200"}` identifies the associated time series for the given sample.
- The `123` is a sample value.
- The `4567890` is an optional timestamp for the sample. If it is missing,
then the current timestamp is used when storing the sample in VictoriaMetrics.
### Types of metrics
Internally, VictoriaMetrics does not have a notion of a metric type. All metrics are the same. The concept of a metric
Internally, VictoriaMetrics does not have the notion of a metric type. The concept of a metric
type exists specifically to help users to understand how the metric was measured. There are 4 common metric types.
#### Counter
Counter metric type is a [monotonically increasing counter](https://en.wikipedia.org/wiki/Monotonic_function)
used for capturing a number of events. It represents a cumulative metric whose value never goes down and always shows
the current number of captured events. In other words, `counter` always shows the number of observed events since the
application has started. In programming, `counter` is a variable that you **increment** each time something happens.
Counter is a metric, which counts some events. Its value increases or stays the same over time.
It cannot decrease in general case. The only exception is e.g. `counter reset`,
when the metric resets to zero. The `counter reset` can occur when the service, which exposes the counter, restarts.
So, the `counter` metric shows the number of observed events since the service start.
In programming, `counter` is a variable that you **increment** each time something happens.
{% include img.html href="keyConcepts_counter.png" %}
`vm_http_requests_total` is a typical example of a counter - a metric which only grows. The interpretation of a graph
above is that time series
`vm_http_requests_total{instance="localhost:8428", job="victoriametrics", path="api/v1/query_range"}`
`vm_http_requests_total` is a typical example of a counter. The interpretation of a graph
above is that time series `vm_http_requests_total{instance="localhost:8428", job="victoriametrics", path="api/v1/query_range"}`
was rapidly changing from 1:38 pm to 1:39 pm, then there were no changes until 1:41 pm.
Counter is used for measuring a number of events, like a number of requests, errors, logs, messages, etc. The most
common [MetricsQL](#metricsql) functions used with counters are:
Counter is used for measuring the number of events, like the number of requests, errors, logs, messages, etc.
The most common [MetricsQL](#metricsql) functions used with counters are:
* [rate](https://docs.victoriametrics.com/MetricsQL.html#rate) - calculates the speed of metric's change. For
example, `rate(requests_total)` will show how many requests are served per second;
* [rate](https://docs.victoriametrics.com/MetricsQL.html#rate) - calculates the average per-second speed of metric's change.
For example, `rate(requests_total)` shows how many requests are served per second on average;
* [increase](https://docs.victoriametrics.com/MetricsQL.html#increase) - calculates the growth of a metric on the given
time period. For example, `increase(requests_total[1h])` will show how many requests were served over `1h` interval.
time period specified in square brackets.
For example, `increase(requests_total[1h])` shows the number of requests served over the last hour.
It is OK to have fractional counters. For example, `request_duration_seconds_sum` counter may sum durations of all the requests.
Every duration may have fractional value in seconds, e.g. `0.5` seconds. So the cumulative sum of all the request durations
may be fractional too.
It is recommended to put `_total`, `_sum` or `_count` suffix to `counter` metric names, so such metrics can be easily differentiated
by humans from other metric types.
#### Gauge
@ -111,8 +121,8 @@ Gauge is used for measuring a value that can go up and down:
{% include img.html href="keyConcepts_gauge.png" %}
The metric `process_resident_memory_anon_bytes` on the graph shows the number of bytes of memory used by the application
during the runtime. It is changing frequently, going up and down showing how the process allocates and frees the memory.
The metric `process_resident_memory_anon_bytes` on the graph shows memory usage of the application at every given time.
It is changing frequently, going up and down showing how the process allocates and frees the memory.
In programming, `gauge` is a variable to which you **set** a specific value as it changes.
Gauge is used in the following scenarios:
@ -120,18 +130,21 @@ Gauge is used in the following scenarios:
* measuring temperature, memory usage, disk usage etc;
* storing the state of some process. For example, gauge `config_reloaded_successful` can be set to `1` if everything is
good, and to `0` if configuration failed to reload;
* storing the timestamp when event happened. For example, `config_last_reload_success_timestamp_seconds`
can store the timestamp of the last successful configuration relaod.
* storing the timestamp when the event happened. For example, `config_last_reload_success_timestamp_seconds`
can store the timestamp of the last successful configuration reload.
The most common [MetricsQL](#metricsql)
functions used with gauges are [aggregation and grouping functions](#aggregation-and-grouping-functions).
The most common [MetricsQL](#metricsql) functions used with gauges are [aggregation functions](#aggregation-and-grouping-functions)
and [rollup functions](https://docs.victoriametrics.com/MetricsQL.html#rollup-functions).
#### Histogram
Histogram is a set of [counter](#counter) metrics with different labels for tracking the dispersion
and [quantiles](https://prometheus.io/docs/practices/histograms/#quantiles) of the observed value. For example, in
VictoriaMetrics we track how many rows is processed per query using the histogram with the
name `vm_rows_read_per_query`. The exposition format for this histogram has the following form:
Historgram is a set of [counter](#counter) metrics with different `vmrange` or `le` labels.
The `vmrange` or `le` labels define measurement boundaries of a particular bucket.
When the observed measurement hits a particular bucket, then the corresponding counter is incremented.
Histogram buckets usually have `_bucket` suffix in their names.
For example, VictoriaMetrics tracks the distribution of rows processed per query with the `vm_rows_read_per_query` histogram.
The exposition format for this histogram has the following form:
```
vm_rows_read_per_query_bucket{vmrange="4.084e+02...4.642e+02"} 2
@ -143,7 +156,47 @@ vm_rows_read_per_query_sum 15582
vm_rows_read_per_query_count 11
```
In practice, histogram `vm_rows_read_per_query` may be used in the following way:
The `vm_rows_read_per_query_bucket{vmrange="4.084e+02...4.642e+02"} 2` line means
that there were 2 queries with the number of rows in the range `(408.4 - 464.2]`
since the last VictoriaMetrics start.
The counters ending with `_bucket` suffix allow estimating arbitrary percentile
for the observed measurement with the help of [histogram_quantile](https://docs.victoriametrics.com/MetricsQL.html#histogram_quantile)
function. For example, the following query returns the estimated 99th percentile
on the number of rows read per each query during the last hour (see `1h` in square brackets):
```metricsql
histogram_quantile(0.99, sum(increase(vm_rows_read_per_query_bucket[1h])) by (vmrange))
```
This query works in the following way:
1. The `increase(vm_rows_read_per_query_bucket[1h])` calculates per-bucket per-instance
number of events over the last hour.
2. The `sum(...) by (vmrange)` calculates per-bucket events by summing per-instance buckets
with the same `vmrange` values.
3. The `histogram_quantile(0.99, ...)` calculates 99th percentile over `vmrange` buckets returned at the step 2.
Histogram metric type exposes two additional counters ending with `_sum` and `_count` suffixes:
- the `vm_rows_read_per_query_sum` is a sum of all the observed measurements,
e.g. the sum of rows served by all the queries since the last VictoriaMetrics start.
- the `vm_rows_read_per_query_count` is the total number of observed events,
e.g. the total number of observed queries since the last VictoriaMetrics start.
These counters allow calculating the average measurement value on a particular lookbehind window.
For example, the following query calculates the average number of rows read per query
during the last 5 minutes (see `5m` in square brackets):
```metricsql
increase(vm_rows_read_per_query_sum[5m]) / increase(vm_rows_read_per_query_count[5m])
```
The `vm_rows_read_per_query` histogram may be used in Go application in the following way
by using the [github.com/VictoriaMetrics/metrics](https://github.com/VictoriaMetrics/metrics) package:
```go
// define the histogram
@ -157,9 +210,8 @@ for _, query := range queries {
Now let's see what happens each time when `rowsReadPerQuery.Update` is called:
* counter `vm_rows_read_per_query_sum` increments by value of `len(query.Rows)` expression and accounts for
total sum of all observed values;
* counter `vm_rows_read_per_query_count` increments by 1 and accounts for total number of observations;
* counter `vm_rows_read_per_query_sum` is incremented by value of `len(query.Rows)` expression;
* counter `vm_rows_read_per_query_count` increments by 1;
* counter `vm_rows_read_per_query_bucket` gets incremented only if observed value is within the
range (`bucket`) defined in `vmrange`.
@ -169,7 +221,10 @@ and calculating [quantiles](https://prometheus.io/docs/practices/histograms/#qua
{% include img.html href="keyConcepts_histogram.png" %}
Histograms are usually used for measuring latency, sizes of elements (batch size, for example) etc. There are two
Grafana doesn't understand buckets with `vmrange` labels, so the [prometheus_buckets](https://docs.victoriametrics.com/MetricsQL.html#prometheus_buckets)
function must be used for converting buckets with `vmrange` labels to buckets with `le` labels before building heatmaps in Grafana.
Histograms are usually used for measuring the distribution of latency, sizes of elements (batch size, for example) etc. There are two
implementations of a histogram supported by VictoriaMetrics:
1. [Prometheus histogram](https://prometheus.io/docs/practices/histograms/). The canonical histogram implementation
@ -178,9 +233,9 @@ implementations of a histogram supported by VictoriaMetrics:
histogram requires a user to define ranges (`buckets`) statically.
2. [VictoriaMetrics histogram](https://valyala.medium.com/improving-histogram-usability-for-prometheus-and-grafana-bc7e5df0e350)
supported by [VictoriaMetrics/metrics](https://github.com/VictoriaMetrics/metrics) instrumentation library.
Victoriametrics histogram automatically adjusts buckets, so users don't need to think about them.
Victoriametrics histogram automatically handles bucket boundaries, so users don't need to think about them.
Histograms aren't trivial to learn and use. We recommend reading the following articles before you start:
We recommend reading the following articles before you start using histograms:
1. [Prometheus histogram](https://prometheus.io/docs/concepts/metric_types/#histogram)
2. [Histograms and summaries](https://prometheus.io/docs/practices/histograms/)
@ -189,9 +244,9 @@ Histograms aren't trivial to learn and use. We recommend reading the following a
#### Summary
Summary is quite similar to [histogram](#histogram) and is used for
[quantiles](https://prometheus.io/docs/practices/histograms/#quantiles) calculations. The main difference to histograms
is that calculations are made on the client-side, so metrics exposition format already contains pre-calculated
Summary metric type is quite similar to [histogram](#histogram) and is used for
[quantiles](https://prometheus.io/docs/practices/histograms/#quantiles) calculations. The main difference
is that calculations are made on the client-side, so metrics exposition format already contains pre-defined
quantiles:
```
@ -208,90 +263,86 @@ The visualisation of summaries is pretty straightforward:
{% include img.html href="keyConcepts_summary.png" %}
Such an approach makes summaries easier to use but also puts significant limitations - summaries can't be aggregated.
The [histogram](#histogram) exposes the raw values via counters. It means a user can aggregate these counters for
different metrics (for example, for metrics with different `instance` label) and **then calculate quantiles**. For
summary, quantiles are already calculated, so
they [can't be aggregated](https://latencytipoftheday.blogspot.de/2014/06/latencytipoftheday-you-cant-average.html)
with other metrics.
Such an approach makes summaries easier to use but also puts significant limitations comparing to [histograms](#histogram):
Summaries are usually used for measuring latency, sizes of elements (batch size, for example) etc. But taking into
account the limitation mentioned above.
- It is impossible to calculate quantile over multiple summary metrics, e.g. `sum(go_gc_duration_seconds{quantile="0.75"})`,
`avg(go_gc_duration_seconds{quantile="0.75"})` or `max(go_gc_duration_seconds{quantile="0.75"})`
won't return the expected 75th percentile over `go_gc_duration_seconds` metrics collected from multiple instances
of the application. See [this article](https://latencytipoftheday.blogspot.de/2014/06/latencytipoftheday-you-cant-average.html) for details.
- It is impossible to calculate quantiles other than the already pre-calculated quantiles.
- It is impossible to calculate quantiles for measurements collected over arbitrary time range. Usually `summary`
quantiles are calculated over a fixed time range such as the last 5 minutes.
Summaries are usually used for tracking the pre-defined percentiles for latency, sizes of elements (batch size, for example) etc.
### Instrumenting application with metrics
As was said at the beginning of the section [Types of metrics](#types-of-metrics), metric type defines how it was
measured. VictoriaMetrics TSDB doesn't know about metric types, all it sees are labels, values, and timestamps. And what
are these metrics, what do they measure, and how - all this depends on the application which emits them.
As was said at the beginning of the [types of metrics](#types-of-metrics) section, metric type defines how it was
measured. VictoriaMetrics TSDB doesn't know about metric types, all it sees are metric names, labels, values, and timestamps.
What are these metrics, what do they measure, and how - all this depends on the application which emits them.
To instrument your application with metrics compatible with VictoriaMetrics TSDB we recommend
using [VictoriaMetrics/metrics](https://github.com/VictoriaMetrics/metrics) instrumentation library. See more about how
to use it on example of
[How to monitor Go applications with VictoriaMetrics](https://victoriametrics.medium.com/how-to-monitor-go-applications-with-victoriametrics-c04703110870)
article.
To instrument your application with metrics compatible with VictoriaMetrics we recommend
using [github.com/VictoriaMetrics/metrics](https://github.com/VictoriaMetrics/metrics) package.
See more details on how to use it in [this article](https://victoriametrics.medium.com/how-to-monitor-go-applications-with-victoriametrics-c04703110870).
VictoriaMetrics is also compatible with
Prometheus [client libraries for metrics instrumentation](https://prometheus.io/docs/instrumenting/clientlibs/).
VictoriaMetrics is also compatible with [Prometheus client libraries for metrics instrumentation](https://prometheus.io/docs/instrumenting/clientlibs/).
#### Naming
We recommend following [naming convention introduced by Prometheus](https://prometheus.io/docs/practices/naming/). There
are no strict (except allowed chars) restrictions and any metric name would be accepted by VictoriaMetrics. But
convention will help to keep names meaningful, descriptive and clear to other people. Following convention is a good
practice.
We recommend following [Prometheus naming convention for metrics](https://prometheus.io/docs/practices/naming/). There
are no strict restrictions, so any metric name and labels are be accepted by VictoriaMetrics.
But the convention helps to keep names meaningful, descriptive and clear to other people.
Following convention is a good practice.
#### Labels
Every metric can contain an arbitrary number of label names. The good practice is to keep this number limited.
Otherwise, it would be difficult to use or plot on the graphs. By default, VictoriaMetrics limits the number of labels
per series to `30` and drops all excessive labels. This limit can be changed via `-maxLabelsPerTimeseries` flag.
Every measurement can contain an arbitrary number of `key="value"` labels. The good practice is to keep this number limited.
Otherwise, it would be difficult to deal with measurements containing big number of labels.
By default, VictoriaMetrics limits the number of labels per measurement to `30` and drops other labels.
This limit can be changed via `-maxLabelsPerTimeseries` command-line flag if necessary (but this isn't recommended).
Every label value can contain arbitrary string value. The good practice is to use short and meaningful label values to
describe the attribute of the metric, not to tell the story about it. For example, label-value pair
`environment=prod` is ok, but `log_message=long log message with a lot of details...` is not ok. By default,
VcitoriaMetrics limits label's value size with 16kB. This limit can be changed via `-maxLabelValueLen` flag.
`environment="prod"` is ok, but `log_message="long log message with a lot of details..."` is not ok. By default,
VcitoriaMetrics limits label's value size with 16kB. This limit can be changed via `-maxLabelValueLen` command-line flag.
It is very important to control the max number of unique label values since it defines the number
of [time series](#time-series). Try to avoid using volatile values such as session ID or query ID in label values to
It is very important to keep under control the number of unique label values, since every unique label value
leads to a new [time series](#time-series). Try to avoid using volatile label values such as session ID or query ID in order to
avoid excessive resource usage and database slowdown.
## Write data
There are two main models in monitoring for data collection: [push](#push-model) and [pull](#pull-model). Both are used
in modern monitoring and both are supported by VictoriaMetrics.
VictoriaMetrics supports both models used in modern monitoring applications: [push](#push-model) and [pull](#pull-model).
### Push model
Push model is a traditional model of the client sending data to the server:
Client regularly sends the collected metrics to the server in push model:
{% include img.html href="keyConcepts_push_model.png" %}
The client (application) decides when and where to send/ingest its metrics. VictoriaMetrics supports following protocols
for ingesting:
The client (application) decides when and where to send its metrics. VictoriaMetrics supports the following protocols
for data ingestion (aka `push protocols`):
* [Prometheus remote write API](https://docs.victoriametrics.com/Single-server-VictoriaMetrics.html#prometheus-setup).
* [Prometheus exposition format](https://docs.victoriametrics.com/Single-server-VictoriaMetrics.html#how-to-import-data-in-prometheus-exposition-format)
.
* [Prometheus text exposition format](https://docs.victoriametrics.com/Single-server-VictoriaMetrics.html#how-to-import-data-in-prometheus-exposition-format).
* [InfluxDB line protocol](https://docs.victoriametrics.com/Single-server-VictoriaMetrics.html#how-to-send-data-from-influxdb-compatible-agents-such-as-telegraf)
over HTTP, TCP and UDP.
* [Graphite plaintext protocol](https://docs.victoriametrics.com/Single-server-VictoriaMetrics.html#how-to-send-data-from-graphite-compatible-agents-such-as-statsd)
with [tags](https://graphite.readthedocs.io/en/latest/tags.html#carbon).
* [OpenTSDB put message](https://docs.victoriametrics.com/Single-server-VictoriaMetrics.html#sending-data-via-telnet-put-protocol)
.
* [HTTP OpenTSDB /api/put requests](https://docs.victoriametrics.com/Single-server-VictoriaMetrics.html#sending-opentsdb-data-via-http-apiput-requests)
.
* [JSON line format](https://docs.victoriametrics.com/Single-server-VictoriaMetrics.html#how-to-import-data-in-json-line-format)
.
* [OpenTSDB put message](https://docs.victoriametrics.com/Single-server-VictoriaMetrics.html#sending-data-via-telnet-put-protocol).
* [HTTP OpenTSDB /api/put requests](https://docs.victoriametrics.com/Single-server-VictoriaMetrics.html#sending-opentsdb-data-via-http-apiput-requests).
* [JSON line format](https://docs.victoriametrics.com/Single-server-VictoriaMetrics.html#how-to-import-data-in-json-line-format).
* [Arbitrary CSV data](https://docs.victoriametrics.com/Single-server-VictoriaMetrics.html#how-to-import-csv-data).
* [Native binary format](https://docs.victoriametrics.com/Single-server-VictoriaMetrics.html#how-to-import-data-in-native-format)
.
* [Native binary format](https://docs.victoriametrics.com/Single-server-VictoriaMetrics.html#how-to-import-data-in-native-format).
All the protocols are fully compatible with VictoriaMetrics [data model](#data-model) and can be used in production.
There are no officially supported clients by VictoriaMetrics team for data ingestion. We recommend choosing from already
existing clients compatible with the listed above protocols
(like [Telegraf](https://github.com/influxdata/telegraf)
for [InfluxDB line protocol](https://docs.victoriametrics.com/Single-server-VictoriaMetrics.html#how-to-send-data-from-influxdb-compatible-agents-such-as-telegraf))
.
We recommend using the [github.com/VictoriaMetrics/metrics](https://github.com/VictoriaMetrics/metrics) package
for pushing application metrics to VictoriaMetrics.
It is also possible to use already existing clients compatible with the protocols listed above
like [Telegraf](https://github.com/influxdata/telegraf)
for [InfluxDB line protocol](https://docs.victoriametrics.com/Single-server-VictoriaMetrics.html#how-to-send-data-from-influxdb-compatible-agents-such-as-telegraf).
Creating custom clients or instrumenting the application for metrics writing is as easy as sending a POST request:
@ -299,28 +350,28 @@ Creating custom clients or instrumenting the application for metrics writing is
curl -d '{"metric":{"__name__":"foo","job":"node_exporter"},"values":[0,1,2],"timestamps":[1549891472010,1549891487724,1549891503438]}' -X POST 'http://localhost:8428/api/v1/import'
```
It is allowed to push/write metrics
to [Single-server-VictoriaMetrics](https://docs.victoriametrics.com/Single-server-VictoriaMetrics.html),
[cluster component vminsert](https://docs.victoriametrics.com/Cluster-VictoriaMetrics.html#architecture-overview)
and [vmagent](https://docs.victoriametrics.com/vmagent.html).
It is allowed to push/write metrics to [single-node VictoriaMetrics](https://docs.victoriametrics.com/Single-server-VictoriaMetrics.html),
to [cluster component vminsert](https://docs.victoriametrics.com/Cluster-VictoriaMetrics.html#architecture-overview)
and to [vmagent](https://docs.victoriametrics.com/vmagent.html).
The pros of push model:
* application decides how and when to send data;
* with a batch size of which size, at which rate;
* with which retry logic;
* simpler security management, the only access needed for the application is the access to the TSDB.
* Simpler configuration at VictoriaMetrics side - there is no need to configure VictoriaMetrics with locations of the monitored applications.
There is no need in complex [service discovery schemes](https://docs.victoriametrics.com/sd_configs.html).
* Simpler security setup - there is no need to set up access from VictoriaMetrics to each monitored application.
See [Foiled by the Firewall: A Tale of Transition From Prometheus to VictoriaMetrics](https://www.percona.com/blog/2020/12/01/foiled-by-the-firewall-a-tale-of-transition-from-prometheus-to-victoriametrics/)
elaborating more on why Percona switched from pull to push model.
The cons of push protocol:
* it requires applications to be more complex, since they need to be responsible for metrics delivery;
* applications need to be aware of monitoring systems;
* using a monitoring system it is hard to tell whether the application went down or just stopped sending metrics for a
different reason;
* applications can overload the monitoring system by pushing too many metrics.
* Increased configuration complexity for monitored applications.
Every application needs te be individually configured with the address of the monitoring system
for metrics delivery. It also needs to be configured with the interval between metric pushes
and the strategy on metric delivery failure.
* Non-trivial setup for metrics' delivery into multiple monitoring systems.
* It may be hard to tell whether the application went down or just stopped sending metrics for a different reason.
* Applications can overload the monitoring system by pushing metrics at too short intervals.
### Pull model
@ -330,86 +381,85 @@ and where to pull metrics from:
{% include img.html href="keyConcepts_pull_model.png" %}
In pull model, the monitoring system needs to be aware of all the applications it needs to monitor. The metrics are
scraped (pulled) with fixed intervals via HTTP protocol.
scraped (pulled) from the known applications (aka `scrape targets`) via HTTP protocol on a regular basis (aka `scrape_interval`).
For metrics scraping VictoriaMetrics
supports [Prometheus exposition format](https://docs.victoriametrics.com/#how-to-scrape-prometheus-exporters-such-as-node-exporter)
and needs to be configured with `-promscrape.config` flag pointing to the file with scrape configuration. This
configuration may include list of static `targets` (applications or services)
or `targets` discovered via various service discoveries.
VictoriaMetrics supports discovering Prometheus-compatible targets and scraping metrics from them in the same way as Prometheus does -
see [these docs](https://docs.victoriametrics.com/#how-to-scrape-prometheus-exporters-such-as-node-exporter).
Metrics scraping is supported
by [Single-server-VictoriaMetrics](https://docs.victoriametrics.com/Single-server-VictoriaMetrics.html)
and [vmagent](https://docs.victoriametrics.com/vmagent.html).
Metrics scraping is supported by [single-node VictoriaMetrics](https://docs.victoriametrics.com/#how-to-scrape-prometheus-exporters-such-as-node-exporter)
and by [vmagent](https://docs.victoriametrics.com/vmagent.html).
The pros of the pull model:
* monitoring system decides how and when to scrape data, so it can't be overloaded;
* applications aren't aware of the monitoring system and don't need to implement the logic for delivering metrics;
* the list of all monitored targets belongs to the monitoring system and can be quickly checked;
* easy to detect faulty or crashed services when they don't respond.
* Easier to debug - VictoriaMetrics knows about all the monitored applications (aka `scrape targets`).
The `up == 0` query instantly shows unavailable scrape targets.
The actual information about scrape targets is available at `http://victoriametrics:8428/targets` and `http://vmagent:8429/targets`.
* Monitoring system controls the frequency of metrics' scrape, so it is easier to control its' load.
* Applications aren't aware of the monitoring system and don't need to implement the logic for metrics' delivery.
The cons of the pull model:
* monitoring system needs access to applications it monitors;
* the frequency at which metrics are collected depends on the monitoring system.
* Harder security setup - monitoring system needs have access to applications it monitors.
* Pull model needs non-trivial [service discovery schemes](https://docs.victoriametrics.com/sd_configs.html).
### Common approaches for data collection
VictoriaMetrics supports both [Push](#push-model) and [Pull](#pull-model)
models for data collection. Many installations are using exclusively one or second model, or both at once.
VictoriaMetrics supports both [push](#push-model) and [pull](#pull-model)
models for data collection. Many installations use exclusively one of these models, or both at once.
The most common approach for data collection is using both models:
{% include img.html href="keyConcepts_data_collection.png" %}
In this approach the additional component is used - [vmagent](https://docs.victoriametrics.com/vmagent.html). Vmagent is
a lightweight agent whose main purpose is to collect and deliver metrics. It supports all the same mentioned protocols
and approaches mentioned for both data collection models.
a lightweight agent whose main purpose is to collect, filter, relabel and deliver metrics to VictoriaMetrics.
It supports all [push](#push-model) and [pull](#pull-model) protocols mentioned above.
The basic setup for using VictoriaMetrics and vmagent for monitoring is described in example
of [docker-compose manifest](https://github.com/VictoriaMetrics/VictoriaMetrics/tree/master/deployment/docker). In this
example,
vmagent [scrapes a list of targets](https://github.com/VictoriaMetrics/VictoriaMetrics/blob/master/deployment/docker/prometheus.yml)
and [forwards collected data to VictoriaMetrics](https://github.com/VictoriaMetrics/VictoriaMetrics/blob/9d7da130b5a873be334b38c8d8dec702c9e8fac5/deployment/docker/docker-compose.yml#L15)
. VictoriaMetrics is then used as
a [datasource for Grafana](https://github.com/VictoriaMetrics/VictoriaMetrics/blob/master/deployment/docker/provisioning/datasources/datasource.yml)
The basic monitoring setup of VictoriaMetrics and vmagent is described
in the [example docker-compose manifest](https://github.com/VictoriaMetrics/VictoriaMetrics/tree/master/deployment/docker).
In this example vmagent [scrapes a list of targets](https://github.com/VictoriaMetrics/VictoriaMetrics/blob/master/deployment/docker/prometheus.yml)
and [forwards collected data to VictoriaMetrics](https://github.com/VictoriaMetrics/VictoriaMetrics/blob/9d7da130b5a873be334b38c8d8dec702c9e8fac5/deployment/docker/docker-compose.yml#L15).
VictoriaMetrics is then used as a [datasource for Grafana](https://github.com/VictoriaMetrics/VictoriaMetrics/blob/master/deployment/docker/provisioning/datasources/datasource.yml)
installation for querying collected data.
VictoriaMetrics components allow building more advanced topologies. For example, vmagents pushing metrics from separate
datacenters to the central VictoriaMetrics:
VictoriaMetrics components allow building more advanced topologies. For example, vmagents can push metrics from separate datacenters to the central VictoriaMetrics:
{% include img.html href="keyConcepts_two_dcs.png" %}
VictoriaMetrics in example may
be [Single-server-VictoriaMetrics](https://docs.victoriametrics.com/Single-server-VictoriaMetrics.html)
or [VictoriaMetrics Cluster](https://docs.victoriametrics.com/Cluster-VictoriaMetrics.html). Vmagent also allows to
fan-out the same data to multiple destinations.
VictoriaMetrics in this example the may be either [single-node VictoriaMetrics](https://docs.victoriametrics.com/Single-server-VictoriaMetrics.html)
or [VictoriaMetrics Cluster](https://docs.victoriametrics.com/Cluster-VictoriaMetrics.html). Vmagent also allows
[replicating the same data to multiple destinations](https://docs.victoriametrics.com/vmagent.html#replication-and-high-availability).
## Query data
VictoriaMetrics provides
an [HTTP API](https://docs.victoriametrics.com/Single-server-VictoriaMetrics.html#prometheus-querying-api-usage)
for serving read queries. The API is used in various integrations such as
[Grafana](https://docs.victoriametrics.com/Single-server-VictoriaMetrics.html#grafana-setup). The same API is also used
by
[Grafana](https://docs.victoriametrics.com/Single-server-VictoriaMetrics.html#grafana-setup). The same API is also used by
[VMUI](https://docs.victoriametrics.com/Single-server-VictoriaMetrics.html#vmui) - graphical User Interface for querying
and visualizing metrics.
The API consists of two main handlers: [instant](#instant-query) and [range queries](#range-query).
The API consists of two main handlers for serving [instant queries](#instant-query) and [range queries](#range-query).
### Instant query
Instant query executes the query expression at the given moment of time:
Instant query executes the query expression at the given timestamp:
```
GET | POST /api/v1/query
GET | POST /api/v1/query?query=...&time=...&step=...
```
Params:
query - MetricsQL expression, required
time - when (rfc3339 | unix_timestamp) to evaluate the query. If omitted, the current timestamp is used
step - max lookback window if no datapoints found at the given time. If omitted, is set to 5m
```
* `query` - [MetricsQL](https://docs.victoriametrics.com/MetricsQL.html) expression.
* `time` - optional timestamp when to evaluate the `query`. If `time` is skipped, then the current timestamp is used.
The `time` param can be specified in the following formats:
* [RFC3339](https://www.ietf.org/rfc/rfc3339.txt) such as `2022-08-10T12:45:43.000Z`.
* [Unix timestamp](https://en.wikipedia.org/wiki/Unix_time) in seconds. It can contains fractional part for millisecond precision.
* [Relative duration](https://prometheus.io/docs/prometheus/latest/querying/basics/#time-durations)
comparing to the current timestamp. For example, `-1h` means `one hour before the current time`.
* `step` - optional max lookback window for searching for raw samples when executing the `query`.
If `step` is skipped, then it is set to `5m` (5 minutes) by default.
To understand how instant queries work, let's begin with a data sample:
@ -429,8 +479,8 @@ foo_bar 1.00 1652170500000 # 2022-05-10 10:15:00
foo_bar 4.00 1652170560000 # 2022-05-10 10:16:00
```
The data sample contains a list of samples for one time series with time intervals between samples from 1m to 3m. If we
plot this data sample on the system of coordinates, it will have the following form:
The data sample contains a list of samples for `foo_bar` time series with time intervals between samples from 1m to 3m. If we
plot this data sample on the graph, it will have the following form:
<p style="text-align: center">
<a href="keyConcepts_data_samples.png" target="_blank">
@ -467,7 +517,7 @@ curl "http://<victoria-metrics-addr>/api/v1/query?query=foo_bar&time=2022-05-10T
In response, VictoriaMetrics returns a single sample-timestamp pair with a value of `3` for the series
`foo_bar` at the given moment of time `2022-05-10 10:03`. But, if we take a look at the original data sample again,
we'll see that there is no data point at `2022-05-10 10:03`. What happens here is if there is no data point at the
we'll see that there is no a raw sample at `2022-05-10 10:03`. What happens here is if there is no a raw sample at the
requested timestamp, VictoriaMetrics will try to locate the closest sample on the left to the requested timestamp:
<p style="text-align: center">
@ -492,14 +542,23 @@ the following scenarios:
Range query executes the query expression at the given time range with the given step:
```
GET | POST /api/v1/query_range
GET | POST /api/v1/query_range?query=...&start=...&end=...&step=...
```
Params:
query - MetricsQL expression, required
start - beginning (rfc3339 | unix_timestamp) of the time rage, required
end - end (rfc3339 | unix_timestamp) of the time range. If omitted, current timestamp is used
step - step in seconds for evaluating query expression on the time range. If omitted, is set to 5m
```
* `query` - [MetricsQL](https://docs.victoriametrics.com/MetricsQL.html) expression.
* `start` - the starting timestamp of the time range for `query` evaluation.
The `start` param can be specified in the following formats:
* [RFC3339](https://www.ietf.org/rfc/rfc3339.txt) such as `2022-08-10T12:45:43.000Z`.
* [Unix timestamp](https://en.wikipedia.org/wiki/Unix_time) in seconds. It can contains fractional part for millisecond precision.
* [Relative duration](https://prometheus.io/docs/prometheus/latest/querying/basics/#time-durations)
comparing to the current timestamp. For example, `-1h` means `one hour before the current time`.
* `end` - the ending timestamp of the time range for `query` evaluation.
If the `end` isn't set, then the `end` is automatically set to the current time.
* `step` - the [interval](https://prometheus.io/docs/prometheus/latest/querying/basics/#time-durations) between datapoints,
which must be returned from the range query.
The `query` is executed at `start`, `start+step`, `start+2*step`, ..., `end` timestamps.
If the `step` isn't set, then it is automatically set to `5m` (5 minutes).
To get the values of `foo_bar` on time range from `2022-05-10 09:59:00` to `2022-05-10 10:17:00`, in VictoriaMetrics we
need to issue a range query:
@ -596,8 +655,8 @@ curl "http://<victoria-metrics-addr>/api/v1/query_range?query=foo_bar&step=1m&st
In response, VictoriaMetrics returns `17` sample-timestamp pairs for the series `foo_bar` at the given time range
from `2022-05-10 09:59:00` to `2022-05-10 10:17:00`. But, if we take a look at the original data sample again, we'll
see that it contains only 13 data points. What happens here is that the range query is actually
an [instant query](#instant-query) executed `(start-end)/step` times on the time range from `start` to `end`. If we plot
see that it contains only 13 raw samples. What happens here is that the range query is actually
an [instant query](#instant-query) executed `1 + (start-end)/step` times on the time range from `start` to `end`. If we plot
this request in VictoriaMetrics the graph will be shown as the following:
<p style="text-align: center">
@ -606,26 +665,24 @@ this request in VictoriaMetrics the graph will be shown as the following:
</a>
</p>
The blue dotted lines on the pic are the moments when instant query was executed. Since instant query retains the
ability to locate the missing point, the graph contains two types of points: `real` and `ephemeral` data
points. `ephemeral` data point always repeats the left closest
`real` data point (see red arrow on the pic above).
points. `ephemeral` data point always repeats the left closest raw sample (see red arrow on the pic above).
This behavior of adding ephemeral data points comes from the specifics of the [Pull model](#pull-model):
This behavior of adding ephemeral data points comes from the specifics of the [pull model](#pull-model):
* Metrics are scraped at fixed intervals;
* Scrape may be skipped if the monitoring system is overloaded;
* Metrics are scraped at fixed intervals.
* Scrape may be skipped if the monitoring system is overloaded.
* Scrape may fail due to network issues.
According to these specifics, the range query assumes that if there is a missing data point then it is likely a missed
scrape, so it fills it with the previous data point. The same will work for cases when `step` is lower than the actual
According to these specifics, the range query assumes that if there is a missing raw sample then it is likely a missed
scrape, so it fills it with the previous raw sample. The same will work for cases when `step` is lower than the actual
interval between samples. In fact, if we set `step=1s` for the same request, we'll get about 1 thousand data points in
response, where most of them are `ephemeral`.
Sometimes, the lookbehind window for locating the datapoint isn't big enough and the graph will contain a gap. For range
queries, lookbehind window isn't equal to the `step` parameter. It is calculated as the median of the intervals between
the first 20 data points in the requested time range. In this way, VictoriaMetrics automatically adjusts the lookbehind
the first 20 raw samples in the requested time range. In this way, VictoriaMetrics automatically adjusts the lookbehind
window to fill gaps and detect stale series at the same time.
Range queries are mostly used for plotting time series data over specified time ranges. These queries are extremely
@ -635,36 +692,35 @@ useful in the following scenarios:
* Correlate changes between multiple metrics on the time interval;
* Observe trends and dynamics of the metric change.
If you need exporting raw samples from VictoriaMetrics, then take a look at [export APIs](https://docs.victoriametrics.com/#how-to-export-time-series).
### MetricsQL
VictoriaMetrics provide a special query language for executing read queries
- [MetricsQL](https://docs.victoriametrics.com/MetricsQL.html). MetricsQL is
a [PromQL](https://prometheus.io/docs/prometheus/latest/querying/basics) -like query language with a powerful set of
functions and features for working specifically with time series data. MetricsQL is backwards-compatible with PromQL,
so it shares most of the query concepts. For example, the basics concepts of PromQL are
described [here](https://valyala.medium.com/promql-tutorial-for-beginners-9ab455142085)
are applicable to MetricsQL as well.
VictoriaMetrics provide a special query language for executing read queries - [MetricsQL](https://docs.victoriametrics.com/MetricsQL.html).
It is a [PromQL](https://prometheus.io/docs/prometheus/latest/querying/basics)-like query language with a powerful set of
functions and features for working specifically with time series data. MetricsQL is backwards-compatible with PromQL,
so it shares most of the query concepts. The basics concepts for PromQL and MetricsQL are
described [here](https://valyala.medium.com/promql-tutorial-for-beginners-9ab455142085).
#### Filtering
In sections [instant query](#instant-query) and [range query](#range-query) we've already used MetricsQL to get data for
metric `foo_bar`. It is as simple as just writing a metric name in the query:
```MetricsQL
```metricsql
foo_bar
```
A single metric name may correspond to multiple time series with distinct label sets. For example:
```MetricsQL
```metricsql
requests_total{path="/", code="200"}
requests_total{path="/", code="403"}
```
To select only time series with specific label value specify the matching condition in curly braces:
```MetricsQL
```metricsql
requests_total{code="200"}
```
@ -672,13 +728,13 @@ The query above will return all time series with the name `requests_total` and `
match a label value. For negative match use `!=` operator. Filters also support regex matching `=~` for positive
and `!~` for negative matching:
```MetricsQL
```metricsql
requests_total{code=~"2.*"}
```
Filters can also be combined:
```MetricsQL
```metricsql
requests_total{code=~"200|204", path="/home"}
```
@ -691,7 +747,7 @@ Sometimes it is required to return all the time series for multiple metric names
the [data model section](#data-model), the metric name is just an ordinary label with a special name — `__name__`. So
filtering by multiple metric names may be performed by applying regexps on metric names:
```MetricsQL
```metricsql
{__name__=~"requests_(error|success)_total"}
```
@ -701,17 +757,17 @@ The query above is supposed to return series for two metrics: `requests_error_to
MetricsQL supports all the basic arithmetic operations:
* addition (+)
* subtraction (-)
* multiplication (*)
* division (/)
* modulo (%)
* power (^)
* addition - `+`
* subtraction - `-`
* multiplication - `*`
* division - `/`
* modulo - `%`
* power - `^`
This allows performing various calculations. For example, the following query will calculate the percentage of error
requests:
This allows performing various calculations across multiple metrics.
For example, the following query calculates the percentage of error requests:
```MetricsQL
```metricsql
(requests_error_total / (requests_error_total + requests_success_total)) * 100
```
@ -725,87 +781,89 @@ query may break or may lead to incorrect results. The basics of the matching rul
* For each time series on the left side MetricsQL engine searches for the corresponding time series on the right side
with the same set of labels, applies the operation for each data point and returns the resulting time series with the
same set of labels. If there are no matches, then the time series is dropped from the result.
* The matching rules may be augmented with ignoring, on, group_left and group_right modifiers.
This could be complex, but in the majority of cases isnt needed.
* The matching rules may be augmented with `ignoring`, `on`, `group_left` and `group_right` modifiers.
See [these docs](https://prometheus.io/docs/prometheus/latest/querying/operators/#vector-matching) for details.
#### Comparison operations
MetricsQL supports the following comparison operators:
* equal (==)
* not equal (!=)
* greater (>)
* greater-or-equal (>=)
* less (<)
* less-or-equal (<=)
* equal - `==`
* not equal - `!=`
* greater - `>`
* greater-or-equal - `>=`
* less - `<`
* less-or-equal - `<=`
These operators may be applied to arbitrary MetricsQL expressions as with arithmetic operators. The result of the
comparison operation is time series with only matching data points. For instance, the following query would return
series only for processes where memory usage is > 100MB:
series only for processes where memory usage exceeds `100MB`:
```MetricsQL
```metricsql
process_resident_memory_bytes > 100*1024*1024
```
#### Aggregation and grouping functions
MetricsQL allows aggregating and grouping time series. Time series are grouped by the given set of labels and then the
given aggregation function is applied for each group. For instance, the following query would return memory used by
various processes grouped by instances (for the case when multiple processes run on the same instance):
given aggregation function is applied individually per each group. For instance, the following query returns
summary memory usage for each `job`:
```MetricsQL
sum(process_resident_memory_bytes) by (instance)
```metricsql
sum(process_resident_memory_bytes) by (job)
```
See [docs for aggregate functions in MetricsQL](https://docs.victoriametrics.com/MetricsQL.html#aggregate-functions).
#### Calculating rates
One of the most widely used functions for [counters](#counter)
is [rate](https://docs.victoriametrics.com/MetricsQL.html#rate). It calculates per-second rate for all the matching time
series. For example, the following query will show how many bytes are received by the network per second:
is [rate](https://docs.victoriametrics.com/MetricsQL.html#rate). It calculates the average per-second increase rate individually
per each matching time series. For example, the following query shows the average per-second data receive speed
per each monitored `node_exporter` instance, which exposes the `node_network_receive_bytes_total` metric:
```MetricsQL
```metricsql
rate(node_network_receive_bytes_total)
```
To calculate the rate, the query engine will need at least two data points to compare. Simplified rate calculation for
each point looks like `(Vcurr-Vprev)/(Tcurr-Tprev)`, where `Vcurr` is the value at the current point — `Tcurr`, `Vprev`
is the value at the point `Tprev=Tcurr-step`. The range between `Tcurr-Tprev` is usually equal to `step` parameter.
If `step` value is lower than the real interval between data points, then it is ignored and a minimum real interval is
used.
By default VictoriaMetrics calculates the `rate` over [raw samples](#raw-samples) on the lookbehind window specified in the `step` param
passed either to [instant query](#instant-query) or to [range query](#range-query).
The interval on which `rate` needs to be calculated can be specified explicitly
as [duration](https://prometheus.io/docs/prometheus/latest/querying/basics/#time-durations) in square brackets:
The interval on which `rate` needs to be calculated can be specified explicitly as `duration` in square brackets:
```MetricsQL
```metricsql
rate(node_network_receive_bytes_total[5m])
```
For this query the time duration to look back when calculating per-second rate for each point on the graph will be equal
to `5m`.
In this case VictoriaMetrics uses the specified lookbehind window - `5m` (5 minutes) - for calculating the average per-second increase rate.
Bigger lookbehind windows usually lead to smoother graphs.
`rate` strips metric name while leaving all the labels for the inner time series. Do not apply `rate` to time series
which may go up and down, such as [gauges](#gauge).
`rate` must be applied only to [counters](#counter), which always go up. Even if counter gets reset (for instance, on
service restart), `rate` knows how to deal with it.
`rate` strips metric name while leaving all the labels for the inner time series. If you need keeping the metric name,
then add [keep_metric_names](https://docs.victoriametrics.com/MetricsQL.html#keep_metric_names) modifier
after the `rate(..)`. For example, the following query leaves metric names after calculating the `rate()`:
```metricsql
rate(node_network_receive_bytes_total) keep_metric_names
```
`rate()` must be apllied only to [counters](#counter). The result of applying the `rate()` to [gauge](#gauge) is undefined.
### Visualizing time series
VictoriaMetrics has a built-in graphical User Interface for querying and visualizing metrics
VictoriaMetrics has a built-in graphical User Interface for querying and visualizing metrics -
[VMUI](https://docs.victoriametrics.com/Single-server-VictoriaMetrics.html#vmui).
Open `http://victoriametrics:8428/vmui` page, type the query and see the results:
{% include img.html href="keyConcepts_vmui.png" %}
VictoriaMetrics supports [Prometheus HTTP API](https://prometheus.io/docs/prometheus/latest/querying/api/)
which makes it possible
to [use with Grafana](https://docs.victoriametrics.com/Single-server-VictoriaMetrics.html#grafana-setup). Play more with
Grafana integration in VictoriaMetrics
sandbox [https://play-grafana.victoriametrics.com](https://play-grafana.victoriametrics.com).
VictoriaMetrics supports [Prometheus HTTP API](https://docs.victoriametrics.com/Single-server-VictoriaMetrics.html#prometheus-querying-api-usage)
which makes it possible to [query it with Grafana](https://docs.victoriametrics.com/Single-server-VictoriaMetrics.html#grafana-setup)
in the same way as Grafana queries Prometheus.
## Modify data
VictoriaMetrics stores time series data in [MergeTree](https://en.wikipedia.org/wiki/Log-structured_merge-tree)-like
data structures. While this approach if very efficient for write-heavy databases, it applies some limitations on data
data structures. While this approach is very efficient for write-heavy databases, it applies some limitations on data
updates. In short, modifying already written [time series](#time-series) requires re-writing the whole data block where
it is stored. Due to this limitation, VictoriaMetrics does not support direct data modification.
@ -822,5 +880,9 @@ details [here](https://docs.victoriametrics.com/Single-server-VictoriaMetrics.ht
### Deduplication
VictoriaMetrics supports data points deduplication after data was written to the storage. See more
details [here](https://docs.victoriametrics.com/Single-server-VictoriaMetrics.html#deduplication).
VictoriaMetrics supports data deduplication. See [these docs](https://docs.victoriametrics.com/Single-server-VictoriaMetrics.html#deduplication).
### Downsampling
VictoriaMetrics supports data downsampling - see [these docs](https://docs.victoriametrics.com/Single-server-VictoriaMetrics.html#downsampling).

View file

@ -442,7 +442,7 @@ scrape_configs:
See also [useful tips for target relabeling](#useful-tips-for-target-relabeling).
# Useful tips for target relabeling
## Useful tips for target relabeling
* Every discovered target contains a set of meta-labels, which start with `__meta_` prefix.
The specific sets of labels per each supported service discovery option are listed

View file

@ -209,12 +209,12 @@ The following variables are available in templating:
| $labels or .Labels | The list of labels of the current alert. Use as ".Labels.<label_name>". | {% raw %}"Too high number of connections for {{ .Labels.instance }}"{% endraw %} |
| $alertID or .AlertID | The current alert's ID generated by vmalert. | {% raw %}"Link: vmalert/alert?group_id={{.GroupID}}&alert_id={{.AlertID}}"{% endraw %} |
| $groupID or .GroupID | The current alert's group ID generated by vmalert. | {% raw %}"Link: vmalert/alert?group_id={{.GroupID}}&alert_id={{.AlertID}}"{% endraw %} |
| $expr or .Expr | Alert's expression. Can be used for generating links to Grafana or other systems. | {% raw %}"/api/v1/query?query={{ $expr&vert;quotesEscape&vert;queryEscape }}"{% endraw %} |
| $expr or .Expr | Alert's expression. Can be used for generating links to Grafana or other systems. | {% raw %}"/api/v1/query?query={{ $expr&#124;quotesEscape&#124;queryEscape }}"{% endraw %} |
| $externalLabels or .ExternalLabels | List of labels configured via `-external.label` command-line flag. | {% raw %}"Issues with {{ $labels.instance }} (datacenter-{{ $externalLabels.dc }})"{% endraw %} |
| $externalURL or .ExternalURL | URL configured via `-external.url` command-line flag. Used for cases when vmalert is hidden behind proxy. | {% raw %}"Visit {{ $externalURL }} for more details"{% endraw %} |
Additionally, `vmalert` provides some extra templating functions
listed [here](https://github.com/VictoriaMetrics/VictoriaMetrics/blob/master/app/vmalert/notifier/template_func.go)
listed [here](https://github.com/VictoriaMetrics/VictoriaMetrics/blob/master/app/vmalert/templates/template.go)
and [reusable templates](#reusable-templates).
#### Reusable templates

16
go.mod
View file

@ -11,7 +11,7 @@ require (
github.com/VictoriaMetrics/fasthttp v1.1.0
github.com/VictoriaMetrics/metrics v1.22.2
github.com/VictoriaMetrics/metricsql v0.44.1
github.com/aws/aws-sdk-go v1.44.76
github.com/aws/aws-sdk-go v1.44.81
github.com/cespare/xxhash/v2 v2.1.2
github.com/cpuguy83/go-md2man/v2 v2.0.2 // indirect
@ -24,7 +24,7 @@ require (
github.com/golang/snappy v0.0.4
github.com/influxdata/influxdb v1.10.0
github.com/klauspost/compress v1.15.9
github.com/mattn/go-colorable v0.1.12 // indirect
github.com/mattn/go-colorable v0.1.13 // indirect
github.com/mattn/go-runewidth v0.0.13 // indirect
github.com/oklog/ulid v1.3.1
github.com/prometheus/common v0.37.0 // indirect
@ -37,14 +37,14 @@ require (
github.com/valyala/quicktemplate v1.7.0
golang.org/x/net v0.0.0-20220812174116-3211cb980234
golang.org/x/oauth2 v0.0.0-20220808172628-8227340efae7
golang.org/x/sys v0.0.0-20220811171246-fbc7d0a398ab
google.golang.org/api v0.92.0
golang.org/x/sys v0.0.0-20220818161305-2296e01440c6
google.golang.org/api v0.93.0
gopkg.in/yaml.v2 v2.4.0
)
require (
cloud.google.com/go v0.103.0 // indirect
cloud.google.com/go/compute v1.8.0 // indirect
cloud.google.com/go/compute v1.9.0 // indirect
cloud.google.com/go/iam v0.3.0 // indirect
github.com/VividCortex/ewma v1.2.0 // indirect
github.com/beorn7/perks v1.0.1 // indirect
@ -57,7 +57,7 @@ require (
github.com/googleapis/enterprise-certificate-proxy v0.1.0 // indirect
github.com/googleapis/gax-go/v2 v2.5.1 // indirect
github.com/jmespath/go-jmespath v0.4.0 // indirect
github.com/mattn/go-isatty v0.0.14 // indirect
github.com/mattn/go-isatty v0.0.16 // indirect
github.com/matttproud/golang_protobuf_extensions v1.0.1 // indirect
github.com/pkg/errors v0.9.1 // indirect
github.com/prometheus/client_golang v1.13.0 // indirect
@ -71,11 +71,11 @@ require (
go.opencensus.io v0.23.0 // indirect
go.uber.org/atomic v1.10.0 // indirect
go.uber.org/goleak v1.1.11-0.20210813005559-691160354723 // indirect
golang.org/x/sync v0.0.0-20220722155255-886fb9371eb4 // indirect
golang.org/x/sync v0.0.0-20220819030929-7fc1605a5dde // indirect
golang.org/x/text v0.3.7 // indirect
golang.org/x/xerrors v0.0.0-20220609144429-65e65417b02f // indirect
google.golang.org/appengine v1.6.7 // indirect
google.golang.org/genproto v0.0.0-20220812140447-cec7f5303424 // indirect
google.golang.org/genproto v0.0.0-20220819174105-e9f053255caa // indirect
google.golang.org/grpc v1.48.0 // indirect
google.golang.org/protobuf v1.28.1 // indirect
)

31
go.sum
View file

@ -46,8 +46,8 @@ cloud.google.com/go/compute v1.5.0/go.mod h1:9SMHyhJlzhlkJqrPAc839t2BZFTSk6Jdj6m
cloud.google.com/go/compute v1.6.0/go.mod h1:T29tfhtVbq1wvAPo0E3+7vhgmkOYeXjhFvz/FMzPu0s=
cloud.google.com/go/compute v1.6.1/go.mod h1:g85FgpzFvNULZ+S8AYq87axRKuf2Kh7deLqV/jJ3thU=
cloud.google.com/go/compute v1.7.0/go.mod h1:435lt8av5oL9P3fv1OEzSbSUe+ybHXGMPQHHZWZxy9U=
cloud.google.com/go/compute v1.8.0 h1:NLtR56/eKx9K1s2Tw/4hec2vsU1S3WeKRMj8HXbBo6E=
cloud.google.com/go/compute v1.8.0/go.mod h1:boQ44qJsMqZjKzzsEkoJWQGj4h8ygmyk17UArClWzmg=
cloud.google.com/go/compute v1.9.0 h1:ED/FP4xv8GJw63v556/ASNc1CeeLUO2Bs8nzaHchkHg=
cloud.google.com/go/compute v1.9.0/go.mod h1:lWv1h/zUWTm/LozzfTJhBSkd6ShQq8la8VeeuOEGxfY=
cloud.google.com/go/datastore v1.0.0/go.mod h1:LXYbyblFSglQ5pkeyhO+Qmw7ukd3C+pD7TKLgZqpHYE=
cloud.google.com/go/datastore v1.1.0/go.mod h1:umbIZjpQpHh4hmRpGhH4tLFup+FVzqBi1b3c64qFpCk=
cloud.google.com/go/iam v0.3.0 h1:exkAomrVUuzx9kWFI1wm3KI0uoDeUFPB4kKGzx6x+Gc=
@ -149,8 +149,8 @@ github.com/aws/aws-lambda-go v1.13.3/go.mod h1:4UKl9IzQMoD+QF79YdCuzCwp8VbmG4VAQ
github.com/aws/aws-sdk-go v1.27.0/go.mod h1:KmX6BPdI08NWTb3/sm4ZGu5ShLoqVDhKgpiN924inxo=
github.com/aws/aws-sdk-go v1.34.28/go.mod h1:H7NKnBqNVzoTJpGfLrQkkD+ytBA93eiDYi/+8rV9s48=
github.com/aws/aws-sdk-go v1.35.31/go.mod h1:hcU610XS61/+aQV88ixoOzUoG7v3b31pl2zKMmprdro=
github.com/aws/aws-sdk-go v1.44.76 h1:5e8yGO/XeNYKckOjpBKUd5wStf0So3CrQIiOMCVLpOI=
github.com/aws/aws-sdk-go v1.44.76/go.mod h1:y4AeaBuwd2Lk+GepC1E9v0qOiTws0MIWAX4oIKwKHZo=
github.com/aws/aws-sdk-go v1.44.81 h1:C8oBZ+a+ka0qk3Q24MohQIFq0tkbO8IAu5tfpAMKVWE=
github.com/aws/aws-sdk-go v1.44.81/go.mod h1:y4AeaBuwd2Lk+GepC1E9v0qOiTws0MIWAX4oIKwKHZo=
github.com/aws/aws-sdk-go-v2 v0.18.0/go.mod h1:JWVYvqSMppoMJC0x5wdwiImzgXTI9FuZwxzkQq9wy+g=
github.com/beorn7/perks v0.0.0-20180321164747-3a771d992973/go.mod h1:Dwedo/Wpr24TaqPxmxbtue+5NUziq4I4S80YR8gNf3Q=
github.com/beorn7/perks v1.0.0/go.mod h1:KWe93zE9D1o94FZ5RNwFwVgaQK1VOXiVxmqh+CedLV8=
@ -612,16 +612,17 @@ github.com/mattn/go-colorable v0.0.9/go.mod h1:9vuHe8Xs5qXnSaW/c/ABM9alt+Vo+STaO
github.com/mattn/go-colorable v0.1.4/go.mod h1:U0ppj6V5qS13XJ6of8GYAs25YV2eR4EVcfRqFIhoBtE=
github.com/mattn/go-colorable v0.1.6/go.mod h1:u6P/XSegPjTcexA+o6vUJrdnUu04hMope9wVRipJSqc=
github.com/mattn/go-colorable v0.1.9/go.mod h1:u6P/XSegPjTcexA+o6vUJrdnUu04hMope9wVRipJSqc=
github.com/mattn/go-colorable v0.1.12 h1:jF+Du6AlPIjs2BiUiQlKOX0rt3SujHxPnksPKZbaA40=
github.com/mattn/go-colorable v0.1.12/go.mod h1:u5H1YNBxpqRaxsYJYSkiCWKzEfiAb1Gb520KVy5xxl4=
github.com/mattn/go-colorable v0.1.13 h1:fFA4WZxdEF4tXPZVKMLwD8oUnCTTo08duU7wxecdEvA=
github.com/mattn/go-colorable v0.1.13/go.mod h1:7S9/ev0klgBDR4GtXTXX8a3vIGJpMovkB8vQcUbaXHg=
github.com/mattn/go-isatty v0.0.3/go.mod h1:M+lRXTBqGeGNdLjl/ufCoiOlB5xdOkqRJdNxMWT7Zi4=
github.com/mattn/go-isatty v0.0.4/go.mod h1:M+lRXTBqGeGNdLjl/ufCoiOlB5xdOkqRJdNxMWT7Zi4=
github.com/mattn/go-isatty v0.0.8/go.mod h1:Iq45c/XA43vh69/j3iqttzPXn0bhXyGjM0Hdxcsrc5s=
github.com/mattn/go-isatty v0.0.10/go.mod h1:qgIWMr58cqv1PHHyhnkY9lrL7etaEgOFcMEpPG5Rm84=
github.com/mattn/go-isatty v0.0.11/go.mod h1:PhnuNfih5lzO57/f3n+odYbM4JtupLOxQOAqxQCu2WE=
github.com/mattn/go-isatty v0.0.12/go.mod h1:cbi8OIDigv2wuxKPP5vlRcQ1OAZbq2CE4Kysco4FUpU=
github.com/mattn/go-isatty v0.0.14 h1:yVuAays6BHfxijgZPzw+3Zlu5yQgKGP2/hcQbHb7S9Y=
github.com/mattn/go-isatty v0.0.14/go.mod h1:7GGIvUiUoEMVVmxf/4nioHXj79iQHKdU27kJ6hsGG94=
github.com/mattn/go-isatty v0.0.16 h1:bq3VjFmv/sOjHtdEhmkEV4x1AJtvUvOJ2PFAZ5+peKQ=
github.com/mattn/go-isatty v0.0.16/go.mod h1:kYGgaQfpe5nmfYZH+SKPsOc2e4SrIfOl2e/yFXSvRLM=
github.com/mattn/go-runewidth v0.0.2/go.mod h1:LwmH8dsx7+W8Uxz3IHJYH5QSwggIsqBzpuz5H//U1FU=
github.com/mattn/go-runewidth v0.0.3/go.mod h1:LwmH8dsx7+W8Uxz3IHJYH5QSwggIsqBzpuz5H//U1FU=
github.com/mattn/go-runewidth v0.0.13 h1:lTGmDsbAYt5DmK6OnoV7EuIF1wEIFAcxld6ypU4OSgU=
@ -1045,8 +1046,8 @@ golang.org/x/sync v0.0.0-20201020160332-67f06af15bc9/go.mod h1:RxMgew5VJxzue5/jJ
golang.org/x/sync v0.0.0-20201207232520-09787c993a3a/go.mod h1:RxMgew5VJxzue5/jJTE5uejpjVlOe/izrB70Jof72aM=
golang.org/x/sync v0.0.0-20210220032951-036812b2e83c/go.mod h1:RxMgew5VJxzue5/jJTE5uejpjVlOe/izrB70Jof72aM=
golang.org/x/sync v0.0.0-20220601150217-0de741cfad7f/go.mod h1:RxMgew5VJxzue5/jJTE5uejpjVlOe/izrB70Jof72aM=
golang.org/x/sync v0.0.0-20220722155255-886fb9371eb4 h1:uVc8UZUe6tr40fFVnUP5Oj+veunVezqYl9z7DYw9xzw=
golang.org/x/sync v0.0.0-20220722155255-886fb9371eb4/go.mod h1:RxMgew5VJxzue5/jJTE5uejpjVlOe/izrB70Jof72aM=
golang.org/x/sync v0.0.0-20220819030929-7fc1605a5dde h1:ejfdSekXMDxDLbRrJMwUk6KnSLZ2McaUCVcIKM+N6jc=
golang.org/x/sync v0.0.0-20220819030929-7fc1605a5dde/go.mod h1:RxMgew5VJxzue5/jJTE5uejpjVlOe/izrB70Jof72aM=
golang.org/x/sys v0.0.0-20180823144017-11551d06cbcc/go.mod h1:STP8DvDyc/dI5b8T5hshtkjS+E42TnysNCUPdjciGhY=
golang.org/x/sys v0.0.0-20180830151530-49385e6e1522/go.mod h1:STP8DvDyc/dI5b8T5hshtkjS+E42TnysNCUPdjciGhY=
golang.org/x/sys v0.0.0-20180905080454-ebe1bf3edb33/go.mod h1:STP8DvDyc/dI5b8T5hshtkjS+E42TnysNCUPdjciGhY=
@ -1126,7 +1127,6 @@ golang.org/x/sys v0.0.0-20210630005230-0f9fa26af87c/go.mod h1:oPkhp1MJrh7nUepCBc
golang.org/x/sys v0.0.0-20210806184541-e5e7981a1069/go.mod h1:oPkhp1MJrh7nUepCBck5+mAzfO9JrbApNNgaTdGDITg=
golang.org/x/sys v0.0.0-20210823070655-63515b42dcdf/go.mod h1:oPkhp1MJrh7nUepCBck5+mAzfO9JrbApNNgaTdGDITg=
golang.org/x/sys v0.0.0-20210908233432-aa78b53d3365/go.mod h1:oPkhp1MJrh7nUepCBck5+mAzfO9JrbApNNgaTdGDITg=
golang.org/x/sys v0.0.0-20210927094055-39ccf1dd6fa6/go.mod h1:oPkhp1MJrh7nUepCBck5+mAzfO9JrbApNNgaTdGDITg=
golang.org/x/sys v0.0.0-20211124211545-fe61309f8881/go.mod h1:oPkhp1MJrh7nUepCBck5+mAzfO9JrbApNNgaTdGDITg=
golang.org/x/sys v0.0.0-20211210111614-af8b64212486/go.mod h1:oPkhp1MJrh7nUepCBck5+mAzfO9JrbApNNgaTdGDITg=
golang.org/x/sys v0.0.0-20211216021012-1d35b9e2eb4e/go.mod h1:oPkhp1MJrh7nUepCBck5+mAzfO9JrbApNNgaTdGDITg=
@ -1143,8 +1143,9 @@ golang.org/x/sys v0.0.0-20220520151302-bc2c85ada10a/go.mod h1:oPkhp1MJrh7nUepCBc
golang.org/x/sys v0.0.0-20220610221304-9f5ed59c137d/go.mod h1:oPkhp1MJrh7nUepCBck5+mAzfO9JrbApNNgaTdGDITg=
golang.org/x/sys v0.0.0-20220615213510-4f61da869c0c/go.mod h1:oPkhp1MJrh7nUepCBck5+mAzfO9JrbApNNgaTdGDITg=
golang.org/x/sys v0.0.0-20220624220833-87e55d714810/go.mod h1:oPkhp1MJrh7nUepCBck5+mAzfO9JrbApNNgaTdGDITg=
golang.org/x/sys v0.0.0-20220811171246-fbc7d0a398ab h1:2QkjZIsXupsJbJIdSjjUOgWK3aEtzyuh2mPt3l/CkeU=
golang.org/x/sys v0.0.0-20220811171246-fbc7d0a398ab/go.mod h1:oPkhp1MJrh7nUepCBck5+mAzfO9JrbApNNgaTdGDITg=
golang.org/x/sys v0.0.0-20220818161305-2296e01440c6 h1:Sx/u41w+OwrInGdEckYmEuU5gHoGSL4QbDz3S9s6j4U=
golang.org/x/sys v0.0.0-20220818161305-2296e01440c6/go.mod h1:oPkhp1MJrh7nUepCBck5+mAzfO9JrbApNNgaTdGDITg=
golang.org/x/term v0.0.0-20201126162022-7de9c90e9dd1/go.mod h1:bj7SfCRtBDWHUb9snDiAeCFNEtKQo2Wmx5Cou7ajbmo=
golang.org/x/term v0.0.0-20210927222741-03fcf44c2211/go.mod h1:jbD1KX2456YbFQfuXm/mYQcufACuNUgVhRMnK/tPxf8=
golang.org/x/text v0.0.0-20170915032832-14c0d48ead0c/go.mod h1:NqM8EUOU14njkJ3fqMW+pc6Ldnwhi/IjpwHt7yyuwOQ=
@ -1292,8 +1293,8 @@ google.golang.org/api v0.80.0/go.mod h1:xY3nI94gbvBrE0J6NHXhxOmW97HG7Khjkku6AFB3
google.golang.org/api v0.84.0/go.mod h1:NTsGnUFJMYROtiquksZHBWtHfeMC7iYthki7Eq3pa8o=
google.golang.org/api v0.85.0/go.mod h1:AqZf8Ep9uZ2pyTvgL+x0D3Zt0eoT9b5E8fmzfu6FO2g=
google.golang.org/api v0.86.0/go.mod h1:+Sem1dnrKlrXMR/X0bPnMWyluQe4RsNoYfmNLhOIkzw=
google.golang.org/api v0.92.0 h1:8JHk7q/+rJla+iRsWj9FQ9/wjv2M1SKtpKSdmLhxPT0=
google.golang.org/api v0.92.0/go.mod h1:+Sem1dnrKlrXMR/X0bPnMWyluQe4RsNoYfmNLhOIkzw=
google.golang.org/api v0.93.0 h1:T2xt9gi0gHdxdnRkVQhT8mIvPaXKNsDNWz+L696M66M=
google.golang.org/api v0.93.0/go.mod h1:+Sem1dnrKlrXMR/X0bPnMWyluQe4RsNoYfmNLhOIkzw=
google.golang.org/appengine v1.1.0/go.mod h1:EbEs0AVv82hx2wNQdGPgUI5lhzA/G0D9YwlJXL52JkM=
google.golang.org/appengine v1.2.0/go.mod h1:xpcJRLb0r/rnEns0DIKYYv+WjYCduHsrkT7/EB5XEv4=
google.golang.org/appengine v1.4.0/go.mod h1:xpcJRLb0r/rnEns0DIKYYv+WjYCduHsrkT7/EB5XEv4=
@ -1387,8 +1388,8 @@ google.golang.org/genproto v0.0.0-20220616135557-88e70c0c3a90/go.mod h1:KEWEmljW
google.golang.org/genproto v0.0.0-20220617124728-180714bec0ad/go.mod h1:KEWEmljWE5zPzLBa/oHl6DaEt9LmfH6WtH1OHIvleBA=
google.golang.org/genproto v0.0.0-20220624142145-8cd45d7dbd1f/go.mod h1:KEWEmljWE5zPzLBa/oHl6DaEt9LmfH6WtH1OHIvleBA=
google.golang.org/genproto v0.0.0-20220628213854-d9e0b6570c03/go.mod h1:KEWEmljWE5zPzLBa/oHl6DaEt9LmfH6WtH1OHIvleBA=
google.golang.org/genproto v0.0.0-20220812140447-cec7f5303424 h1:zZnTt15U44/Txe/9cN/tVbteBkPMiyXK48hPsKRmqj4=
google.golang.org/genproto v0.0.0-20220812140447-cec7f5303424/go.mod h1:dbqgFATTzChvnt+ujMdZwITVAJHFtfyN1qUhDqEiIlk=
google.golang.org/genproto v0.0.0-20220819174105-e9f053255caa h1:Ux9yJCyf598uEniFPSyp8g1jtGTt77m+lzYyVgrWQaQ=
google.golang.org/genproto v0.0.0-20220819174105-e9f053255caa/go.mod h1:dbqgFATTzChvnt+ujMdZwITVAJHFtfyN1qUhDqEiIlk=
google.golang.org/grpc v1.17.0/go.mod h1:6QZJwpn2B+Zp71q/5VxRsJ6NXXVCE5NRUHRo+f3cWCs=
google.golang.org/grpc v1.19.0/go.mod h1:mqu4LbDTu4XGKhr4mRzUsmM4RtVoemTSY81AxZiDr8c=
google.golang.org/grpc v1.20.0/go.mod h1:chYK+tFQF0nDUGJgXMSgLCQk3phJEuONr2DCgLDdAQM=

View file

@ -71,6 +71,7 @@ func newDefaultHTTPClient() *http.Client {
KeepAlive: 30 * time.Second,
}).Dial,
},
Timeout: 5 * time.Second,
}
}

View file

@ -3928,6 +3928,9 @@ var awsPartition = partition{
endpointKey{
Region: "ap-southeast-2",
}: endpoint{},
endpointKey{
Region: "ap-southeast-3",
}: endpoint{},
endpointKey{
Region: "ca-central-1",
}: endpoint{},
@ -18269,6 +18272,9 @@ var awsPartition = partition{
endpointKey{
Region: "ap-southeast-2",
}: endpoint{},
endpointKey{
Region: "ap-southeast-3",
}: endpoint{},
endpointKey{
Region: "ca-central-1",
}: endpoint{},
@ -24465,9 +24471,18 @@ var awsPartition = partition{
endpointKey{
Region: "ap-southeast-2",
}: endpoint{},
endpointKey{
Region: "ca-central-1",
}: endpoint{},
endpointKey{
Region: "eu-central-1",
}: endpoint{},
endpointKey{
Region: "eu-west-1",
}: endpoint{},
endpointKey{
Region: "eu-west-2",
}: endpoint{},
endpointKey{
Region: "us-east-1",
}: endpoint{},
@ -31270,6 +31285,16 @@ var awsusgovPartition = partition{
},
},
},
"wellarchitected": service{
Endpoints: serviceEndpoints{
endpointKey{
Region: "us-gov-east-1",
}: endpoint{},
endpointKey{
Region: "us-gov-west-1",
}: endpoint{},
},
},
"workspaces": service{
Endpoints: serviceEndpoints{
endpointKey{
@ -31420,6 +31445,9 @@ var awsisoPartition = partition{
},
"appconfigdata": service{
Endpoints: serviceEndpoints{
endpointKey{
Region: "us-iso-east-1",
}: endpoint{},
endpointKey{
Region: "us-iso-west-1",
}: endpoint{},
@ -32175,6 +32203,13 @@ var awsisobPartition = partition{
}: endpoint{},
},
},
"appconfigdata": service{
Endpoints: serviceEndpoints{
endpointKey{
Region: "us-isob-east-1",
}: endpoint{},
},
},
"application-autoscaling": service{
Defaults: endpointDefaults{
defaultKey{}: endpoint{

View file

@ -5,4 +5,4 @@ package aws
const SDKName = "aws-sdk-go"
// SDKVersion is the version of this SDK
const SDKVersion = "1.44.76"
const SDKVersion = "1.44.81"

View file

@ -3,6 +3,7 @@ package query
import (
"encoding/xml"
"fmt"
"strings"
"github.com/aws/aws-sdk-go/aws/awserr"
"github.com/aws/aws-sdk-go/aws/request"
@ -62,7 +63,7 @@ func UnmarshalError(r *request.Request) {
}
r.Error = awserr.NewRequestFailure(
awserr.New(respErr.Code, respErr.Message, nil),
awserr.New(strings.TrimSpace(respErr.Code), strings.TrimSpace(respErr.Message), nil),
r.HTTPResponse.StatusCode,
reqID,
)

View file

@ -12,7 +12,7 @@
// API namespaces will continue to retain their original name for backward compatibility
// purposes. For more information, see Amazon Web Services SSO rename (https://docs.aws.amazon.com/singlesignon/latest/userguide/what-is.html#renamed).
//
// This API reference guide describes the Amazon Web Services SSO Portal operations
// This reference guide describes the Amazon Web Services SSO Portal operations
// that you can call programatically and includes detailed information on data
// types and errors.
//

View file

@ -61,8 +61,8 @@ func (g *Group) Wait() error {
// It blocks until the new goroutine can be added without the number of
// active goroutines in the group exceeding the configured limit.
//
// The first call to return a non-nil error cancels the group; its error will be
// returned by Wait.
// The first call to return a non-nil error cancels the group's context, if the
// group was created by calling WithContext. The error will be returned by Wait.
func (g *Group) Go(f func() error) {
if g.sem != nil {
g.sem <- token{}

View file

@ -156,10 +156,10 @@ openbsd_amd64)
mktypes="GOARCH=$GOARCH go tool cgo -godefs"
;;
openbsd_arm)
mkasm="go run mkasm.go"
mkerrors="$mkerrors"
mksyscall="go run mksyscall.go -l32 -openbsd -arm"
mksyscall="go run mksyscall.go -l32 -openbsd -arm -libc"
mksysctl="go run mksysctl_openbsd.go"
mksysnum="go run mksysnum.go 'https://cvsweb.openbsd.org/cgi-bin/cvsweb/~checkout~/src/sys/kern/syscalls.master'"
# Let the type of C char be signed for making the bare syscall
# API consistent across platforms.
mktypes="GOARCH=$GOARCH go tool cgo -godefs -- -fsigned-char"

View file

@ -2,8 +2,8 @@
// Use of this source code is governed by a BSD-style
// license that can be found in the LICENSE file.
//go:build (openbsd && 386) || (openbsd && amd64) || (openbsd && arm64)
// +build openbsd,386 openbsd,amd64 openbsd,arm64
//go:build (openbsd && 386) || (openbsd && amd64) || (openbsd && arm) || (openbsd && arm64)
// +build openbsd,386 openbsd,amd64 openbsd,arm openbsd,arm64
package unix

File diff suppressed because it is too large Load diff

796
vendor/golang.org/x/sys/unix/zsyscall_openbsd_arm.s generated vendored Normal file
View file

@ -0,0 +1,796 @@
// go run mkasm.go openbsd arm
// Code generated by the command above; DO NOT EDIT.
#include "textflag.h"
TEXT libc_getgroups_trampoline<>(SB),NOSPLIT,$0-0
JMP libc_getgroups(SB)
GLOBL ·libc_getgroups_trampoline_addr(SB), RODATA, $4
DATA ·libc_getgroups_trampoline_addr(SB)/4, $libc_getgroups_trampoline<>(SB)
TEXT libc_setgroups_trampoline<>(SB),NOSPLIT,$0-0
JMP libc_setgroups(SB)
GLOBL ·libc_setgroups_trampoline_addr(SB), RODATA, $4
DATA ·libc_setgroups_trampoline_addr(SB)/4, $libc_setgroups_trampoline<>(SB)
TEXT libc_wait4_trampoline<>(SB),NOSPLIT,$0-0
JMP libc_wait4(SB)
GLOBL ·libc_wait4_trampoline_addr(SB), RODATA, $4
DATA ·libc_wait4_trampoline_addr(SB)/4, $libc_wait4_trampoline<>(SB)
TEXT libc_accept_trampoline<>(SB),NOSPLIT,$0-0
JMP libc_accept(SB)
GLOBL ·libc_accept_trampoline_addr(SB), RODATA, $4
DATA ·libc_accept_trampoline_addr(SB)/4, $libc_accept_trampoline<>(SB)
TEXT libc_bind_trampoline<>(SB),NOSPLIT,$0-0
JMP libc_bind(SB)
GLOBL ·libc_bind_trampoline_addr(SB), RODATA, $4
DATA ·libc_bind_trampoline_addr(SB)/4, $libc_bind_trampoline<>(SB)
TEXT libc_connect_trampoline<>(SB),NOSPLIT,$0-0
JMP libc_connect(SB)
GLOBL ·libc_connect_trampoline_addr(SB), RODATA, $4
DATA ·libc_connect_trampoline_addr(SB)/4, $libc_connect_trampoline<>(SB)
TEXT libc_socket_trampoline<>(SB),NOSPLIT,$0-0
JMP libc_socket(SB)
GLOBL ·libc_socket_trampoline_addr(SB), RODATA, $4
DATA ·libc_socket_trampoline_addr(SB)/4, $libc_socket_trampoline<>(SB)
TEXT libc_getsockopt_trampoline<>(SB),NOSPLIT,$0-0
JMP libc_getsockopt(SB)
GLOBL ·libc_getsockopt_trampoline_addr(SB), RODATA, $4
DATA ·libc_getsockopt_trampoline_addr(SB)/4, $libc_getsockopt_trampoline<>(SB)
TEXT libc_setsockopt_trampoline<>(SB),NOSPLIT,$0-0
JMP libc_setsockopt(SB)
GLOBL ·libc_setsockopt_trampoline_addr(SB), RODATA, $4
DATA ·libc_setsockopt_trampoline_addr(SB)/4, $libc_setsockopt_trampoline<>(SB)
TEXT libc_getpeername_trampoline<>(SB),NOSPLIT,$0-0
JMP libc_getpeername(SB)
GLOBL ·libc_getpeername_trampoline_addr(SB), RODATA, $4
DATA ·libc_getpeername_trampoline_addr(SB)/4, $libc_getpeername_trampoline<>(SB)
TEXT libc_getsockname_trampoline<>(SB),NOSPLIT,$0-0
JMP libc_getsockname(SB)
GLOBL ·libc_getsockname_trampoline_addr(SB), RODATA, $4
DATA ·libc_getsockname_trampoline_addr(SB)/4, $libc_getsockname_trampoline<>(SB)
TEXT libc_shutdown_trampoline<>(SB),NOSPLIT,$0-0
JMP libc_shutdown(SB)
GLOBL ·libc_shutdown_trampoline_addr(SB), RODATA, $4
DATA ·libc_shutdown_trampoline_addr(SB)/4, $libc_shutdown_trampoline<>(SB)
TEXT libc_socketpair_trampoline<>(SB),NOSPLIT,$0-0
JMP libc_socketpair(SB)
GLOBL ·libc_socketpair_trampoline_addr(SB), RODATA, $4
DATA ·libc_socketpair_trampoline_addr(SB)/4, $libc_socketpair_trampoline<>(SB)
TEXT libc_recvfrom_trampoline<>(SB),NOSPLIT,$0-0
JMP libc_recvfrom(SB)
GLOBL ·libc_recvfrom_trampoline_addr(SB), RODATA, $4
DATA ·libc_recvfrom_trampoline_addr(SB)/4, $libc_recvfrom_trampoline<>(SB)
TEXT libc_sendto_trampoline<>(SB),NOSPLIT,$0-0
JMP libc_sendto(SB)
GLOBL ·libc_sendto_trampoline_addr(SB), RODATA, $4
DATA ·libc_sendto_trampoline_addr(SB)/4, $libc_sendto_trampoline<>(SB)
TEXT libc_recvmsg_trampoline<>(SB),NOSPLIT,$0-0
JMP libc_recvmsg(SB)
GLOBL ·libc_recvmsg_trampoline_addr(SB), RODATA, $4
DATA ·libc_recvmsg_trampoline_addr(SB)/4, $libc_recvmsg_trampoline<>(SB)
TEXT libc_sendmsg_trampoline<>(SB),NOSPLIT,$0-0
JMP libc_sendmsg(SB)
GLOBL ·libc_sendmsg_trampoline_addr(SB), RODATA, $4
DATA ·libc_sendmsg_trampoline_addr(SB)/4, $libc_sendmsg_trampoline<>(SB)
TEXT libc_kevent_trampoline<>(SB),NOSPLIT,$0-0
JMP libc_kevent(SB)
GLOBL ·libc_kevent_trampoline_addr(SB), RODATA, $4
DATA ·libc_kevent_trampoline_addr(SB)/4, $libc_kevent_trampoline<>(SB)
TEXT libc_utimes_trampoline<>(SB),NOSPLIT,$0-0
JMP libc_utimes(SB)
GLOBL ·libc_utimes_trampoline_addr(SB), RODATA, $4
DATA ·libc_utimes_trampoline_addr(SB)/4, $libc_utimes_trampoline<>(SB)
TEXT libc_futimes_trampoline<>(SB),NOSPLIT,$0-0
JMP libc_futimes(SB)
GLOBL ·libc_futimes_trampoline_addr(SB), RODATA, $4
DATA ·libc_futimes_trampoline_addr(SB)/4, $libc_futimes_trampoline<>(SB)
TEXT libc_poll_trampoline<>(SB),NOSPLIT,$0-0
JMP libc_poll(SB)
GLOBL ·libc_poll_trampoline_addr(SB), RODATA, $4
DATA ·libc_poll_trampoline_addr(SB)/4, $libc_poll_trampoline<>(SB)
TEXT libc_madvise_trampoline<>(SB),NOSPLIT,$0-0
JMP libc_madvise(SB)
GLOBL ·libc_madvise_trampoline_addr(SB), RODATA, $4
DATA ·libc_madvise_trampoline_addr(SB)/4, $libc_madvise_trampoline<>(SB)
TEXT libc_mlock_trampoline<>(SB),NOSPLIT,$0-0
JMP libc_mlock(SB)
GLOBL ·libc_mlock_trampoline_addr(SB), RODATA, $4
DATA ·libc_mlock_trampoline_addr(SB)/4, $libc_mlock_trampoline<>(SB)
TEXT libc_mlockall_trampoline<>(SB),NOSPLIT,$0-0
JMP libc_mlockall(SB)
GLOBL ·libc_mlockall_trampoline_addr(SB), RODATA, $4
DATA ·libc_mlockall_trampoline_addr(SB)/4, $libc_mlockall_trampoline<>(SB)
TEXT libc_mprotect_trampoline<>(SB),NOSPLIT,$0-0
JMP libc_mprotect(SB)
GLOBL ·libc_mprotect_trampoline_addr(SB), RODATA, $4
DATA ·libc_mprotect_trampoline_addr(SB)/4, $libc_mprotect_trampoline<>(SB)
TEXT libc_msync_trampoline<>(SB),NOSPLIT,$0-0
JMP libc_msync(SB)
GLOBL ·libc_msync_trampoline_addr(SB), RODATA, $4
DATA ·libc_msync_trampoline_addr(SB)/4, $libc_msync_trampoline<>(SB)
TEXT libc_munlock_trampoline<>(SB),NOSPLIT,$0-0
JMP libc_munlock(SB)
GLOBL ·libc_munlock_trampoline_addr(SB), RODATA, $4
DATA ·libc_munlock_trampoline_addr(SB)/4, $libc_munlock_trampoline<>(SB)
TEXT libc_munlockall_trampoline<>(SB),NOSPLIT,$0-0
JMP libc_munlockall(SB)
GLOBL ·libc_munlockall_trampoline_addr(SB), RODATA, $4
DATA ·libc_munlockall_trampoline_addr(SB)/4, $libc_munlockall_trampoline<>(SB)
TEXT libc_pipe2_trampoline<>(SB),NOSPLIT,$0-0
JMP libc_pipe2(SB)
GLOBL ·libc_pipe2_trampoline_addr(SB), RODATA, $4
DATA ·libc_pipe2_trampoline_addr(SB)/4, $libc_pipe2_trampoline<>(SB)
TEXT libc_getdents_trampoline<>(SB),NOSPLIT,$0-0
JMP libc_getdents(SB)
GLOBL ·libc_getdents_trampoline_addr(SB), RODATA, $4
DATA ·libc_getdents_trampoline_addr(SB)/4, $libc_getdents_trampoline<>(SB)
TEXT libc_getcwd_trampoline<>(SB),NOSPLIT,$0-0
JMP libc_getcwd(SB)
GLOBL ·libc_getcwd_trampoline_addr(SB), RODATA, $4
DATA ·libc_getcwd_trampoline_addr(SB)/4, $libc_getcwd_trampoline<>(SB)
TEXT libc_ioctl_trampoline<>(SB),NOSPLIT,$0-0
JMP libc_ioctl(SB)
GLOBL ·libc_ioctl_trampoline_addr(SB), RODATA, $4
DATA ·libc_ioctl_trampoline_addr(SB)/4, $libc_ioctl_trampoline<>(SB)
TEXT libc_sysctl_trampoline<>(SB),NOSPLIT,$0-0
JMP libc_sysctl(SB)
GLOBL ·libc_sysctl_trampoline_addr(SB), RODATA, $4
DATA ·libc_sysctl_trampoline_addr(SB)/4, $libc_sysctl_trampoline<>(SB)
TEXT libc_ppoll_trampoline<>(SB),NOSPLIT,$0-0
JMP libc_ppoll(SB)
GLOBL ·libc_ppoll_trampoline_addr(SB), RODATA, $4
DATA ·libc_ppoll_trampoline_addr(SB)/4, $libc_ppoll_trampoline<>(SB)
TEXT libc_access_trampoline<>(SB),NOSPLIT,$0-0
JMP libc_access(SB)
GLOBL ·libc_access_trampoline_addr(SB), RODATA, $4
DATA ·libc_access_trampoline_addr(SB)/4, $libc_access_trampoline<>(SB)
TEXT libc_adjtime_trampoline<>(SB),NOSPLIT,$0-0
JMP libc_adjtime(SB)
GLOBL ·libc_adjtime_trampoline_addr(SB), RODATA, $4
DATA ·libc_adjtime_trampoline_addr(SB)/4, $libc_adjtime_trampoline<>(SB)
TEXT libc_chdir_trampoline<>(SB),NOSPLIT,$0-0
JMP libc_chdir(SB)
GLOBL ·libc_chdir_trampoline_addr(SB), RODATA, $4
DATA ·libc_chdir_trampoline_addr(SB)/4, $libc_chdir_trampoline<>(SB)
TEXT libc_chflags_trampoline<>(SB),NOSPLIT,$0-0
JMP libc_chflags(SB)
GLOBL ·libc_chflags_trampoline_addr(SB), RODATA, $4
DATA ·libc_chflags_trampoline_addr(SB)/4, $libc_chflags_trampoline<>(SB)
TEXT libc_chmod_trampoline<>(SB),NOSPLIT,$0-0
JMP libc_chmod(SB)
GLOBL ·libc_chmod_trampoline_addr(SB), RODATA, $4
DATA ·libc_chmod_trampoline_addr(SB)/4, $libc_chmod_trampoline<>(SB)
TEXT libc_chown_trampoline<>(SB),NOSPLIT,$0-0
JMP libc_chown(SB)
GLOBL ·libc_chown_trampoline_addr(SB), RODATA, $4
DATA ·libc_chown_trampoline_addr(SB)/4, $libc_chown_trampoline<>(SB)
TEXT libc_chroot_trampoline<>(SB),NOSPLIT,$0-0
JMP libc_chroot(SB)
GLOBL ·libc_chroot_trampoline_addr(SB), RODATA, $4
DATA ·libc_chroot_trampoline_addr(SB)/4, $libc_chroot_trampoline<>(SB)
TEXT libc_close_trampoline<>(SB),NOSPLIT,$0-0
JMP libc_close(SB)
GLOBL ·libc_close_trampoline_addr(SB), RODATA, $4
DATA ·libc_close_trampoline_addr(SB)/4, $libc_close_trampoline<>(SB)
TEXT libc_dup_trampoline<>(SB),NOSPLIT,$0-0
JMP libc_dup(SB)
GLOBL ·libc_dup_trampoline_addr(SB), RODATA, $4
DATA ·libc_dup_trampoline_addr(SB)/4, $libc_dup_trampoline<>(SB)
TEXT libc_dup2_trampoline<>(SB),NOSPLIT,$0-0
JMP libc_dup2(SB)
GLOBL ·libc_dup2_trampoline_addr(SB), RODATA, $4
DATA ·libc_dup2_trampoline_addr(SB)/4, $libc_dup2_trampoline<>(SB)
TEXT libc_dup3_trampoline<>(SB),NOSPLIT,$0-0
JMP libc_dup3(SB)
GLOBL ·libc_dup3_trampoline_addr(SB), RODATA, $4
DATA ·libc_dup3_trampoline_addr(SB)/4, $libc_dup3_trampoline<>(SB)
TEXT libc_exit_trampoline<>(SB),NOSPLIT,$0-0
JMP libc_exit(SB)
GLOBL ·libc_exit_trampoline_addr(SB), RODATA, $4
DATA ·libc_exit_trampoline_addr(SB)/4, $libc_exit_trampoline<>(SB)
TEXT libc_faccessat_trampoline<>(SB),NOSPLIT,$0-0
JMP libc_faccessat(SB)
GLOBL ·libc_faccessat_trampoline_addr(SB), RODATA, $4
DATA ·libc_faccessat_trampoline_addr(SB)/4, $libc_faccessat_trampoline<>(SB)
TEXT libc_fchdir_trampoline<>(SB),NOSPLIT,$0-0
JMP libc_fchdir(SB)
GLOBL ·libc_fchdir_trampoline_addr(SB), RODATA, $4
DATA ·libc_fchdir_trampoline_addr(SB)/4, $libc_fchdir_trampoline<>(SB)
TEXT libc_fchflags_trampoline<>(SB),NOSPLIT,$0-0
JMP libc_fchflags(SB)
GLOBL ·libc_fchflags_trampoline_addr(SB), RODATA, $4
DATA ·libc_fchflags_trampoline_addr(SB)/4, $libc_fchflags_trampoline<>(SB)
TEXT libc_fchmod_trampoline<>(SB),NOSPLIT,$0-0
JMP libc_fchmod(SB)
GLOBL ·libc_fchmod_trampoline_addr(SB), RODATA, $4
DATA ·libc_fchmod_trampoline_addr(SB)/4, $libc_fchmod_trampoline<>(SB)
TEXT libc_fchmodat_trampoline<>(SB),NOSPLIT,$0-0
JMP libc_fchmodat(SB)
GLOBL ·libc_fchmodat_trampoline_addr(SB), RODATA, $4
DATA ·libc_fchmodat_trampoline_addr(SB)/4, $libc_fchmodat_trampoline<>(SB)
TEXT libc_fchown_trampoline<>(SB),NOSPLIT,$0-0
JMP libc_fchown(SB)
GLOBL ·libc_fchown_trampoline_addr(SB), RODATA, $4
DATA ·libc_fchown_trampoline_addr(SB)/4, $libc_fchown_trampoline<>(SB)
TEXT libc_fchownat_trampoline<>(SB),NOSPLIT,$0-0
JMP libc_fchownat(SB)
GLOBL ·libc_fchownat_trampoline_addr(SB), RODATA, $4
DATA ·libc_fchownat_trampoline_addr(SB)/4, $libc_fchownat_trampoline<>(SB)
TEXT libc_flock_trampoline<>(SB),NOSPLIT,$0-0
JMP libc_flock(SB)
GLOBL ·libc_flock_trampoline_addr(SB), RODATA, $4
DATA ·libc_flock_trampoline_addr(SB)/4, $libc_flock_trampoline<>(SB)
TEXT libc_fpathconf_trampoline<>(SB),NOSPLIT,$0-0
JMP libc_fpathconf(SB)
GLOBL ·libc_fpathconf_trampoline_addr(SB), RODATA, $4
DATA ·libc_fpathconf_trampoline_addr(SB)/4, $libc_fpathconf_trampoline<>(SB)
TEXT libc_fstat_trampoline<>(SB),NOSPLIT,$0-0
JMP libc_fstat(SB)
GLOBL ·libc_fstat_trampoline_addr(SB), RODATA, $4
DATA ·libc_fstat_trampoline_addr(SB)/4, $libc_fstat_trampoline<>(SB)
TEXT libc_fstatat_trampoline<>(SB),NOSPLIT,$0-0
JMP libc_fstatat(SB)
GLOBL ·libc_fstatat_trampoline_addr(SB), RODATA, $4
DATA ·libc_fstatat_trampoline_addr(SB)/4, $libc_fstatat_trampoline<>(SB)
TEXT libc_fstatfs_trampoline<>(SB),NOSPLIT,$0-0
JMP libc_fstatfs(SB)
GLOBL ·libc_fstatfs_trampoline_addr(SB), RODATA, $4
DATA ·libc_fstatfs_trampoline_addr(SB)/4, $libc_fstatfs_trampoline<>(SB)
TEXT libc_fsync_trampoline<>(SB),NOSPLIT,$0-0
JMP libc_fsync(SB)
GLOBL ·libc_fsync_trampoline_addr(SB), RODATA, $4
DATA ·libc_fsync_trampoline_addr(SB)/4, $libc_fsync_trampoline<>(SB)
TEXT libc_ftruncate_trampoline<>(SB),NOSPLIT,$0-0
JMP libc_ftruncate(SB)
GLOBL ·libc_ftruncate_trampoline_addr(SB), RODATA, $4
DATA ·libc_ftruncate_trampoline_addr(SB)/4, $libc_ftruncate_trampoline<>(SB)
TEXT libc_getegid_trampoline<>(SB),NOSPLIT,$0-0
JMP libc_getegid(SB)
GLOBL ·libc_getegid_trampoline_addr(SB), RODATA, $4
DATA ·libc_getegid_trampoline_addr(SB)/4, $libc_getegid_trampoline<>(SB)
TEXT libc_geteuid_trampoline<>(SB),NOSPLIT,$0-0
JMP libc_geteuid(SB)
GLOBL ·libc_geteuid_trampoline_addr(SB), RODATA, $4
DATA ·libc_geteuid_trampoline_addr(SB)/4, $libc_geteuid_trampoline<>(SB)
TEXT libc_getgid_trampoline<>(SB),NOSPLIT,$0-0
JMP libc_getgid(SB)
GLOBL ·libc_getgid_trampoline_addr(SB), RODATA, $4
DATA ·libc_getgid_trampoline_addr(SB)/4, $libc_getgid_trampoline<>(SB)
TEXT libc_getpgid_trampoline<>(SB),NOSPLIT,$0-0
JMP libc_getpgid(SB)
GLOBL ·libc_getpgid_trampoline_addr(SB), RODATA, $4
DATA ·libc_getpgid_trampoline_addr(SB)/4, $libc_getpgid_trampoline<>(SB)
TEXT libc_getpgrp_trampoline<>(SB),NOSPLIT,$0-0
JMP libc_getpgrp(SB)
GLOBL ·libc_getpgrp_trampoline_addr(SB), RODATA, $4
DATA ·libc_getpgrp_trampoline_addr(SB)/4, $libc_getpgrp_trampoline<>(SB)
TEXT libc_getpid_trampoline<>(SB),NOSPLIT,$0-0
JMP libc_getpid(SB)
GLOBL ·libc_getpid_trampoline_addr(SB), RODATA, $4
DATA ·libc_getpid_trampoline_addr(SB)/4, $libc_getpid_trampoline<>(SB)
TEXT libc_getppid_trampoline<>(SB),NOSPLIT,$0-0
JMP libc_getppid(SB)
GLOBL ·libc_getppid_trampoline_addr(SB), RODATA, $4
DATA ·libc_getppid_trampoline_addr(SB)/4, $libc_getppid_trampoline<>(SB)
TEXT libc_getpriority_trampoline<>(SB),NOSPLIT,$0-0
JMP libc_getpriority(SB)
GLOBL ·libc_getpriority_trampoline_addr(SB), RODATA, $4
DATA ·libc_getpriority_trampoline_addr(SB)/4, $libc_getpriority_trampoline<>(SB)
TEXT libc_getrlimit_trampoline<>(SB),NOSPLIT,$0-0
JMP libc_getrlimit(SB)
GLOBL ·libc_getrlimit_trampoline_addr(SB), RODATA, $4
DATA ·libc_getrlimit_trampoline_addr(SB)/4, $libc_getrlimit_trampoline<>(SB)
TEXT libc_getrtable_trampoline<>(SB),NOSPLIT,$0-0
JMP libc_getrtable(SB)
GLOBL ·libc_getrtable_trampoline_addr(SB), RODATA, $4
DATA ·libc_getrtable_trampoline_addr(SB)/4, $libc_getrtable_trampoline<>(SB)
TEXT libc_getrusage_trampoline<>(SB),NOSPLIT,$0-0
JMP libc_getrusage(SB)
GLOBL ·libc_getrusage_trampoline_addr(SB), RODATA, $4
DATA ·libc_getrusage_trampoline_addr(SB)/4, $libc_getrusage_trampoline<>(SB)
TEXT libc_getsid_trampoline<>(SB),NOSPLIT,$0-0
JMP libc_getsid(SB)
GLOBL ·libc_getsid_trampoline_addr(SB), RODATA, $4
DATA ·libc_getsid_trampoline_addr(SB)/4, $libc_getsid_trampoline<>(SB)
TEXT libc_gettimeofday_trampoline<>(SB),NOSPLIT,$0-0
JMP libc_gettimeofday(SB)
GLOBL ·libc_gettimeofday_trampoline_addr(SB), RODATA, $4
DATA ·libc_gettimeofday_trampoline_addr(SB)/4, $libc_gettimeofday_trampoline<>(SB)
TEXT libc_getuid_trampoline<>(SB),NOSPLIT,$0-0
JMP libc_getuid(SB)
GLOBL ·libc_getuid_trampoline_addr(SB), RODATA, $4
DATA ·libc_getuid_trampoline_addr(SB)/4, $libc_getuid_trampoline<>(SB)
TEXT libc_issetugid_trampoline<>(SB),NOSPLIT,$0-0
JMP libc_issetugid(SB)
GLOBL ·libc_issetugid_trampoline_addr(SB), RODATA, $4
DATA ·libc_issetugid_trampoline_addr(SB)/4, $libc_issetugid_trampoline<>(SB)
TEXT libc_kill_trampoline<>(SB),NOSPLIT,$0-0
JMP libc_kill(SB)
GLOBL ·libc_kill_trampoline_addr(SB), RODATA, $4
DATA ·libc_kill_trampoline_addr(SB)/4, $libc_kill_trampoline<>(SB)
TEXT libc_kqueue_trampoline<>(SB),NOSPLIT,$0-0
JMP libc_kqueue(SB)
GLOBL ·libc_kqueue_trampoline_addr(SB), RODATA, $4
DATA ·libc_kqueue_trampoline_addr(SB)/4, $libc_kqueue_trampoline<>(SB)
TEXT libc_lchown_trampoline<>(SB),NOSPLIT,$0-0
JMP libc_lchown(SB)
GLOBL ·libc_lchown_trampoline_addr(SB), RODATA, $4
DATA ·libc_lchown_trampoline_addr(SB)/4, $libc_lchown_trampoline<>(SB)
TEXT libc_link_trampoline<>(SB),NOSPLIT,$0-0
JMP libc_link(SB)
GLOBL ·libc_link_trampoline_addr(SB), RODATA, $4
DATA ·libc_link_trampoline_addr(SB)/4, $libc_link_trampoline<>(SB)
TEXT libc_linkat_trampoline<>(SB),NOSPLIT,$0-0
JMP libc_linkat(SB)
GLOBL ·libc_linkat_trampoline_addr(SB), RODATA, $4
DATA ·libc_linkat_trampoline_addr(SB)/4, $libc_linkat_trampoline<>(SB)
TEXT libc_listen_trampoline<>(SB),NOSPLIT,$0-0
JMP libc_listen(SB)
GLOBL ·libc_listen_trampoline_addr(SB), RODATA, $4
DATA ·libc_listen_trampoline_addr(SB)/4, $libc_listen_trampoline<>(SB)
TEXT libc_lstat_trampoline<>(SB),NOSPLIT,$0-0
JMP libc_lstat(SB)
GLOBL ·libc_lstat_trampoline_addr(SB), RODATA, $4
DATA ·libc_lstat_trampoline_addr(SB)/4, $libc_lstat_trampoline<>(SB)
TEXT libc_mkdir_trampoline<>(SB),NOSPLIT,$0-0
JMP libc_mkdir(SB)
GLOBL ·libc_mkdir_trampoline_addr(SB), RODATA, $4
DATA ·libc_mkdir_trampoline_addr(SB)/4, $libc_mkdir_trampoline<>(SB)
TEXT libc_mkdirat_trampoline<>(SB),NOSPLIT,$0-0
JMP libc_mkdirat(SB)
GLOBL ·libc_mkdirat_trampoline_addr(SB), RODATA, $4
DATA ·libc_mkdirat_trampoline_addr(SB)/4, $libc_mkdirat_trampoline<>(SB)
TEXT libc_mkfifo_trampoline<>(SB),NOSPLIT,$0-0
JMP libc_mkfifo(SB)
GLOBL ·libc_mkfifo_trampoline_addr(SB), RODATA, $4
DATA ·libc_mkfifo_trampoline_addr(SB)/4, $libc_mkfifo_trampoline<>(SB)
TEXT libc_mkfifoat_trampoline<>(SB),NOSPLIT,$0-0
JMP libc_mkfifoat(SB)
GLOBL ·libc_mkfifoat_trampoline_addr(SB), RODATA, $4
DATA ·libc_mkfifoat_trampoline_addr(SB)/4, $libc_mkfifoat_trampoline<>(SB)
TEXT libc_mknod_trampoline<>(SB),NOSPLIT,$0-0
JMP libc_mknod(SB)
GLOBL ·libc_mknod_trampoline_addr(SB), RODATA, $4
DATA ·libc_mknod_trampoline_addr(SB)/4, $libc_mknod_trampoline<>(SB)
TEXT libc_mknodat_trampoline<>(SB),NOSPLIT,$0-0
JMP libc_mknodat(SB)
GLOBL ·libc_mknodat_trampoline_addr(SB), RODATA, $4
DATA ·libc_mknodat_trampoline_addr(SB)/4, $libc_mknodat_trampoline<>(SB)
TEXT libc_nanosleep_trampoline<>(SB),NOSPLIT,$0-0
JMP libc_nanosleep(SB)
GLOBL ·libc_nanosleep_trampoline_addr(SB), RODATA, $4
DATA ·libc_nanosleep_trampoline_addr(SB)/4, $libc_nanosleep_trampoline<>(SB)
TEXT libc_open_trampoline<>(SB),NOSPLIT,$0-0
JMP libc_open(SB)
GLOBL ·libc_open_trampoline_addr(SB), RODATA, $4
DATA ·libc_open_trampoline_addr(SB)/4, $libc_open_trampoline<>(SB)
TEXT libc_openat_trampoline<>(SB),NOSPLIT,$0-0
JMP libc_openat(SB)
GLOBL ·libc_openat_trampoline_addr(SB), RODATA, $4
DATA ·libc_openat_trampoline_addr(SB)/4, $libc_openat_trampoline<>(SB)
TEXT libc_pathconf_trampoline<>(SB),NOSPLIT,$0-0
JMP libc_pathconf(SB)
GLOBL ·libc_pathconf_trampoline_addr(SB), RODATA, $4
DATA ·libc_pathconf_trampoline_addr(SB)/4, $libc_pathconf_trampoline<>(SB)
TEXT libc_pread_trampoline<>(SB),NOSPLIT,$0-0
JMP libc_pread(SB)
GLOBL ·libc_pread_trampoline_addr(SB), RODATA, $4
DATA ·libc_pread_trampoline_addr(SB)/4, $libc_pread_trampoline<>(SB)
TEXT libc_pwrite_trampoline<>(SB),NOSPLIT,$0-0
JMP libc_pwrite(SB)
GLOBL ·libc_pwrite_trampoline_addr(SB), RODATA, $4
DATA ·libc_pwrite_trampoline_addr(SB)/4, $libc_pwrite_trampoline<>(SB)
TEXT libc_read_trampoline<>(SB),NOSPLIT,$0-0
JMP libc_read(SB)
GLOBL ·libc_read_trampoline_addr(SB), RODATA, $4
DATA ·libc_read_trampoline_addr(SB)/4, $libc_read_trampoline<>(SB)
TEXT libc_readlink_trampoline<>(SB),NOSPLIT,$0-0
JMP libc_readlink(SB)
GLOBL ·libc_readlink_trampoline_addr(SB), RODATA, $4
DATA ·libc_readlink_trampoline_addr(SB)/4, $libc_readlink_trampoline<>(SB)
TEXT libc_readlinkat_trampoline<>(SB),NOSPLIT,$0-0
JMP libc_readlinkat(SB)
GLOBL ·libc_readlinkat_trampoline_addr(SB), RODATA, $4
DATA ·libc_readlinkat_trampoline_addr(SB)/4, $libc_readlinkat_trampoline<>(SB)
TEXT libc_rename_trampoline<>(SB),NOSPLIT,$0-0
JMP libc_rename(SB)
GLOBL ·libc_rename_trampoline_addr(SB), RODATA, $4
DATA ·libc_rename_trampoline_addr(SB)/4, $libc_rename_trampoline<>(SB)
TEXT libc_renameat_trampoline<>(SB),NOSPLIT,$0-0
JMP libc_renameat(SB)
GLOBL ·libc_renameat_trampoline_addr(SB), RODATA, $4
DATA ·libc_renameat_trampoline_addr(SB)/4, $libc_renameat_trampoline<>(SB)
TEXT libc_revoke_trampoline<>(SB),NOSPLIT,$0-0
JMP libc_revoke(SB)
GLOBL ·libc_revoke_trampoline_addr(SB), RODATA, $4
DATA ·libc_revoke_trampoline_addr(SB)/4, $libc_revoke_trampoline<>(SB)
TEXT libc_rmdir_trampoline<>(SB),NOSPLIT,$0-0
JMP libc_rmdir(SB)
GLOBL ·libc_rmdir_trampoline_addr(SB), RODATA, $4
DATA ·libc_rmdir_trampoline_addr(SB)/4, $libc_rmdir_trampoline<>(SB)
TEXT libc_lseek_trampoline<>(SB),NOSPLIT,$0-0
JMP libc_lseek(SB)
GLOBL ·libc_lseek_trampoline_addr(SB), RODATA, $4
DATA ·libc_lseek_trampoline_addr(SB)/4, $libc_lseek_trampoline<>(SB)
TEXT libc_select_trampoline<>(SB),NOSPLIT,$0-0
JMP libc_select(SB)
GLOBL ·libc_select_trampoline_addr(SB), RODATA, $4
DATA ·libc_select_trampoline_addr(SB)/4, $libc_select_trampoline<>(SB)
TEXT libc_setegid_trampoline<>(SB),NOSPLIT,$0-0
JMP libc_setegid(SB)
GLOBL ·libc_setegid_trampoline_addr(SB), RODATA, $4
DATA ·libc_setegid_trampoline_addr(SB)/4, $libc_setegid_trampoline<>(SB)
TEXT libc_seteuid_trampoline<>(SB),NOSPLIT,$0-0
JMP libc_seteuid(SB)
GLOBL ·libc_seteuid_trampoline_addr(SB), RODATA, $4
DATA ·libc_seteuid_trampoline_addr(SB)/4, $libc_seteuid_trampoline<>(SB)
TEXT libc_setgid_trampoline<>(SB),NOSPLIT,$0-0
JMP libc_setgid(SB)
GLOBL ·libc_setgid_trampoline_addr(SB), RODATA, $4
DATA ·libc_setgid_trampoline_addr(SB)/4, $libc_setgid_trampoline<>(SB)
TEXT libc_setlogin_trampoline<>(SB),NOSPLIT,$0-0
JMP libc_setlogin(SB)
GLOBL ·libc_setlogin_trampoline_addr(SB), RODATA, $4
DATA ·libc_setlogin_trampoline_addr(SB)/4, $libc_setlogin_trampoline<>(SB)
TEXT libc_setpgid_trampoline<>(SB),NOSPLIT,$0-0
JMP libc_setpgid(SB)
GLOBL ·libc_setpgid_trampoline_addr(SB), RODATA, $4
DATA ·libc_setpgid_trampoline_addr(SB)/4, $libc_setpgid_trampoline<>(SB)
TEXT libc_setpriority_trampoline<>(SB),NOSPLIT,$0-0
JMP libc_setpriority(SB)
GLOBL ·libc_setpriority_trampoline_addr(SB), RODATA, $4
DATA ·libc_setpriority_trampoline_addr(SB)/4, $libc_setpriority_trampoline<>(SB)
TEXT libc_setregid_trampoline<>(SB),NOSPLIT,$0-0
JMP libc_setregid(SB)
GLOBL ·libc_setregid_trampoline_addr(SB), RODATA, $4
DATA ·libc_setregid_trampoline_addr(SB)/4, $libc_setregid_trampoline<>(SB)
TEXT libc_setreuid_trampoline<>(SB),NOSPLIT,$0-0
JMP libc_setreuid(SB)
GLOBL ·libc_setreuid_trampoline_addr(SB), RODATA, $4
DATA ·libc_setreuid_trampoline_addr(SB)/4, $libc_setreuid_trampoline<>(SB)
TEXT libc_setresgid_trampoline<>(SB),NOSPLIT,$0-0
JMP libc_setresgid(SB)
GLOBL ·libc_setresgid_trampoline_addr(SB), RODATA, $4
DATA ·libc_setresgid_trampoline_addr(SB)/4, $libc_setresgid_trampoline<>(SB)
TEXT libc_setresuid_trampoline<>(SB),NOSPLIT,$0-0
JMP libc_setresuid(SB)
GLOBL ·libc_setresuid_trampoline_addr(SB), RODATA, $4
DATA ·libc_setresuid_trampoline_addr(SB)/4, $libc_setresuid_trampoline<>(SB)
TEXT libc_setrlimit_trampoline<>(SB),NOSPLIT,$0-0
JMP libc_setrlimit(SB)
GLOBL ·libc_setrlimit_trampoline_addr(SB), RODATA, $4
DATA ·libc_setrlimit_trampoline_addr(SB)/4, $libc_setrlimit_trampoline<>(SB)
TEXT libc_setrtable_trampoline<>(SB),NOSPLIT,$0-0
JMP libc_setrtable(SB)
GLOBL ·libc_setrtable_trampoline_addr(SB), RODATA, $4
DATA ·libc_setrtable_trampoline_addr(SB)/4, $libc_setrtable_trampoline<>(SB)
TEXT libc_setsid_trampoline<>(SB),NOSPLIT,$0-0
JMP libc_setsid(SB)
GLOBL ·libc_setsid_trampoline_addr(SB), RODATA, $4
DATA ·libc_setsid_trampoline_addr(SB)/4, $libc_setsid_trampoline<>(SB)
TEXT libc_settimeofday_trampoline<>(SB),NOSPLIT,$0-0
JMP libc_settimeofday(SB)
GLOBL ·libc_settimeofday_trampoline_addr(SB), RODATA, $4
DATA ·libc_settimeofday_trampoline_addr(SB)/4, $libc_settimeofday_trampoline<>(SB)
TEXT libc_setuid_trampoline<>(SB),NOSPLIT,$0-0
JMP libc_setuid(SB)
GLOBL ·libc_setuid_trampoline_addr(SB), RODATA, $4
DATA ·libc_setuid_trampoline_addr(SB)/4, $libc_setuid_trampoline<>(SB)
TEXT libc_stat_trampoline<>(SB),NOSPLIT,$0-0
JMP libc_stat(SB)
GLOBL ·libc_stat_trampoline_addr(SB), RODATA, $4
DATA ·libc_stat_trampoline_addr(SB)/4, $libc_stat_trampoline<>(SB)
TEXT libc_statfs_trampoline<>(SB),NOSPLIT,$0-0
JMP libc_statfs(SB)
GLOBL ·libc_statfs_trampoline_addr(SB), RODATA, $4
DATA ·libc_statfs_trampoline_addr(SB)/4, $libc_statfs_trampoline<>(SB)
TEXT libc_symlink_trampoline<>(SB),NOSPLIT,$0-0
JMP libc_symlink(SB)
GLOBL ·libc_symlink_trampoline_addr(SB), RODATA, $4
DATA ·libc_symlink_trampoline_addr(SB)/4, $libc_symlink_trampoline<>(SB)
TEXT libc_symlinkat_trampoline<>(SB),NOSPLIT,$0-0
JMP libc_symlinkat(SB)
GLOBL ·libc_symlinkat_trampoline_addr(SB), RODATA, $4
DATA ·libc_symlinkat_trampoline_addr(SB)/4, $libc_symlinkat_trampoline<>(SB)
TEXT libc_sync_trampoline<>(SB),NOSPLIT,$0-0
JMP libc_sync(SB)
GLOBL ·libc_sync_trampoline_addr(SB), RODATA, $4
DATA ·libc_sync_trampoline_addr(SB)/4, $libc_sync_trampoline<>(SB)
TEXT libc_truncate_trampoline<>(SB),NOSPLIT,$0-0
JMP libc_truncate(SB)
GLOBL ·libc_truncate_trampoline_addr(SB), RODATA, $4
DATA ·libc_truncate_trampoline_addr(SB)/4, $libc_truncate_trampoline<>(SB)
TEXT libc_umask_trampoline<>(SB),NOSPLIT,$0-0
JMP libc_umask(SB)
GLOBL ·libc_umask_trampoline_addr(SB), RODATA, $4
DATA ·libc_umask_trampoline_addr(SB)/4, $libc_umask_trampoline<>(SB)
TEXT libc_unlink_trampoline<>(SB),NOSPLIT,$0-0
JMP libc_unlink(SB)
GLOBL ·libc_unlink_trampoline_addr(SB), RODATA, $4
DATA ·libc_unlink_trampoline_addr(SB)/4, $libc_unlink_trampoline<>(SB)
TEXT libc_unlinkat_trampoline<>(SB),NOSPLIT,$0-0
JMP libc_unlinkat(SB)
GLOBL ·libc_unlinkat_trampoline_addr(SB), RODATA, $4
DATA ·libc_unlinkat_trampoline_addr(SB)/4, $libc_unlinkat_trampoline<>(SB)
TEXT libc_unmount_trampoline<>(SB),NOSPLIT,$0-0
JMP libc_unmount(SB)
GLOBL ·libc_unmount_trampoline_addr(SB), RODATA, $4
DATA ·libc_unmount_trampoline_addr(SB)/4, $libc_unmount_trampoline<>(SB)
TEXT libc_write_trampoline<>(SB),NOSPLIT,$0-0
JMP libc_write(SB)
GLOBL ·libc_write_trampoline_addr(SB), RODATA, $4
DATA ·libc_write_trampoline_addr(SB)/4, $libc_write_trampoline<>(SB)
TEXT libc_mmap_trampoline<>(SB),NOSPLIT,$0-0
JMP libc_mmap(SB)
GLOBL ·libc_mmap_trampoline_addr(SB), RODATA, $4
DATA ·libc_mmap_trampoline_addr(SB)/4, $libc_mmap_trampoline<>(SB)
TEXT libc_munmap_trampoline<>(SB),NOSPLIT,$0-0
JMP libc_munmap(SB)
GLOBL ·libc_munmap_trampoline_addr(SB), RODATA, $4
DATA ·libc_munmap_trampoline_addr(SB)/4, $libc_munmap_trampoline<>(SB)
TEXT libc_utimensat_trampoline<>(SB),NOSPLIT,$0-0
JMP libc_utimensat(SB)
GLOBL ·libc_utimensat_trampoline_addr(SB), RODATA, $4
DATA ·libc_utimensat_trampoline_addr(SB)/4, $libc_utimensat_trampoline<>(SB)

View file

@ -6,6 +6,7 @@
package unix
// Deprecated: Use libc wrappers instead of direct syscalls.
const (
SYS_EXIT = 1 // { void sys_exit(int rval); }
SYS_FORK = 2 // { int sys_fork(void); }

View file

@ -296,7 +296,7 @@ const (
// Flag to indicate that the sorting from the INF file should be used.
DI_INF_IS_SORTED DI_FLAGS = 0x00008000
// Flag to indicate that only the the INF specified by SP_DEVINSTALL_PARAMS.DriverPath should be searched.
// Flag to indicate that only the INF specified by SP_DEVINSTALL_PARAMS.DriverPath should be searched.
DI_ENUMSINGLEINF DI_FLAGS = 0x00010000
// Flag that prevents ConfigMgr from removing/re-enumerating devices during device

View file

@ -5,4 +5,4 @@
package internal
// Version is the current tagged release of the library.
const Version = "0.92.0"
const Version = "0.93.0"

20
vendor/modules.txt vendored
View file

@ -5,7 +5,7 @@ cloud.google.com/go/internal
cloud.google.com/go/internal/optional
cloud.google.com/go/internal/trace
cloud.google.com/go/internal/version
# cloud.google.com/go/compute v1.8.0
# cloud.google.com/go/compute v1.9.0
## explicit; go 1.17
cloud.google.com/go/compute/metadata
# cloud.google.com/go/iam v0.3.0
@ -35,7 +35,7 @@ github.com/VictoriaMetrics/metricsql/binaryop
# github.com/VividCortex/ewma v1.2.0
## explicit; go 1.12
github.com/VividCortex/ewma
# github.com/aws/aws-sdk-go v1.44.76
# github.com/aws/aws-sdk-go v1.44.81
## explicit; go 1.11
github.com/aws/aws-sdk-go/aws
github.com/aws/aws-sdk-go/aws/arn
@ -170,11 +170,11 @@ github.com/klauspost/compress/internal/snapref
github.com/klauspost/compress/zlib
github.com/klauspost/compress/zstd
github.com/klauspost/compress/zstd/internal/xxhash
# github.com/mattn/go-colorable v0.1.12
## explicit; go 1.13
# github.com/mattn/go-colorable v0.1.13
## explicit; go 1.15
github.com/mattn/go-colorable
# github.com/mattn/go-isatty v0.0.14
## explicit; go 1.12
# github.com/mattn/go-isatty v0.0.16
## explicit; go 1.15
github.com/mattn/go-isatty
# github.com/mattn/go-runewidth v0.0.13
## explicit; go 1.9
@ -302,10 +302,10 @@ golang.org/x/oauth2/google/internal/externalaccount
golang.org/x/oauth2/internal
golang.org/x/oauth2/jws
golang.org/x/oauth2/jwt
# golang.org/x/sync v0.0.0-20220722155255-886fb9371eb4
# golang.org/x/sync v0.0.0-20220819030929-7fc1605a5dde
## explicit
golang.org/x/sync/errgroup
# golang.org/x/sys v0.0.0-20220811171246-fbc7d0a398ab
# golang.org/x/sys v0.0.0-20220818161305-2296e01440c6
## explicit; go 1.17
golang.org/x/sys/internal/unsafeheader
golang.org/x/sys/unix
@ -320,7 +320,7 @@ golang.org/x/text/unicode/norm
## explicit; go 1.17
golang.org/x/xerrors
golang.org/x/xerrors/internal
# google.golang.org/api v0.92.0
# google.golang.org/api v0.93.0
## explicit; go 1.15
google.golang.org/api/googleapi
google.golang.org/api/googleapi/transport
@ -353,7 +353,7 @@ google.golang.org/appengine/internal/socket
google.golang.org/appengine/internal/urlfetch
google.golang.org/appengine/socket
google.golang.org/appengine/urlfetch
# google.golang.org/genproto v0.0.0-20220812140447-cec7f5303424
# google.golang.org/genproto v0.0.0-20220819174105-e9f053255caa
## explicit; go 1.19
google.golang.org/genproto/googleapis/api/annotations
google.golang.org/genproto/googleapis/iam/v1