mirror of
https://github.com/VictoriaMetrics/VictoriaMetrics.git
synced 2024-11-21 14:44:00 +00:00
app/vmselect/promql: add range_mad(q) and range_trim_outliers(k, q) functions
These functions may help trimming outliers during query time for the use case described at https://github.com/VictoriaMetrics/VictoriaMetrics/issues/3759
This commit is contained in:
parent
c8467f37a9
commit
406822a16c
10 changed files with 106 additions and 10 deletions
|
@ -6503,6 +6503,17 @@ func TestExecSuccess(t *testing.T) {
|
||||||
resultExpected := []netstorage.Result{r1, r2}
|
resultExpected := []netstorage.Result{r1, r2}
|
||||||
f(q, resultExpected)
|
f(q, resultExpected)
|
||||||
})
|
})
|
||||||
|
t.Run(`range_trim_outliers()`, func(t *testing.T) {
|
||||||
|
t.Parallel()
|
||||||
|
q := `range_trim_outliers(0.5, time())`
|
||||||
|
r := netstorage.Result{
|
||||||
|
MetricName: metricNameExpected,
|
||||||
|
Values: []float64{nan, nan, 1400, 1600, nan, nan},
|
||||||
|
Timestamps: timestampsExpected,
|
||||||
|
}
|
||||||
|
resultExpected := []netstorage.Result{r}
|
||||||
|
f(q, resultExpected)
|
||||||
|
})
|
||||||
t.Run(`range_trim_spikes()`, func(t *testing.T) {
|
t.Run(`range_trim_spikes()`, func(t *testing.T) {
|
||||||
t.Parallel()
|
t.Parallel()
|
||||||
q := `range_trim_spikes(0.2, time())`
|
q := `range_trim_spikes(0.2, time())`
|
||||||
|
@ -7059,6 +7070,17 @@ func TestExecSuccess(t *testing.T) {
|
||||||
resultExpected := []netstorage.Result{r}
|
resultExpected := []netstorage.Result{r}
|
||||||
f(q, resultExpected)
|
f(q, resultExpected)
|
||||||
})
|
})
|
||||||
|
t.Run(`range_mad(time())`, func(t *testing.T) {
|
||||||
|
t.Parallel()
|
||||||
|
q := `range_mad(time())`
|
||||||
|
r := netstorage.Result{
|
||||||
|
MetricName: metricNameExpected,
|
||||||
|
Values: []float64{300, 300, 300, 300, 300, 300},
|
||||||
|
Timestamps: timestampsExpected,
|
||||||
|
}
|
||||||
|
resultExpected := []netstorage.Result{r}
|
||||||
|
f(q, resultExpected)
|
||||||
|
})
|
||||||
t.Run(`range_max(time())`, func(t *testing.T) {
|
t.Run(`range_max(time())`, func(t *testing.T) {
|
||||||
t.Parallel()
|
t.Parallel()
|
||||||
q := `range_max(time())`
|
q := `range_max(time())`
|
||||||
|
@ -8317,8 +8339,10 @@ func TestExecError(t *testing.T) {
|
||||||
f(`end(1)`)
|
f(`end(1)`)
|
||||||
f(`step(1)`)
|
f(`step(1)`)
|
||||||
f(`running_sum(1, 2)`)
|
f(`running_sum(1, 2)`)
|
||||||
|
f(`range_mad()`)
|
||||||
f(`range_sum(1, 2)`)
|
f(`range_sum(1, 2)`)
|
||||||
f(`range_trim_spikes()`)
|
f(`range_trim_spikes()`)
|
||||||
|
f(`range_trim_outliers()`)
|
||||||
f(`range_first(1, 2)`)
|
f(`range_first(1, 2)`)
|
||||||
f(`range_last(1, 2)`)
|
f(`range_last(1, 2)`)
|
||||||
f(`range_linear_regression(1, 2)`)
|
f(`range_linear_regression(1, 2)`)
|
||||||
|
|
|
@ -1219,18 +1219,21 @@ func rollupMAD(rfa *rollupFuncArg) float64 {
|
||||||
// There is no need in handling NaNs here, since they must be cleaned up
|
// There is no need in handling NaNs here, since they must be cleaned up
|
||||||
// before calling rollup funcs.
|
// before calling rollup funcs.
|
||||||
|
|
||||||
|
return mad(rfa.values)
|
||||||
|
}
|
||||||
|
|
||||||
|
func mad(values []float64) float64 {
|
||||||
// See https://en.wikipedia.org/wiki/Median_absolute_deviation
|
// See https://en.wikipedia.org/wiki/Median_absolute_deviation
|
||||||
values := rfa.values
|
|
||||||
median := quantile(0.5, values)
|
median := quantile(0.5, values)
|
||||||
a := getFloat64s()
|
a := getFloat64s()
|
||||||
ds := a.A[:0]
|
ds := a.A[:0]
|
||||||
for _, v := range values {
|
for _, v := range values {
|
||||||
ds = append(ds, math.Abs(v-median))
|
ds = append(ds, math.Abs(v-median))
|
||||||
}
|
}
|
||||||
mad := quantile(0.5, ds)
|
v := quantile(0.5, ds)
|
||||||
a.A = ds
|
a.A = ds
|
||||||
putFloat64s(a)
|
putFloat64s(a)
|
||||||
return mad
|
return v
|
||||||
}
|
}
|
||||||
|
|
||||||
func rollupHistogram(rfa *rollupFuncArg) float64 {
|
func rollupHistogram(rfa *rollupFuncArg) float64 {
|
||||||
|
|
|
@ -89,6 +89,7 @@ var transformFuncs = map[string]transformFunc{
|
||||||
"range_first": transformRangeFirst,
|
"range_first": transformRangeFirst,
|
||||||
"range_last": transformRangeLast,
|
"range_last": transformRangeLast,
|
||||||
"range_linear_regression": transformRangeLinearRegression,
|
"range_linear_regression": transformRangeLinearRegression,
|
||||||
|
"range_mad": transformRangeMAD,
|
||||||
"range_max": newTransformFuncRange(runningMax),
|
"range_max": newTransformFuncRange(runningMax),
|
||||||
"range_min": newTransformFuncRange(runningMin),
|
"range_min": newTransformFuncRange(runningMin),
|
||||||
"range_normalize": transformRangeNormalize,
|
"range_normalize": transformRangeNormalize,
|
||||||
|
@ -96,6 +97,7 @@ var transformFuncs = map[string]transformFunc{
|
||||||
"range_stddev": transformRangeStddev,
|
"range_stddev": transformRangeStddev,
|
||||||
"range_stdvar": transformRangeStdvar,
|
"range_stdvar": transformRangeStdvar,
|
||||||
"range_sum": newTransformFuncRange(runningSum),
|
"range_sum": newTransformFuncRange(runningSum),
|
||||||
|
"range_trim_outliers": transformRangeTrimOutliers,
|
||||||
"range_trim_spikes": transformRangeTrimSpikes,
|
"range_trim_spikes": transformRangeTrimSpikes,
|
||||||
"remove_resets": transformRemoveResets,
|
"remove_resets": transformRemoveResets,
|
||||||
"round": transformRound,
|
"round": transformRound,
|
||||||
|
@ -1275,6 +1277,34 @@ func transformRangeNormalize(tfa *transformFuncArg) ([]*timeseries, error) {
|
||||||
return rvs, nil
|
return rvs, nil
|
||||||
}
|
}
|
||||||
|
|
||||||
|
func transformRangeTrimOutliers(tfa *transformFuncArg) ([]*timeseries, error) {
|
||||||
|
args := tfa.args
|
||||||
|
if err := expectTransformArgsNum(args, 2); err != nil {
|
||||||
|
return nil, err
|
||||||
|
}
|
||||||
|
ks, err := getScalar(args[0], 0)
|
||||||
|
if err != nil {
|
||||||
|
return nil, err
|
||||||
|
}
|
||||||
|
k := float64(0)
|
||||||
|
if len(ks) > 0 {
|
||||||
|
k = ks[0]
|
||||||
|
}
|
||||||
|
// Trim samples v satisfying the `abs(v - range_median(q)) > k*range_mad(q)`
|
||||||
|
rvs := args[1]
|
||||||
|
for _, ts := range rvs {
|
||||||
|
values := ts.Values
|
||||||
|
dMax := k * mad(values)
|
||||||
|
qMedian := quantile(0.5, values)
|
||||||
|
for i, v := range values {
|
||||||
|
if math.Abs(v-qMedian) > dMax {
|
||||||
|
values[i] = nan
|
||||||
|
}
|
||||||
|
}
|
||||||
|
}
|
||||||
|
return rvs, nil
|
||||||
|
}
|
||||||
|
|
||||||
func transformRangeTrimSpikes(tfa *transformFuncArg) ([]*timeseries, error) {
|
func transformRangeTrimSpikes(tfa *transformFuncArg) ([]*timeseries, error) {
|
||||||
args := tfa.args
|
args := tfa.args
|
||||||
if err := expectTransformArgsNum(args, 2); err != nil {
|
if err := expectTransformArgsNum(args, 2); err != nil {
|
||||||
|
@ -1344,6 +1374,22 @@ func transformRangeLinearRegression(tfa *transformFuncArg) ([]*timeseries, error
|
||||||
return rvs, nil
|
return rvs, nil
|
||||||
}
|
}
|
||||||
|
|
||||||
|
func transformRangeMAD(tfa *transformFuncArg) ([]*timeseries, error) {
|
||||||
|
args := tfa.args
|
||||||
|
if err := expectTransformArgsNum(args, 1); err != nil {
|
||||||
|
return nil, err
|
||||||
|
}
|
||||||
|
rvs := args[0]
|
||||||
|
for _, ts := range rvs {
|
||||||
|
values := ts.Values
|
||||||
|
v := mad(values)
|
||||||
|
for i := range values {
|
||||||
|
values[i] = v
|
||||||
|
}
|
||||||
|
}
|
||||||
|
return rvs, nil
|
||||||
|
}
|
||||||
|
|
||||||
func transformRangeStddev(tfa *transformFuncArg) ([]*timeseries, error) {
|
func transformRangeStddev(tfa *transformFuncArg) ([]*timeseries, error) {
|
||||||
args := tfa.args
|
args := tfa.args
|
||||||
if err := expectTransformArgsNum(args, 1); err != nil {
|
if err := expectTransformArgsNum(args, 1); err != nil {
|
||||||
|
|
|
@ -23,6 +23,8 @@ The following tip changes can be tested by building VictoriaMetrics components f
|
||||||
* FEATURE: [vmauth](https://docs.victoriametrics.com/vmauth.html): choose the backend with the minimum number of concurrently executed requests [among the configured backends](https://docs.victoriametrics.com/vmauth.html#load-balancing) in a round-robin manner for serving the incoming requests. This allows spreading the load among backends more evenly, while improving the response time.
|
* FEATURE: [vmauth](https://docs.victoriametrics.com/vmauth.html): choose the backend with the minimum number of concurrently executed requests [among the configured backends](https://docs.victoriametrics.com/vmauth.html#load-balancing) in a round-robin manner for serving the incoming requests. This allows spreading the load among backends more evenly, while improving the response time.
|
||||||
* FEATURE: [vmalert enterprise](https://docs.victoriametrics.com/vmalert.html): add ability to read alerting and recording rules from S3, GCS or S3-compatible object storage. See [these docs](https://docs.victoriametrics.com/vmalert.html#reading-rules-from-object-storage).
|
* FEATURE: [vmalert enterprise](https://docs.victoriametrics.com/vmalert.html): add ability to read alerting and recording rules from S3, GCS or S3-compatible object storage. See [these docs](https://docs.victoriametrics.com/vmalert.html#reading-rules-from-object-storage).
|
||||||
* FEATURE: [MetricsQL](https://docs.victoriametrics.com/MetricsQL.html): add `mad_over_time(m[d])` function for calculating the [median absolute deviation](https://en.wikipedia.org/wiki/Median_absolute_deviation) over raw samples on the lookbehind window `d`. See [this feature request](https://github.com/prometheus/prometheus/issues/5514).
|
* FEATURE: [MetricsQL](https://docs.victoriametrics.com/MetricsQL.html): add `mad_over_time(m[d])` function for calculating the [median absolute deviation](https://en.wikipedia.org/wiki/Median_absolute_deviation) over raw samples on the lookbehind window `d`. See [this feature request](https://github.com/prometheus/prometheus/issues/5514).
|
||||||
|
* FEATURE: [MetricsQL](https://docs.victoriametrics.com/MetricsQL.html): add `range_mad(q)` function for calculating the [median absolute deviation](https://en.wikipedia.org/wiki/Median_absolute_deviation) over points per each time series returned by `q`.
|
||||||
|
* FEATURE: [MetricsQL](https://docs.victoriametrics.com/MetricsQL.html): add `range_trim_outliers(k, q)` function for dropping outliers farther than `k*range_mad(q)` from the `range_median(q)`. This should removing outliers at query time at [this issue](https://github.com/VictoriaMetrics/VictoriaMetrics/issues/3759).
|
||||||
* FEATURE: [vmui](https://docs.victoriametrics.com/#vmui): show `median` instead of `avg` in graph tooltip and line legend, since `median` is more tolerant against spikes. See [this issue](https://github.com/VictoriaMetrics/VictoriaMetrics/issues/3706).
|
* FEATURE: [vmui](https://docs.victoriametrics.com/#vmui): show `median` instead of `avg` in graph tooltip and line legend, since `median` is more tolerant against spikes. See [this issue](https://github.com/VictoriaMetrics/VictoriaMetrics/issues/3706).
|
||||||
|
|
||||||
* BUGFIX: prevent from possible data ingestion slowdown and query performance slowdown during [background merges of big parts](https://docs.victoriametrics.com/#storage) on systems with small number of CPU cores (1 or 2 CPU cores). The issue has been introduced in [v1.85.0](https://docs.victoriametrics.com/CHANGELOG.html#v1850) when implementing [this feature](https://github.com/VictoriaMetrics/VictoriaMetrics/issues/3337). See also [this issue](https://github.com/VictoriaMetrics/VictoriaMetrics/issues/3790).
|
* BUGFIX: prevent from possible data ingestion slowdown and query performance slowdown during [background merges of big parts](https://docs.victoriametrics.com/#storage) on systems with small number of CPU cores (1 or 2 CPU cores). The issue has been introduced in [v1.85.0](https://docs.victoriametrics.com/CHANGELOG.html#v1850) when implementing [this feature](https://github.com/VictoriaMetrics/VictoriaMetrics/issues/3337). See also [this issue](https://github.com/VictoriaMetrics/VictoriaMetrics/issues/3790).
|
||||||
|
|
|
@ -508,7 +508,7 @@ See also [duration_over_time](#duration_over_time) and [lag](#lag).
|
||||||
`mad_over_time(series_selector[d])` is a [rollup function](#rollup-functions), which calculates [median absolute deviation](https://en.wikipedia.org/wiki/Median_absolute_deviation)
|
`mad_over_time(series_selector[d])` is a [rollup function](#rollup-functions), which calculates [median absolute deviation](https://en.wikipedia.org/wiki/Median_absolute_deviation)
|
||||||
over raw samples on the given lookbehind window `d` per each time series returned from the given [series_selector](https://docs.victoriametrics.com/keyConcepts.html#filtering).
|
over raw samples on the given lookbehind window `d` per each time series returned from the given [series_selector](https://docs.victoriametrics.com/keyConcepts.html#filtering).
|
||||||
|
|
||||||
See also [mad](#mad).
|
See also [mad](#mad) and [range_mad](#range_mad).
|
||||||
|
|
||||||
#### max_over_time
|
#### max_over_time
|
||||||
|
|
||||||
|
@ -1221,6 +1221,13 @@ See also [rand](#rand) and [rand_exponential](#rand_exponential).
|
||||||
`range_linear_regression(q)` is a [transform function](#transform-functions), which calculates [simple linear regression](https://en.wikipedia.org/wiki/Simple_linear_regression)
|
`range_linear_regression(q)` is a [transform function](#transform-functions), which calculates [simple linear regression](https://en.wikipedia.org/wiki/Simple_linear_regression)
|
||||||
over the selected time range per each time series returned by `q`. This function is useful for capacity planning and predictions.
|
over the selected time range per each time series returned by `q`. This function is useful for capacity planning and predictions.
|
||||||
|
|
||||||
|
#### range_mad
|
||||||
|
|
||||||
|
`range_mad(q)` is a [transform function](#transform-functions), which calculates the [median absolute deviation](https://en.wikipedia.org/wiki/Median_absolute_deviation)
|
||||||
|
across points per each time series returned by `q`.
|
||||||
|
|
||||||
|
See also [mad](#mad) and [mad_over_time](#mad_over_time).
|
||||||
|
|
||||||
#### range_max
|
#### range_max
|
||||||
|
|
||||||
`range_max(q)` is a [transform function](#transform-functions), which calculates the max value across points per each time series returned by `q`.
|
`range_max(q)` is a [transform function](#transform-functions), which calculates the max value across points per each time series returned by `q`.
|
||||||
|
@ -1257,11 +1264,22 @@ per each time series returned by `q` on the selected time range.
|
||||||
|
|
||||||
`range_sum(q)` is a [transform function](#transform-functions), which calculates the sum of points per each time series returned by `q`.
|
`range_sum(q)` is a [transform function](#transform-functions), which calculates the sum of points per each time series returned by `q`.
|
||||||
|
|
||||||
|
#### range_trim_outliers
|
||||||
|
|
||||||
|
`range_trim_outliers(k, q)` is a [transform function](#transform-functions), which drops points located farther than `k*range_mad(q)`
|
||||||
|
from the `range_median(q)`. E.g., it is equivalent to the following query: `q ifnot (abs(q - range_median(q)) > k*range_mad(q))`.
|
||||||
|
|
||||||
|
The `phi` must be in the range `[0..1]`, where `0` means `0%` and `1` means `100%`.
|
||||||
|
|
||||||
|
See also [range_trim_outliers](#range_trim_outliers).
|
||||||
|
|
||||||
#### range_trim_spikes
|
#### range_trim_spikes
|
||||||
|
|
||||||
`range_trim_spikes(phi, q)` is a [transform function](#transform-functions), which drops `phi` percent of biggest spikes from time series returned by `q`.
|
`range_trim_spikes(phi, q)` is a [transform function](#transform-functions), which drops `phi` percent of biggest spikes from time series returned by `q`.
|
||||||
The `phi` must be in the range `[0..1]`, where `0` means `0%` and `1` means `100%`.
|
The `phi` must be in the range `[0..1]`, where `0` means `0%` and `1` means `100%`.
|
||||||
|
|
||||||
|
See also [range_trim_outliers](#range_trim_outliers).
|
||||||
|
|
||||||
#### remove_resets
|
#### remove_resets
|
||||||
|
|
||||||
`remove_resets(q)` is a [transform function](#transform-functions), which removes counter resets from time series returned by `q`.
|
`remove_resets(q)` is a [transform function](#transform-functions), which removes counter resets from time series returned by `q`.
|
||||||
|
@ -1731,7 +1749,7 @@ See also [limit_offset](#limit_offset).
|
||||||
`mad(q) by (group_labels)` is [aggregate function](#aggregate-functions), which returns the [Median absolute deviation](https://en.wikipedia.org/wiki/Median_absolute_deviation)
|
`mad(q) by (group_labels)` is [aggregate function](#aggregate-functions), which returns the [Median absolute deviation](https://en.wikipedia.org/wiki/Median_absolute_deviation)
|
||||||
per each `group_labels` for all the time series returned by `q`. The aggregate is calculated individually per each group of points with the same timestamp.
|
per each `group_labels` for all the time series returned by `q`. The aggregate is calculated individually per each group of points with the same timestamp.
|
||||||
|
|
||||||
See also [outliers_mad](#outliers_mad) and [stddev](#stddev).
|
See also [range_mad](#range_mad), [mad_over_time](#mad_over_time), [outliers_mad](#outliers_mad) and [stddev](#stddev).
|
||||||
|
|
||||||
#### max
|
#### max
|
||||||
|
|
||||||
|
|
2
go.mod
2
go.mod
|
@ -12,7 +12,7 @@ require (
|
||||||
// like https://github.com/valyala/fasthttp/commit/996610f021ff45fdc98c2ce7884d5fa4e7f9199b
|
// like https://github.com/valyala/fasthttp/commit/996610f021ff45fdc98c2ce7884d5fa4e7f9199b
|
||||||
github.com/VictoriaMetrics/fasthttp v1.1.0
|
github.com/VictoriaMetrics/fasthttp v1.1.0
|
||||||
github.com/VictoriaMetrics/metrics v1.23.1
|
github.com/VictoriaMetrics/metrics v1.23.1
|
||||||
github.com/VictoriaMetrics/metricsql v0.53.0
|
github.com/VictoriaMetrics/metricsql v0.54.0
|
||||||
github.com/aws/aws-sdk-go-v2 v1.17.4
|
github.com/aws/aws-sdk-go-v2 v1.17.4
|
||||||
github.com/aws/aws-sdk-go-v2/config v1.18.12
|
github.com/aws/aws-sdk-go-v2/config v1.18.12
|
||||||
github.com/aws/aws-sdk-go-v2/feature/s3/manager v1.11.51
|
github.com/aws/aws-sdk-go-v2/feature/s3/manager v1.11.51
|
||||||
|
|
4
go.sum
4
go.sum
|
@ -69,8 +69,8 @@ github.com/VictoriaMetrics/fasthttp v1.1.0/go.mod h1:/7DMcogqd+aaD3G3Hg5kFgoFwlR
|
||||||
github.com/VictoriaMetrics/metrics v1.18.1/go.mod h1:ArjwVz7WpgpegX/JpB0zpNF2h2232kErkEnzH1sxMmA=
|
github.com/VictoriaMetrics/metrics v1.18.1/go.mod h1:ArjwVz7WpgpegX/JpB0zpNF2h2232kErkEnzH1sxMmA=
|
||||||
github.com/VictoriaMetrics/metrics v1.23.1 h1:/j8DzeJBxSpL2qSIdqnRFLvQQhbJyJbbEi22yMm7oL0=
|
github.com/VictoriaMetrics/metrics v1.23.1 h1:/j8DzeJBxSpL2qSIdqnRFLvQQhbJyJbbEi22yMm7oL0=
|
||||||
github.com/VictoriaMetrics/metrics v1.23.1/go.mod h1:rAr/llLpEnAdTehiNlUxKgnjcOuROSzpw0GvjpEbvFc=
|
github.com/VictoriaMetrics/metrics v1.23.1/go.mod h1:rAr/llLpEnAdTehiNlUxKgnjcOuROSzpw0GvjpEbvFc=
|
||||||
github.com/VictoriaMetrics/metricsql v0.53.0 h1:R//oEGo+G0DtmNxF111ClM2e2pjC4sG14geyZzXfbjU=
|
github.com/VictoriaMetrics/metricsql v0.54.0 h1:dKAIJtWcSPKnMNhRY5MYpqC77ZyHtA1xuDRr1pJuN5Q=
|
||||||
github.com/VictoriaMetrics/metricsql v0.53.0/go.mod h1:6pP1ZeLVJHqJrHlF6Ij3gmpQIznSsgktEcZgsAWYel0=
|
github.com/VictoriaMetrics/metricsql v0.54.0/go.mod h1:6pP1ZeLVJHqJrHlF6Ij3gmpQIznSsgktEcZgsAWYel0=
|
||||||
github.com/VividCortex/ewma v1.1.1/go.mod h1:2Tkkvm3sRDVXaiyucHiACn4cqf7DpdyLvmxzcbUokwA=
|
github.com/VividCortex/ewma v1.1.1/go.mod h1:2Tkkvm3sRDVXaiyucHiACn4cqf7DpdyLvmxzcbUokwA=
|
||||||
github.com/VividCortex/ewma v1.2.0 h1:f58SaIzcDXrSy3kWaHNvuJgJ3Nmz59Zji6XoJR/q1ow=
|
github.com/VividCortex/ewma v1.2.0 h1:f58SaIzcDXrSy3kWaHNvuJgJ3Nmz59Zji6XoJR/q1ow=
|
||||||
github.com/VividCortex/ewma v1.2.0/go.mod h1:nz4BbCtbLyFDeC9SUHbtcT5644juEuWfUAUnGx7j5l4=
|
github.com/VividCortex/ewma v1.2.0/go.mod h1:nz4BbCtbLyFDeC9SUHbtcT5644juEuWfUAUnGx7j5l4=
|
||||||
|
|
3
vendor/github.com/VictoriaMetrics/metricsql/optimizer.go
generated
vendored
3
vendor/github.com/VictoriaMetrics/metricsql/optimizer.go
generated
vendored
|
@ -392,7 +392,8 @@ func getTransformArgIdxForOptimization(funcName string, args []Expr) int {
|
||||||
return -1
|
return -1
|
||||||
case "limit_offset":
|
case "limit_offset":
|
||||||
return 2
|
return 2
|
||||||
case "buckets_limit", "histogram_quantile", "histogram_share", "range_quantile", "range_trim_spikes":
|
case "buckets_limit", "histogram_quantile", "histogram_share", "range_quantile",
|
||||||
|
"range_trim_outliers", "range_trim_spikes":
|
||||||
return 1
|
return 1
|
||||||
case "histogram_quantiles":
|
case "histogram_quantiles":
|
||||||
return len(args) - 1
|
return len(args) - 1
|
||||||
|
|
2
vendor/github.com/VictoriaMetrics/metricsql/transform.go
generated
vendored
2
vendor/github.com/VictoriaMetrics/metricsql/transform.go
generated
vendored
|
@ -74,6 +74,7 @@ var transformFuncs = map[string]bool{
|
||||||
"range_first": true,
|
"range_first": true,
|
||||||
"range_last": true,
|
"range_last": true,
|
||||||
"range_linear_regression": true,
|
"range_linear_regression": true,
|
||||||
|
"range_mad": true,
|
||||||
"range_max": true,
|
"range_max": true,
|
||||||
"range_min": true,
|
"range_min": true,
|
||||||
"range_normalize": true,
|
"range_normalize": true,
|
||||||
|
@ -81,6 +82,7 @@ var transformFuncs = map[string]bool{
|
||||||
"range_stddev": true,
|
"range_stddev": true,
|
||||||
"range_stdvar": true,
|
"range_stdvar": true,
|
||||||
"range_sum": true,
|
"range_sum": true,
|
||||||
|
"range_trim_outliers": true,
|
||||||
"range_trim_spikes": true,
|
"range_trim_spikes": true,
|
||||||
"remove_resets": true,
|
"remove_resets": true,
|
||||||
"round": true,
|
"round": true,
|
||||||
|
|
2
vendor/modules.txt
vendored
2
vendor/modules.txt
vendored
|
@ -71,7 +71,7 @@ github.com/VictoriaMetrics/fasthttp/stackless
|
||||||
# github.com/VictoriaMetrics/metrics v1.23.1
|
# github.com/VictoriaMetrics/metrics v1.23.1
|
||||||
## explicit; go 1.15
|
## explicit; go 1.15
|
||||||
github.com/VictoriaMetrics/metrics
|
github.com/VictoriaMetrics/metrics
|
||||||
# github.com/VictoriaMetrics/metricsql v0.53.0
|
# github.com/VictoriaMetrics/metricsql v0.54.0
|
||||||
## explicit; go 1.13
|
## explicit; go 1.13
|
||||||
github.com/VictoriaMetrics/metricsql
|
github.com/VictoriaMetrics/metricsql
|
||||||
github.com/VictoriaMetrics/metricsql/binaryop
|
github.com/VictoriaMetrics/metricsql/binaryop
|
||||||
|
|
Loading…
Reference in a new issue