mirror of
https://github.com/VictoriaMetrics/VictoriaMetrics.git
synced 2025-01-10 15:14:09 +00:00
Simplify queries to OpenTSDB for migration (#1809)
* Simplify queries to OpenTSDB (and make them properly appear in OpenTSDB query stats) and also tweak defaults a bit Signed-off-by: John Seekins <jseekins@datto.com> * remove extraneous printlns Signed-off-by: John Seekins <jseekins@datto.com> * remove empty line Signed-off-by: John Seekins <jseekins@datto.com> * fix bug in offset calcuation and closer to working with simpler queries Signed-off-by: John Seekins <jseekins@datto.com> * fix boolean eval Signed-off-by: John Seekins <jseekins@datto.com> * fix casting and check for multiple series Signed-off-by: John Seekins <jseekins@datto.com>
This commit is contained in:
parent
84decc4254
commit
50c33b7265
5 changed files with 90 additions and 587 deletions
|
@ -155,7 +155,7 @@ var (
|
|||
&cli.IntFlag{
|
||||
Name: otsdbQueryLimit,
|
||||
Usage: "Result limit on meta queries to OpenTSDB (affects both metric name and tag value queries, recommended to use a value exceeding your largest series)",
|
||||
Value: 100e3,
|
||||
Value: 100e6,
|
||||
},
|
||||
&cli.BoolFlag{
|
||||
Name: otsdbMsecsTime,
|
||||
|
|
|
@ -1,7 +1,6 @@
|
|||
package opentsdb
|
||||
|
||||
import (
|
||||
"bytes"
|
||||
"encoding/json"
|
||||
"fmt"
|
||||
"io/ioutil"
|
||||
|
@ -88,7 +87,15 @@ type Meta struct {
|
|||
Tags map[string]string `json:"tags"`
|
||||
}
|
||||
|
||||
// Metric holds the time series data
|
||||
// OtsdbMetric is a single series in OpenTSDB's returned format
|
||||
type OtsdbMetric struct {
|
||||
Metric string
|
||||
Tags map[string]string
|
||||
AggregateTags []string
|
||||
Dps map[int64]float64
|
||||
}
|
||||
|
||||
// Metric holds the time series data in VictoriaMetrics format
|
||||
type Metric struct {
|
||||
Metric string
|
||||
Tags map[string]string
|
||||
|
@ -96,83 +103,6 @@ type Metric struct {
|
|||
Values []float64
|
||||
}
|
||||
|
||||
// ExpressionOutput contains results from actual data queries
|
||||
type ExpressionOutput struct {
|
||||
Outputs []qoObj `json:"outputs"`
|
||||
Query interface{} `json:"query"`
|
||||
}
|
||||
|
||||
// QoObj contains actual timeseries data from the returned data query
|
||||
type qoObj struct {
|
||||
ID string `json:"id"`
|
||||
Alias string `json:"alias"`
|
||||
Dps [][]float64 `json:"dps"`
|
||||
//dpsMeta interface{}
|
||||
//meta interface{}
|
||||
}
|
||||
|
||||
// Expression objects format our data queries
|
||||
/*
|
||||
All of the following structs are to build a OpenTSDB expression object
|
||||
*/
|
||||
type Expression struct {
|
||||
Time timeObj `json:"time"`
|
||||
Filters []filterObj `json:"filters"`
|
||||
Metrics []metricObj `json:"metrics"`
|
||||
// this just needs to be an empty object, so the value doesn't matter
|
||||
Expressions []int `json:"expressions"`
|
||||
Outputs []outputObj `json:"outputs"`
|
||||
}
|
||||
|
||||
type timeObj struct {
|
||||
Start int64 `json:"start"`
|
||||
End int64 `json:"end"`
|
||||
Aggregator string `json:"aggregator"`
|
||||
Downsampler dSObj `json:"downsampler"`
|
||||
}
|
||||
|
||||
type dSObj struct {
|
||||
Interval string `json:"interval"`
|
||||
Aggregator string `json:"aggregator"`
|
||||
FillPolicy fillObj `json:"fillPolicy"`
|
||||
}
|
||||
|
||||
type fillObj struct {
|
||||
// we'll always hard-code to NaN here, so we don't need value
|
||||
Policy string `json:"policy"`
|
||||
}
|
||||
|
||||
type filterObj struct {
|
||||
Tags []tagObj `json:"tags"`
|
||||
ID string `json:"id"`
|
||||
}
|
||||
|
||||
type tagObj struct {
|
||||
Type string `json:"type"`
|
||||
Tagk string `json:"tagk"`
|
||||
Filter string `json:"filter"`
|
||||
GroupBy bool `json:"groupBy"`
|
||||
}
|
||||
|
||||
type metricObj struct {
|
||||
ID string `json:"id"`
|
||||
Metric string `json:"metric"`
|
||||
Filter string `json:"filter"`
|
||||
FillPolicy fillObj `json:"fillPolicy"`
|
||||
}
|
||||
|
||||
type outputObj struct {
|
||||
ID string `json:"id"`
|
||||
Alias string `json:"alias"`
|
||||
}
|
||||
|
||||
/* End expression object structs */
|
||||
|
||||
var (
|
||||
exprOutput = outputObj{ID: "a", Alias: "query"}
|
||||
exprFillPolicy = fillObj{Policy: "nan"}
|
||||
)
|
||||
|
||||
// FindMetrics discovers all metrics that OpenTSDB knows about (given a filter)
|
||||
// e.g. /api/suggest?type=metrics&q=system&max=100000
|
||||
func (c Client) FindMetrics(q string) ([]string, error) {
|
||||
|
@ -221,41 +151,39 @@ func (c Client) FindSeries(metric string) ([]Meta, error) {
|
|||
}
|
||||
|
||||
// GetData actually retrieves data for a series at a specified time range
|
||||
// e.g. /api/query?start=1&end=200&m=sum:1m-avg-none:system.load5{host=host1}
|
||||
func (c Client) GetData(series Meta, rt RetentionMeta, start int64, end int64) (Metric, error) {
|
||||
/*
|
||||
Here we build the actual exp query we'll send to OpenTSDB
|
||||
|
||||
This is comprised of a number of different settings. We hard-code
|
||||
a few to simplify the JSON object creation.
|
||||
There are examples queries available, so not too much detail here...
|
||||
First, build our tag string.
|
||||
It's literally just key=value,key=value,...
|
||||
*/
|
||||
expr := Expression{}
|
||||
expr.Outputs = []outputObj{exprOutput}
|
||||
expr.Metrics = append(expr.Metrics, metricObj{ID: "a", Metric: series.Metric,
|
||||
Filter: "f1", FillPolicy: exprFillPolicy})
|
||||
expr.Time = timeObj{Start: start, End: end, Aggregator: rt.FirstOrder,
|
||||
Downsampler: dSObj{Interval: rt.AggTime,
|
||||
Aggregator: rt.SecondOrder,
|
||||
FillPolicy: exprFillPolicy}}
|
||||
var TagList []tagObj
|
||||
tagStr := ""
|
||||
for k, v := range series.Tags {
|
||||
/*
|
||||
every tag should be a literal_or because that's the closest to a full "==" that
|
||||
this endpoint allows for
|
||||
*/
|
||||
TagList = append(TagList, tagObj{Type: "literal_or", Tagk: k,
|
||||
Filter: v, GroupBy: true})
|
||||
}
|
||||
expr.Filters = append(expr.Filters, filterObj{ID: "f1", Tags: TagList})
|
||||
// "expressions" is required in the query object or we get a 5xx, so force it to exist
|
||||
expr.Expressions = make([]int, 0)
|
||||
inputData, err := json.Marshal(expr)
|
||||
if err != nil {
|
||||
return Metric{}, fmt.Errorf("failed to marshal query JSON %s", err)
|
||||
tagStr += fmt.Sprintf("%s=%s,", k, v)
|
||||
}
|
||||
// obviously we don't want trailing commas...
|
||||
tagStr = strings.Trim(tagStr, ",")
|
||||
|
||||
q := fmt.Sprintf("%s/api/query/exp", c.Addr)
|
||||
resp, err := http.Post(q, "application/json", bytes.NewBuffer(inputData))
|
||||
/*
|
||||
The aggregation policy should already be somewhat formatted:
|
||||
FirstOrder (e.g. sum/avg/max/etc.)
|
||||
SecondOrder (e.g. sum/avg/max/etc.)
|
||||
AggTime (e.g. 1m/10m/1d/etc.)
|
||||
This will build into m=<FirstOrder>:<AggTime>-<SecondOrder>-none:
|
||||
Or an example: m=sum:1m-avg-none
|
||||
*/
|
||||
aggPol := fmt.Sprintf("%s:%s-%s-none", rt.FirstOrder, rt.AggTime, rt.SecondOrder)
|
||||
|
||||
/*
|
||||
Our actual query string:
|
||||
Start and End are just timestamps
|
||||
We then add the aggregation policy, the metric, and the tag set
|
||||
*/
|
||||
queryStr := fmt.Sprintf("start=%v&end=%v&m=%s:%s{%s}", start, end, aggPol,
|
||||
series.Metric, tagStr)
|
||||
|
||||
q := fmt.Sprintf("%s/api/query?%s", c.Addr, queryStr)
|
||||
resp, err := http.Get(q)
|
||||
if err != nil {
|
||||
return Metric{}, fmt.Errorf("failed to send GET request to %q: %s", q, err)
|
||||
}
|
||||
|
@ -267,28 +195,63 @@ func (c Client) GetData(series Meta, rt RetentionMeta, start int64, end int64) (
|
|||
if err != nil {
|
||||
return Metric{}, fmt.Errorf("could not retrieve series data from %q: %s", q, err)
|
||||
}
|
||||
var output ExpressionOutput
|
||||
var output []OtsdbMetric
|
||||
err = json.Unmarshal(body, &output)
|
||||
if err != nil {
|
||||
return Metric{}, fmt.Errorf("failed to unmarshal response from %q: %s", q, err)
|
||||
return Metric{}, fmt.Errorf("failed to unmarshal response from %q [%v]: %s", q, body, err)
|
||||
}
|
||||
if len(output.Outputs) < 1 {
|
||||
/*
|
||||
We expect results to look like:
|
||||
[
|
||||
{
|
||||
"metric": "zfs_filesystem.available",
|
||||
"tags": {
|
||||
"rack": "6",
|
||||
"replica": "1",
|
||||
"host": "c7-bfyii-115",
|
||||
"pool": "dattoarray",
|
||||
"row": "c",
|
||||
"dc": "us-west-3",
|
||||
"group": "legonode"
|
||||
},
|
||||
"aggregateTags": [],
|
||||
"dps": {
|
||||
"1626019200": 32490602877610.668,
|
||||
"1626033600": 32486439014058.668
|
||||
}
|
||||
}
|
||||
]
|
||||
There are two things that could be bad here:
|
||||
1. There are no actual stats returned (an empty array -> [])
|
||||
2. There are aggregate tags in the results
|
||||
An empty array doesn't cast to a OtsdbMetric struct well, and there's no reason to try, so we should just skip it
|
||||
Because we're trying to migrate data without transformations, seeing aggregate tags could mean
|
||||
we're dropping series on the floor.
|
||||
*/
|
||||
if len(output) < 1 {
|
||||
// no results returned...return an empty object without error
|
||||
return Metric{}, nil
|
||||
}
|
||||
if len(output) > 1 {
|
||||
// multiple series returned for a single query. We can't process this right, so...
|
||||
return Metric{}, fmt.Errorf("Query returned multiple results: %v", output)
|
||||
}
|
||||
if len(output[0].AggregateTags) > 0 {
|
||||
// This failure means we've suppressed potential series somehow...
|
||||
return Metric{}, fmt.Errorf("Query somehow has aggregate tags: %v", output[0].AggregateTags)
|
||||
}
|
||||
data := Metric{}
|
||||
data.Metric = series.Metric
|
||||
data.Tags = series.Tags
|
||||
data.Metric = output[0].Metric
|
||||
data.Tags = output[0].Tags
|
||||
/*
|
||||
We evaluate data for correctness before formatting the actual values
|
||||
to skip a little bit of time if the series has invalid formatting
|
||||
|
||||
First step is to enforce Prometheus' data model
|
||||
*/
|
||||
data, err = modifyData(data, c.Normalize)
|
||||
if err != nil {
|
||||
return Metric{}, fmt.Errorf("invalid series data from %q: %s", q, err)
|
||||
}
|
||||
|
||||
/*
|
||||
Convert data from OpenTSDB's output format ([[ts,val],[ts,val]...])
|
||||
to VictoriaMetrics format: {"timestamps": [ts,ts,ts...], "values": [val,val,val...]}
|
||||
|
@ -296,9 +259,9 @@ func (c Client) GetData(series Meta, rt RetentionMeta, start int64, end int64) (
|
|||
can be a float64, we have to initially cast _all_ objects that way
|
||||
then convert the timestamp back to something reasonable.
|
||||
*/
|
||||
for _, tsobj := range output.Outputs[0].Dps {
|
||||
data.Timestamps = append(data.Timestamps, int64(tsobj[0]))
|
||||
data.Values = append(data.Values, tsobj[1])
|
||||
for ts, val := range output[0].Dps {
|
||||
data.Timestamps = append(data.Timestamps, ts)
|
||||
data.Values = append(data.Values, val)
|
||||
}
|
||||
return data, nil
|
||||
}
|
||||
|
@ -308,9 +271,12 @@ func (c Client) GetData(series Meta, rt RetentionMeta, start int64, end int64) (
|
|||
func NewClient(cfg Config) (*Client, error) {
|
||||
var retentions []Retention
|
||||
offsetPrint := int64(time.Now().Unix())
|
||||
offsetSecs := cfg.Offset * 24 * 60 * 60
|
||||
if cfg.MsecsTime {
|
||||
// 1000000 == Nanoseconds -> Milliseconds difference
|
||||
offsetPrint = int64(time.Now().UnixNano() / 1000000)
|
||||
// also bump offsetSecs to milliseconds
|
||||
offsetSecs = offsetSecs * 1000
|
||||
}
|
||||
if cfg.HardTS > 0 {
|
||||
/*
|
||||
|
@ -318,20 +284,16 @@ func NewClient(cfg Config) (*Client, error) {
|
|||
Just present that if it is defined
|
||||
*/
|
||||
offsetPrint = cfg.HardTS
|
||||
} else if cfg.Offset > 0 {
|
||||
} else if offsetSecs > 0 {
|
||||
/*
|
||||
Our "offset" is the number of days we should step
|
||||
Our "offset" is the number of days (in seconds) we should step
|
||||
back before starting to scan for data
|
||||
*/
|
||||
if cfg.MsecsTime {
|
||||
offsetPrint = offsetPrint - (cfg.Offset * 24 * 60 * 60 * 1000)
|
||||
} else {
|
||||
offsetPrint = offsetPrint - (cfg.Offset * 24 * 60 * 60)
|
||||
}
|
||||
offsetPrint = offsetPrint - offsetSecs
|
||||
}
|
||||
log.Println(fmt.Sprintf("Will collect data starting at TS %v", offsetPrint))
|
||||
for _, r := range cfg.Retentions {
|
||||
ret, err := convertRetention(r, cfg.Offset, cfg.MsecsTime)
|
||||
ret, err := convertRetention(r, offsetSecs, cfg.MsecsTime)
|
||||
if err != nil {
|
||||
return &Client{}, fmt.Errorf("Couldn't parse retention %q :: %v", r, err)
|
||||
}
|
||||
|
|
|
@ -107,6 +107,7 @@ func convertRetention(retention string, offset int64, msecTime bool) (Retention,
|
|||
}
|
||||
// bump by the offset so we don't look at empty ranges any time offset > ttl
|
||||
ttl += offset
|
||||
|
||||
var timeChunks []TimeRange
|
||||
var i int64
|
||||
for i = offset; i <= ttl; i = i + rowLength {
|
||||
|
|
398
app/vmctl/opentsdb/testdata/exampleOutput.json
vendored
398
app/vmctl/opentsdb/testdata/exampleOutput.json
vendored
|
@ -1,398 +0,0 @@
|
|||
{
|
||||
"outputs": [
|
||||
{
|
||||
"id": "a",
|
||||
"alias": "query",
|
||||
"dps": [
|
||||
[
|
||||
1614099600000,
|
||||
0.28
|
||||
],
|
||||
[
|
||||
1614099660000,
|
||||
0.22
|
||||
],
|
||||
[
|
||||
1614099720000,
|
||||
0.18
|
||||
],
|
||||
[
|
||||
1614099780000,
|
||||
0.14
|
||||
],
|
||||
[
|
||||
1614099840000,
|
||||
0.24
|
||||
],
|
||||
[
|
||||
1614099900000,
|
||||
0.19
|
||||
],
|
||||
[
|
||||
1614099960000,
|
||||
0.22
|
||||
],
|
||||
[
|
||||
1614100020000,
|
||||
0.2
|
||||
],
|
||||
[
|
||||
1614100080000,
|
||||
0.18
|
||||
],
|
||||
[
|
||||
1614100140000,
|
||||
0.22
|
||||
],
|
||||
[
|
||||
1614100200000,
|
||||
0.17
|
||||
],
|
||||
[
|
||||
1614100260000,
|
||||
0.16
|
||||
],
|
||||
[
|
||||
1614100320000,
|
||||
0.22
|
||||
],
|
||||
[
|
||||
1614100380000,
|
||||
0.3
|
||||
],
|
||||
[
|
||||
1614100440000,
|
||||
0.28
|
||||
],
|
||||
[
|
||||
1614100500000,
|
||||
0.27
|
||||
],
|
||||
[
|
||||
1614100560000,
|
||||
0.26
|
||||
],
|
||||
[
|
||||
1614100620000,
|
||||
0.23
|
||||
],
|
||||
[
|
||||
1614100680000,
|
||||
0.18
|
||||
],
|
||||
[
|
||||
1614100740000,
|
||||
0.3
|
||||
],
|
||||
[
|
||||
1614100800000,
|
||||
0.24
|
||||
],
|
||||
[
|
||||
1614100860000,
|
||||
0.19
|
||||
],
|
||||
[
|
||||
1614100920000,
|
||||
0.16
|
||||
],
|
||||
[
|
||||
1614100980000,
|
||||
0.19
|
||||
],
|
||||
[
|
||||
1614101040000,
|
||||
0.23
|
||||
],
|
||||
[
|
||||
1614101100000,
|
||||
0.18
|
||||
],
|
||||
[
|
||||
1614101160000,
|
||||
0.15
|
||||
],
|
||||
[
|
||||
1614101220000,
|
||||
0.12
|
||||
],
|
||||
[
|
||||
1614101280000,
|
||||
0.1
|
||||
],
|
||||
[
|
||||
1614101340000,
|
||||
0.24
|
||||
],
|
||||
[
|
||||
1614101400000,
|
||||
0.19
|
||||
],
|
||||
[
|
||||
1614101460000,
|
||||
0.16
|
||||
],
|
||||
[
|
||||
1614101520000,
|
||||
0.14
|
||||
],
|
||||
[
|
||||
1614101580000,
|
||||
0.12
|
||||
],
|
||||
[
|
||||
1614101640000,
|
||||
0.14
|
||||
],
|
||||
[
|
||||
1614101700000,
|
||||
0.12
|
||||
],
|
||||
[
|
||||
1614101760000,
|
||||
0.13
|
||||
],
|
||||
[
|
||||
1614101820000,
|
||||
0.12
|
||||
],
|
||||
[
|
||||
1614101880000,
|
||||
0.11
|
||||
],
|
||||
[
|
||||
1614101940000,
|
||||
0.36
|
||||
],
|
||||
[
|
||||
1614102000000,
|
||||
0.35
|
||||
],
|
||||
[
|
||||
1614102060000,
|
||||
0.3
|
||||
],
|
||||
[
|
||||
1614102120000,
|
||||
0.32
|
||||
],
|
||||
[
|
||||
1614102180000,
|
||||
0.27
|
||||
],
|
||||
[
|
||||
1614102240000,
|
||||
0.26
|
||||
],
|
||||
[
|
||||
1614102300000,
|
||||
0.21
|
||||
],
|
||||
[
|
||||
1614102360000,
|
||||
0.18
|
||||
],
|
||||
[
|
||||
1614102420000,
|
||||
0.15
|
||||
],
|
||||
[
|
||||
1614102480000,
|
||||
0.12
|
||||
],
|
||||
[
|
||||
1614102540000,
|
||||
0.24
|
||||
],
|
||||
[
|
||||
1614102600000,
|
||||
0.2
|
||||
],
|
||||
[
|
||||
1614102660000,
|
||||
0.17
|
||||
],
|
||||
[
|
||||
1614102720000,
|
||||
0.18
|
||||
],
|
||||
[
|
||||
1614102780000,
|
||||
0.14
|
||||
],
|
||||
[
|
||||
1614102840000,
|
||||
0.39
|
||||
],
|
||||
[
|
||||
1614102900000,
|
||||
0.31
|
||||
],
|
||||
[
|
||||
1614102960000,
|
||||
0.3
|
||||
],
|
||||
[
|
||||
1614103020000,
|
||||
0.24
|
||||
],
|
||||
[
|
||||
1614103080000,
|
||||
0.26
|
||||
],
|
||||
[
|
||||
1614103140000,
|
||||
0.21
|
||||
],
|
||||
[
|
||||
1614103200000,
|
||||
0.17
|
||||
],
|
||||
[
|
||||
1614103260000,
|
||||
0.15
|
||||
],
|
||||
[
|
||||
1614103320000,
|
||||
0.2
|
||||
],
|
||||
[
|
||||
1614103380000,
|
||||
0.2
|
||||
],
|
||||
[
|
||||
1614103440000,
|
||||
0.22
|
||||
],
|
||||
[
|
||||
1614103500000,
|
||||
0.19
|
||||
],
|
||||
[
|
||||
1614103560000,
|
||||
0.22
|
||||
],
|
||||
[
|
||||
1614103620000,
|
||||
0.29
|
||||
],
|
||||
[
|
||||
1614103680000,
|
||||
0.31
|
||||
],
|
||||
[
|
||||
1614103740000,
|
||||
0.28
|
||||
],
|
||||
[
|
||||
1614103800000,
|
||||
0.23
|
||||
]
|
||||
],
|
||||
"dpsMeta": {
|
||||
"firstTimestamp": 1614099600000,
|
||||
"lastTimestamp": 1614103800000,
|
||||
"setCount": 71,
|
||||
"series": 1
|
||||
},
|
||||
"meta": [
|
||||
{
|
||||
"index": 0,
|
||||
"metrics": [
|
||||
"timestamp"
|
||||
]
|
||||
},
|
||||
{
|
||||
"index": 1,
|
||||
"metrics": [
|
||||
"system.load5"
|
||||
],
|
||||
"commonTags": {
|
||||
"rack": "undef",
|
||||
"host": "use1-mon-metrics-1",
|
||||
"row": "undef",
|
||||
"dc": "us-east-1",
|
||||
"group": "monitoring"
|
||||
},
|
||||
"aggregatedTags": []
|
||||
}
|
||||
]
|
||||
}
|
||||
],
|
||||
"query": {
|
||||
"name": null,
|
||||
"time": {
|
||||
"start": "1h-ago",
|
||||
"end": null,
|
||||
"timezone": null,
|
||||
"downsampler": {
|
||||
"interval": "1m",
|
||||
"aggregator": "avg",
|
||||
"fillPolicy": {
|
||||
"policy": "nan",
|
||||
"value": "NaN"
|
||||
}
|
||||
},
|
||||
"aggregator": "sum",
|
||||
"rate": false
|
||||
},
|
||||
"filters": [
|
||||
{
|
||||
"id": "f1",
|
||||
"tags": [
|
||||
{
|
||||
"tagk": "host",
|
||||
"filter": "use1-mon-metrics-1",
|
||||
"group_by": true,
|
||||
"type": "literal_or"
|
||||
},
|
||||
{
|
||||
"tagk": "group",
|
||||
"filter": "monitoring",
|
||||
"group_by": true,
|
||||
"type": "literal_or"
|
||||
},
|
||||
{
|
||||
"tagk": "dc",
|
||||
"filter": "us-east-1",
|
||||
"group_by": true,
|
||||
"type": "literal_or"
|
||||
},
|
||||
{
|
||||
"tagk": "rack",
|
||||
"filter": "undef",
|
||||
"group_by": true,
|
||||
"type": "literal_or"
|
||||
},
|
||||
{
|
||||
"tagk": "row",
|
||||
"filter": "undef",
|
||||
"group_by": true,
|
||||
"type": "literal_or"
|
||||
}
|
||||
],
|
||||
"explicitTags": false
|
||||
}
|
||||
],
|
||||
"metrics": [
|
||||
{
|
||||
"metric": "system.load5",
|
||||
"id": "a",
|
||||
"filter": "f1",
|
||||
"aggregator": null,
|
||||
"timeOffset": null,
|
||||
"fillPolicy": {
|
||||
"policy": "nan",
|
||||
"value": "NaN"
|
||||
}
|
||||
}
|
||||
],
|
||||
"expressions": [],
|
||||
"outputs": [
|
||||
{
|
||||
"id": "a",
|
||||
"alias": "query"
|
||||
}
|
||||
]
|
||||
}
|
||||
}
|
62
app/vmctl/opentsdb/testdata/exampleQuery.json
vendored
62
app/vmctl/opentsdb/testdata/exampleQuery.json
vendored
|
@ -1,62 +0,0 @@
|
|||
{
|
||||
"time": {
|
||||
"start": "1h-ago",
|
||||
"aggregator":"sum",
|
||||
"downsampler": {
|
||||
"interval": "1m",
|
||||
"aggregator": "avg",
|
||||
"fillPolicy": {
|
||||
"policy": "nan"
|
||||
}
|
||||
}
|
||||
},
|
||||
"filters": [
|
||||
{
|
||||
"tags": [
|
||||
{
|
||||
"type": "literal_or",
|
||||
"tagk": "host",
|
||||
"filter": "use1-mon-metrics-1",
|
||||
"groupBy": true
|
||||
},
|
||||
{
|
||||
"type": "literal_or",
|
||||
"tagk": "group",
|
||||
"filter": "monitoring",
|
||||
"groupBy": true
|
||||
},
|
||||
{
|
||||
"type": "literal_or",
|
||||
"tagk": "dc",
|
||||
"filter": "us-east-1",
|
||||
"groupBy": true
|
||||
},
|
||||
{
|
||||
"type": "literal_or",
|
||||
"tagk": "rack",
|
||||
"filter": "undef",
|
||||
"groupBy": true
|
||||
},
|
||||
{
|
||||
"type": "literal_or",
|
||||
"tagk": "row",
|
||||
"filter": "undef",
|
||||
"groupBy": true
|
||||
}
|
||||
],
|
||||
"id": "f1"
|
||||
}
|
||||
],
|
||||
"metrics": [
|
||||
{
|
||||
"id": "a",
|
||||
"metric": "system.load5",
|
||||
"filter": "f1",
|
||||
"fillPolicy":{"policy":"nan"}
|
||||
}
|
||||
],
|
||||
"expressions": [],
|
||||
"outputs":[
|
||||
{"id":"a", "alias":"query"}
|
||||
]
|
||||
}
|
Loading…
Reference in a new issue