docs/vmanomaly: release 1.17.1 (#7302)

### Describe Your Changes

docs/vmanomaly: release 1.17.1

### Checklist

The following checks are **mandatory**:

- [ ] My change adheres [VictoriaMetrics contributing
guidelines](https://docs.victoriametrics.com/contributing/).
This commit is contained in:
Fred Navruzov 2024-10-18 19:07:24 +02:00 committed by GitHub
parent d553d101b2
commit 7a538bbe78
No known key found for this signature in database
GPG key ID: B5690EEEBB952194
6 changed files with 14 additions and 9 deletions

View file

@ -73,7 +73,7 @@ services:
restart: always
vmanomaly:
container_name: vmanomaly
image: victoriametrics/vmanomaly:v1.17.0
image: victoriametrics/vmanomaly:v1.17.1
depends_on:
- "victoriametrics"
ports:

View file

@ -11,6 +11,11 @@ aliases:
---
Please find the changelog for VictoriaMetrics Anomaly Detection below.
## v1.17.1
Released: 2024-10-18
- FIX: Fixed an issue occurred when [Prophet model](https://docs.victoriametrics.com/anomaly-detection/components/models/#prophet) is trained on *constant* data (data consisting of the same value and no variation across time). The bug prevented the `fit` stage from completing successfully, resulting in the model instance not being stored in the model registry, after automated model cleanup was addded in [v1.17.0](#1170).
## v1.17.0
Released: 2024-10-17

View file

@ -132,7 +132,7 @@ services:
# ...
vmanomaly:
container_name: vmanomaly
image: victoriametrics/vmanomaly:v1.17.0
image: victoriametrics/vmanomaly:v1.17.1
# ...
ports:
- "8490:8490"
@ -230,7 +230,7 @@ P.s. `infer` data volume will remain the same for both models, so it does not af
If you're dealing with a large query in the `queries` argument of [VmReader](https://docs.victoriametrics.com/anomaly-detection/components/reader/#vm-reader) (especially when running [within a scheduler using a long](https://docs.victoriametrics.com/anomaly-detection/components/scheduler/?highlight=fit_window#periodic-scheduler) `fit_window`), you may encounter issues such as query timeouts (due to the `search.maxQueryDuration` server limit) or rejections (if the `search.maxPointsPerTimeseries` server limit is exceeded).
We recommend upgrading to [v1.17.0](https://docs.victoriametrics.com/anomaly-detection/changelog/#v1170), which introduced the `max_points_per_query` argument (both global and [query-specific](https://docs.victoriametrics.com/anomaly-detection/components/reader/#per-query-parameters)) for the [VmReader](https://docs.victoriametrics.com/anomaly-detection/components/reader/#vm-reader). This argument overrides how `search.maxPointsPerTimeseries` flag handling (introduced in [v1.14.1](https://docs.victoriametrics.com/anomaly-detection/changelog/#v1141)) is used in `vmanomaly` for splitting long `fit_window` queries into smaller sub-intervals. This helps users avoid hitting the `search.maxQueryDuration` limit for individual queries by distributing initial query across multiple subquery requests with minimal overhead.
We recommend upgrading to [v1.17.1](https://docs.victoriametrics.com/anomaly-detection/changelog/#v1171), which introduced the `max_points_per_query` argument (both global and [query-specific](https://docs.victoriametrics.com/anomaly-detection/components/reader/#per-query-parameters)) for the [VmReader](https://docs.victoriametrics.com/anomaly-detection/components/reader/#vm-reader). This argument overrides how `search.maxPointsPerTimeseries` flag handling (introduced in [v1.14.1](https://docs.victoriametrics.com/anomaly-detection/changelog/#v1141)) is used in `vmanomaly` for splitting long `fit_window` queries into smaller sub-intervals. This helps users avoid hitting the `search.maxQueryDuration` limit for individual queries by distributing initial query across multiple subquery requests with minimal overhead.
By splitting long `fit_window` queries into smaller sub-intervals, this helps avoid hitting the `search.maxQueryDuration` limit, distributing the load across multiple subquery requests with minimal overhead. To resolve the issue, reduce `max_points_per_query` to a value lower than `search.maxPointsPerTimeseries` until the problem is gone:

View file

@ -229,7 +229,7 @@ This will expose metrics at `http://0.0.0.0:8080/metrics` page.
To use *vmanomaly* you need to pull docker image:
```sh
docker pull victoriametrics/vmanomaly:v1.17.0
docker pull victoriametrics/vmanomaly:v1.17.1
```
> Note: please check what is latest release in [CHANGELOG](https://docs.victoriametrics.com/anomaly-detection/changelog/)
@ -239,7 +239,7 @@ docker pull victoriametrics/vmanomaly:v1.17.0
You can put a tag on it for your convenience:
```sh
docker image tag victoriametrics/vmanomaly:v1.17.0 vmanomaly
docker image tag victoriametrics/vmanomaly:v1.17.1 vmanomaly
```
Here is an example of how to run *vmanomaly* docker container with [license file](#licensing):

View file

@ -34,13 +34,13 @@ Below are the steps to get `vmanomaly` up and running inside a Docker container:
1. Pull Docker image:
```sh
docker pull victoriametrics/vmanomaly:v1.16.3
docker pull victoriametrics/vmanomaly:v1.17.1
```
2. (Optional step) tag the `vmanomaly` Docker image:
```sh
docker image tag victoriametrics/vmanomaly:v1.16.3 vmanomaly
docker image tag victoriametrics/vmanomaly:v1.17.1 vmanomaly
```
3. Start the `vmanomaly` Docker container with a *license file*, use the command below.
@ -72,7 +72,7 @@ docker run -it --user 1000:1000 \
services:
# ...
vmanomaly:
image: victoriametrics/vmanomaly:v1.16.3
image: victoriametrics/vmanomaly:v1.17.1
volumes:
$YOUR_LICENSE_FILE_PATH:/license
$YOUR_CONFIG_FILE_PATH:/config.yml

View file

@ -385,7 +385,7 @@ services:
restart: always
vmanomaly:
container_name: vmanomaly
image: victoriametrics/vmanomaly:v1.17.0
image: victoriametrics/vmanomaly:v1.17.1
depends_on:
- "victoriametrics"
ports: