lib/{storage,mergeset}: convert beffered items into searchable in-memory parts exactly once per the given flush interval

Previously the interval between item addition and its conversion to searchable in-memory part
could vary significantly because of too coarse per-second precision. Switch from fasttime.UnixTimestamp()
to time.Now().UnixMilli() for millisecond precision. It is OK to use time.Now() for tracking
the time when buffered items must be converted to searchable in-memory parts, since time.Now()
calls aren't located in hot paths.

Increase the flush interval for converting buffered samples to searchable in-memory parts
from one second to two seconds. This should reduce the number of blocks, which are needed
to be processed during high-frequency alerting queries. This, in turn, should reduce CPU usage.

While at it, hardcode the maximum size of rawRows shard to 8Mb, since this size gives the optimal
data ingestion pefromance according to load tests. This reduces memory usage and CPU usage on systems
with big amounts of RAM under high data ingestion rate.
This commit is contained in:
Aliaksandr Valialkin 2024-02-22 20:06:37 +02:00
parent 5f1fa8e7f7
commit 8669584e9f
No known key found for this signature in database
GPG key ID: 52C003EE2BCDB9EB
3 changed files with 30 additions and 51 deletions

View file

@ -192,8 +192,8 @@ func (riss *rawItemsShards) Len() int {
}
type rawItemsShardNopad struct {
// Put lastFlushTime to the top in order to avoid unaligned memory access on 32-bit architectures
lastFlushTime uint64
// Put lastFlushTimeMs to the top in order to avoid unaligned memory access on 32-bit architectures
lastFlushTimeMs int64
mu sync.Mutex
ibs []*inmemoryBlock
@ -236,7 +236,7 @@ func (ris *rawItemsShard) addItems(tb *Table, items [][]byte) [][]byte {
ibsToFlush = append(ibsToFlush, ibs...)
ibs = make([]*inmemoryBlock, 0, maxBlocksPerShard)
tailItems = items[i:]
atomic.StoreUint64(&ris.lastFlushTime, fasttime.UnixTimestamp())
atomic.StoreInt64(&ris.lastFlushTimeMs, time.Now().UnixMilli())
break
}
ib = &inmemoryBlock{}
@ -696,7 +696,8 @@ func (tb *Table) DebugFlush() {
}
func (tb *Table) pendingItemsFlusher() {
d := timeutil.AddJitterToDuration(pendingItemsFlushInterval)
// do not add jitter in order to guarantee flush interval
d := pendingItemsFlushInterval
ticker := time.NewTicker(d)
defer ticker.Stop()
for {
@ -710,7 +711,8 @@ func (tb *Table) pendingItemsFlusher() {
}
func (tb *Table) inmemoryPartsFlusher() {
d := timeutil.AddJitterToDuration(dataFlushInterval)
// do not add jitter in order to guarantee flush interval
d := dataFlushInterval
ticker := time.NewTicker(d)
defer ticker.Stop()
for {
@ -761,13 +763,9 @@ func (riss *rawItemsShards) flush(tb *Table, isFinal bool) {
}
func (ris *rawItemsShard) appendBlocksToFlush(dst []*inmemoryBlock, isFinal bool) []*inmemoryBlock {
currentTime := fasttime.UnixTimestamp()
flushSeconds := int64(pendingItemsFlushInterval.Seconds())
if flushSeconds <= 0 {
flushSeconds = 1
}
lastFlushTime := atomic.LoadUint64(&ris.lastFlushTime)
if !isFinal && currentTime < lastFlushTime+uint64(flushSeconds) {
currentTime := time.Now().UnixMilli()
lastFlushTime := atomic.LoadInt64(&ris.lastFlushTimeMs)
if !isFinal && currentTime < lastFlushTime+pendingItemsFlushInterval.Milliseconds() {
// Fast path - nothing to flush
return dst
}
@ -779,7 +777,7 @@ func (ris *rawItemsShard) appendBlocksToFlush(dst []*inmemoryBlock, isFinal bool
ibs[i] = nil
}
ris.ibs = ibs[:0]
atomic.StoreUint64(&ris.lastFlushTime, currentTime)
atomic.StoreInt64(&ris.lastFlushTimeMs, currentTime)
ris.mu.Unlock()
return dst
}

View file

@ -15,7 +15,6 @@ import (
"github.com/VictoriaMetrics/VictoriaMetrics/lib/cgroup"
"github.com/VictoriaMetrics/VictoriaMetrics/lib/encoding"
"github.com/VictoriaMetrics/VictoriaMetrics/lib/fasttime"
"github.com/VictoriaMetrics/VictoriaMetrics/lib/fs"
"github.com/VictoriaMetrics/VictoriaMetrics/lib/logger"
"github.com/VictoriaMetrics/VictoriaMetrics/lib/memory"
@ -51,7 +50,7 @@ const defaultPartsToMerge = 15
var rawRowsShardsPerPartition = cgroup.AvailableCPUs()
// The interval for flushing buffered rows into parts, so they become visible to search.
const pendingRowsFlushInterval = time.Second
const pendingRowsFlushInterval = 2 * time.Second
// The interval for guaranteed flush of recently ingested data from memory to on-disk parts,
// so they survive process crash.
@ -69,25 +68,10 @@ func SetDataFlushInterval(d time.Duration) {
}
}
// getMaxRawRowsPerShard returns the maximum number of rows that haven't been converted into parts yet per earh rawRowsShard.
func getMaxRawRowsPerShard() int {
maxRawRowsPerPartitionOnce.Do(func() {
n := memory.Allowed() / rawRowsShardsPerPartition / (100 * int(unsafe.Sizeof(rawRow{})))
if n < 1e4 {
n = 1e4
}
if n > 500e3 {
n = 500e3
}
maxRawRowsPerPartition = n
})
return maxRawRowsPerPartition
}
var (
maxRawRowsPerPartition int
maxRawRowsPerPartitionOnce sync.Once
)
// The maximum number of rawRow items in rawRowsShard.
//
// Limit the maximum shard size to 8Mb, since this gives the lowest CPU usage under high ingestion rate.
const maxRawRowsPerShard = (8 << 20) / int(unsafe.Sizeof(rawRow{}))
// partition represents a partition.
type partition struct {
@ -466,8 +450,8 @@ func (rrss *rawRowsShards) Len() int {
}
type rawRowsShardNopad struct {
// Put lastFlushTime to the top in order to avoid unaligned memory access on 32-bit architectures
lastFlushTime uint64
// Put lastFlushTimeMs to the top in order to avoid unaligned memory access on 32-bit architectures
lastFlushTimeMs int64
mu sync.Mutex
rows []rawRow
@ -504,7 +488,7 @@ func (rrs *rawRowsShard) addRows(pt *partition, rows []rawRow) []rawRow {
n = copy(rrs.rows[:cap(rrs.rows)], rows)
rrs.rows = rrs.rows[:n]
rows = rows[n:]
atomic.StoreUint64(&rrs.lastFlushTime, fasttime.UnixTimestamp())
atomic.StoreInt64(&rrs.lastFlushTimeMs, time.Now().UnixMilli())
}
rrs.mu.Unlock()
@ -514,8 +498,7 @@ func (rrs *rawRowsShard) addRows(pt *partition, rows []rawRow) []rawRow {
}
func newRawRows() []rawRow {
n := getMaxRawRowsPerShard()
return make([]rawRow, 0, n)
return make([]rawRow, 0, maxRawRowsPerShard)
}
func (pt *partition) flushRowsToInmemoryParts(rows []rawRow) {
@ -524,7 +507,7 @@ func (pt *partition) flushRowsToInmemoryParts(rows []rawRow) {
}
// Merge rows into in-memory parts.
maxRows := getMaxRawRowsPerShard()
maxRows := maxRawRowsPerShard
var pwsLock sync.Mutex
pws := make([]*partWrapper, 0, (len(rows)+maxRows-1)/maxRows)
wg := getWaitGroup()
@ -1017,7 +1000,8 @@ func getBigPartsConcurrency() int {
}
func (pt *partition) inmemoryPartsFlusher() {
d := timeutil.AddJitterToDuration(dataFlushInterval)
// Do not add jitter to d in order to guarantee the flush interval
d := dataFlushInterval
ticker := time.NewTicker(d)
defer ticker.Stop()
for {
@ -1031,7 +1015,8 @@ func (pt *partition) inmemoryPartsFlusher() {
}
func (pt *partition) pendingRowsFlusher() {
d := timeutil.AddJitterToDuration(pendingRowsFlushInterval)
// Do not add jitter to d in order to guarantee the flush interval
d := pendingRowsFlushInterval
ticker := time.NewTicker(d)
defer ticker.Stop()
for {
@ -1080,13 +1065,9 @@ func (rrss *rawRowsShards) flush(pt *partition, isFinal bool) {
}
func (rrs *rawRowsShard) appendRawRowsToFlush(dst []rawRow, isFinal bool) []rawRow {
currentTime := fasttime.UnixTimestamp()
flushSeconds := int64(pendingRowsFlushInterval.Seconds())
if flushSeconds <= 0 {
flushSeconds = 1
}
lastFlushTime := atomic.LoadUint64(&rrs.lastFlushTime)
if !isFinal && currentTime < lastFlushTime+uint64(flushSeconds) {
currentTime := time.Now().UnixMilli()
lastFlushTime := atomic.LoadInt64(&rrs.lastFlushTimeMs)
if !isFinal && currentTime < lastFlushTime+pendingRowsFlushInterval.Milliseconds() {
// Fast path - nothing to flush
return dst
}
@ -1094,7 +1075,7 @@ func (rrs *rawRowsShard) appendRawRowsToFlush(dst []rawRow, isFinal bool) []rawR
rrs.mu.Lock()
dst = append(dst, rrs.rows...)
rrs.rows = rrs.rows[:0]
atomic.StoreUint64(&rrs.lastFlushTime, currentTime)
atomic.StoreInt64(&rrs.lastFlushTimeMs, currentTime)
rrs.mu.Unlock()
return dst
}

View file

@ -103,7 +103,7 @@ func createBenchTable(b *testing.B, path string, startTimestamp int64, rowsPerIn
func benchmarkTableSearch(b *testing.B, rowsCount, tsidsCount, tsidsSearch int) {
startTimestamp := timestampFromTime(time.Now()) - 365*24*3600*1000
rowsPerInsert := getMaxRawRowsPerShard()
rowsPerInsert := maxRawRowsPerShard
tb, strg := openBenchTable(b, startTimestamp, rowsPerInsert, rowsCount, tsidsCount)
tr := TimeRange{