mirror of
https://github.com/VictoriaMetrics/VictoriaMetrics.git
synced 2024-11-21 14:44:00 +00:00
app/vmselect/promql: add histogram
aggregate function, which is useful for building heatmaps from multiple time series
This commit is contained in:
parent
e70f543321
commit
8bb254d960
4 changed files with 182 additions and 29 deletions
|
@ -9,6 +9,7 @@ import (
|
|||
|
||||
"github.com/VictoriaMetrics/VictoriaMetrics/lib/logger"
|
||||
"github.com/VictoriaMetrics/VictoriaMetrics/lib/storage"
|
||||
"github.com/VictoriaMetrics/metrics"
|
||||
)
|
||||
|
||||
var aggrFuncs = map[string]aggrFunc{
|
||||
|
@ -26,11 +27,12 @@ var aggrFuncs = map[string]aggrFunc{
|
|||
"quantile": aggrFuncQuantile,
|
||||
|
||||
// Extended PromQL funcs
|
||||
"median": aggrFuncMedian,
|
||||
"limitk": aggrFuncLimitK,
|
||||
"distinct": newAggrFunc(aggrFuncDistinct),
|
||||
"sum2": newAggrFunc(aggrFuncSum2),
|
||||
"geomean": newAggrFunc(aggrFuncGeomean),
|
||||
"median": aggrFuncMedian,
|
||||
"limitk": aggrFuncLimitK,
|
||||
"distinct": newAggrFunc(aggrFuncDistinct),
|
||||
"sum2": newAggrFunc(aggrFuncSum2),
|
||||
"geomean": newAggrFunc(aggrFuncGeomean),
|
||||
"histogram": newAggrFunc(aggrFuncHistogram),
|
||||
}
|
||||
|
||||
type aggrFunc func(afa *aggrFuncArg) ([]*timeseries, error)
|
||||
|
@ -184,6 +186,37 @@ func aggrFuncGeomean(tss []*timeseries) []*timeseries {
|
|||
return tss[:1]
|
||||
}
|
||||
|
||||
func aggrFuncHistogram(tss []*timeseries) []*timeseries {
|
||||
m := make(map[string]*timeseries)
|
||||
for i := range tss[0].Values {
|
||||
var h metrics.Histogram
|
||||
for _, ts := range tss {
|
||||
v := ts.Values[i]
|
||||
h.Update(v)
|
||||
}
|
||||
h.VisitNonZeroBuckets(func(vmrange string, count uint64) {
|
||||
ts := m[vmrange]
|
||||
if ts == nil {
|
||||
ts = ×eries{}
|
||||
ts.CopyFromShallowTimestamps(tss[0])
|
||||
ts.MetricName.RemoveTag("vmrange")
|
||||
ts.MetricName.AddTag("vmrange", vmrange)
|
||||
values := ts.Values
|
||||
for k := range values {
|
||||
values[k] = 0
|
||||
}
|
||||
m[vmrange] = ts
|
||||
}
|
||||
ts.Values[i] = float64(count)
|
||||
})
|
||||
}
|
||||
rvs := make([]*timeseries, 0, len(m))
|
||||
for _, ts := range m {
|
||||
rvs = append(rvs, ts)
|
||||
}
|
||||
return vmrangeBucketsToLE(rvs)
|
||||
}
|
||||
|
||||
func aggrFuncMin(tss []*timeseries) []*timeseries {
|
||||
if len(tss) == 1 {
|
||||
// Fast path - nothing to min.
|
||||
|
|
|
@ -110,7 +110,7 @@ func timeseriesToResult(tss []*timeseries, maySort bool) ([]netstorage.Result, e
|
|||
for i, ts := range tss {
|
||||
bb.B = marshalMetricNameSorted(bb.B[:0], &ts.MetricName)
|
||||
if _, ok := m[string(bb.B)]; ok {
|
||||
return nil, fmt.Errorf(`duplicate output timeseries: %s%s`, ts.MetricName.MetricGroup, stringMetricName(&ts.MetricName))
|
||||
return nil, fmt.Errorf(`duplicate output timeseries: %s`, stringMetricName(&ts.MetricName))
|
||||
}
|
||||
m[string(bb.B)] = struct{}{}
|
||||
|
||||
|
|
|
@ -2459,12 +2459,12 @@ func TestExecSuccess(t *testing.T) {
|
|||
t.Run(`prometheus_buckets(missing-vmrange)`, func(t *testing.T) {
|
||||
t.Parallel()
|
||||
q := `sort(prometheus_buckets((
|
||||
alias(label_set(time()/20, "foo", "bar", "le", "0.2"), "xxx"),
|
||||
alias(label_set(time()/20, "foo", "bar", "le", "0.2"), "xyz"),
|
||||
alias(label_set(time()/100, "foo", "bar", "vmrange", "foobar"), "xxx"),
|
||||
alias(label_set(time()/100, "foo", "bar", "vmrange", "30...foobar"), "xxx"),
|
||||
alias(label_set(time()/100, "foo", "bar", "vmrange", "30...40"), "xxx"),
|
||||
alias(label_set(time()/80, "foo", "bar", "vmrange", "0...900", "le", "54"), "yyy"),
|
||||
alias(label_set(time()/40, "foo", "bar", "vmrange", "900...1000", "le", "2343"), "yyy"),
|
||||
alias(label_set(time()/40, "foo", "bar", "vmrange", "900...+Inf", "le", "2343"), "yyy"),
|
||||
)))`
|
||||
r1 := netstorage.Result{
|
||||
MetricName: metricNameExpected,
|
||||
|
@ -2500,10 +2500,10 @@ func TestExecSuccess(t *testing.T) {
|
|||
}
|
||||
r3 := netstorage.Result{
|
||||
MetricName: metricNameExpected,
|
||||
Values: []float64{12.5, 15, 17.5, 20, 22.5, 25},
|
||||
Values: []float64{10, 12, 14, 16, 18, 20},
|
||||
Timestamps: timestampsExpected,
|
||||
}
|
||||
r3.MetricName.MetricGroup = []byte("yyy")
|
||||
r3.MetricName.MetricGroup = []byte("xxx")
|
||||
r3.MetricName.Tags = []storage.Tag{
|
||||
{
|
||||
Key: []byte("foo"),
|
||||
|
@ -2511,12 +2511,12 @@ func TestExecSuccess(t *testing.T) {
|
|||
},
|
||||
{
|
||||
Key: []byte("le"),
|
||||
Value: []byte("900"),
|
||||
Value: []byte("+Inf"),
|
||||
},
|
||||
}
|
||||
r4 := netstorage.Result{
|
||||
MetricName: metricNameExpected,
|
||||
Values: []float64{37.5, 45, 52.5, 60, 67.5, 75},
|
||||
Values: []float64{12.5, 15, 17.5, 20, 22.5, 25},
|
||||
Timestamps: timestampsExpected,
|
||||
}
|
||||
r4.MetricName.MetricGroup = []byte("yyy")
|
||||
|
@ -2527,16 +2527,32 @@ func TestExecSuccess(t *testing.T) {
|
|||
},
|
||||
{
|
||||
Key: []byte("le"),
|
||||
Value: []byte("1000"),
|
||||
Value: []byte("900"),
|
||||
},
|
||||
}
|
||||
r5 := netstorage.Result{
|
||||
MetricName: metricNameExpected,
|
||||
Values: []float64{37.5, 45, 52.5, 60, 67.5, 75},
|
||||
Timestamps: timestampsExpected,
|
||||
}
|
||||
r5.MetricName.MetricGroup = []byte("yyy")
|
||||
r5.MetricName.Tags = []storage.Tag{
|
||||
{
|
||||
Key: []byte("foo"),
|
||||
Value: []byte("bar"),
|
||||
},
|
||||
{
|
||||
Key: []byte("le"),
|
||||
Value: []byte("+Inf"),
|
||||
},
|
||||
}
|
||||
r6 := netstorage.Result{
|
||||
MetricName: metricNameExpected,
|
||||
Values: []float64{50, 60, 70, 80, 90, 100},
|
||||
Timestamps: timestampsExpected,
|
||||
}
|
||||
r5.MetricName.MetricGroup = []byte("xxx")
|
||||
r5.MetricName.Tags = []storage.Tag{
|
||||
r6.MetricName.MetricGroup = []byte("xyz")
|
||||
r6.MetricName.Tags = []storage.Tag{
|
||||
{
|
||||
Key: []byte("foo"),
|
||||
Value: []byte("bar"),
|
||||
|
@ -2546,7 +2562,7 @@ func TestExecSuccess(t *testing.T) {
|
|||
Value: []byte("0.2"),
|
||||
},
|
||||
}
|
||||
resultExpected := []netstorage.Result{r1, r2, r3, r4, r5}
|
||||
resultExpected := []netstorage.Result{r1, r2, r3, r4, r5, r6}
|
||||
f(q, resultExpected)
|
||||
})
|
||||
t.Run(`prometheus_buckets(valid)`, func(t *testing.T) {
|
||||
|
@ -2674,6 +2690,99 @@ func TestExecSuccess(t *testing.T) {
|
|||
resultExpected := []netstorage.Result{r}
|
||||
f(q, resultExpected)
|
||||
})
|
||||
t.Run(`histogram(scalar)`, func(t *testing.T) {
|
||||
t.Parallel()
|
||||
q := `histogram(123)`
|
||||
r1 := netstorage.Result{
|
||||
MetricName: metricNameExpected,
|
||||
Values: []float64{0, 0, 0, 0, 0, 0},
|
||||
Timestamps: timestampsExpected,
|
||||
}
|
||||
r1.MetricName.Tags = []storage.Tag{
|
||||
{
|
||||
Key: []byte("le"),
|
||||
Value: []byte("1e2"),
|
||||
},
|
||||
}
|
||||
r2 := netstorage.Result{
|
||||
MetricName: metricNameExpected,
|
||||
Values: []float64{1, 1, 1, 1, 1, 1},
|
||||
Timestamps: timestampsExpected,
|
||||
}
|
||||
r2.MetricName.Tags = []storage.Tag{
|
||||
{
|
||||
Key: []byte("le"),
|
||||
Value: []byte("2e2"),
|
||||
},
|
||||
}
|
||||
r3 := netstorage.Result{
|
||||
MetricName: metricNameExpected,
|
||||
Values: []float64{1, 1, 1, 1, 1, 1},
|
||||
Timestamps: timestampsExpected,
|
||||
}
|
||||
r3.MetricName.Tags = []storage.Tag{
|
||||
{
|
||||
Key: []byte("le"),
|
||||
Value: []byte("+Inf"),
|
||||
},
|
||||
}
|
||||
resultExpected := []netstorage.Result{r1, r2, r3}
|
||||
f(q, resultExpected)
|
||||
})
|
||||
t.Run(`histogram(vector)`, func(t *testing.T) {
|
||||
t.Parallel()
|
||||
q := `sort(histogram((
|
||||
label_set(1, "foo", "bar"),
|
||||
label_set(1.5, "xx", "yy"),
|
||||
alias(1.9, "foobar"),
|
||||
)))`
|
||||
r1 := netstorage.Result{
|
||||
MetricName: metricNameExpected,
|
||||
Values: []float64{0, 0, 0, 0, 0, 0},
|
||||
Timestamps: timestampsExpected,
|
||||
}
|
||||
r1.MetricName.Tags = []storage.Tag{
|
||||
{
|
||||
Key: []byte("le"),
|
||||
Value: []byte("9e-1"),
|
||||
},
|
||||
}
|
||||
r2 := netstorage.Result{
|
||||
MetricName: metricNameExpected,
|
||||
Values: []float64{1, 1, 1, 1, 1, 1},
|
||||
Timestamps: timestampsExpected,
|
||||
}
|
||||
r2.MetricName.Tags = []storage.Tag{
|
||||
{
|
||||
Key: []byte("le"),
|
||||
Value: []byte("1"),
|
||||
},
|
||||
}
|
||||
r3 := netstorage.Result{
|
||||
MetricName: metricNameExpected,
|
||||
Values: []float64{3, 3, 3, 3, 3, 3},
|
||||
Timestamps: timestampsExpected,
|
||||
}
|
||||
r3.MetricName.Tags = []storage.Tag{
|
||||
{
|
||||
Key: []byte("le"),
|
||||
Value: []byte("2"),
|
||||
},
|
||||
}
|
||||
r4 := netstorage.Result{
|
||||
MetricName: metricNameExpected,
|
||||
Values: []float64{3, 3, 3, 3, 3, 3},
|
||||
Timestamps: timestampsExpected,
|
||||
}
|
||||
r4.MetricName.Tags = []storage.Tag{
|
||||
{
|
||||
Key: []byte("le"),
|
||||
Value: []byte("+Inf"),
|
||||
},
|
||||
}
|
||||
resultExpected := []netstorage.Result{r1, r2, r3, r4}
|
||||
f(q, resultExpected)
|
||||
})
|
||||
t.Run(`avg(scalar) wiTHout (xx, yy)`, func(t *testing.T) {
|
||||
t.Parallel()
|
||||
q := `avg wiTHout (xx, yy) (123)`
|
||||
|
@ -4520,7 +4629,7 @@ func testMetricNamesEqual(t *testing.T, mn, mnExpected *storage.MetricName, pos
|
|||
t.Fatalf(`unexpected tag key at #%d,%d; got %q; want %q`, pos, i, tag.Key, tagExpected.Key)
|
||||
}
|
||||
if string(tag.Value) != string(tagExpected.Value) {
|
||||
t.Fatalf(`unexpected tag value at #%d,%d; got %q; want %q`, pos, i, tag.Value, tagExpected.Value)
|
||||
t.Fatalf(`unexpected tag value for key %q at #%d,%d; got %q; want %q`, tag.Key, pos, i, tag.Value, tagExpected.Value)
|
||||
}
|
||||
}
|
||||
}
|
||||
|
|
|
@ -332,29 +332,40 @@ func vmrangeBucketsToLE(tss []*timeseries) []*timeseries {
|
|||
}
|
||||
|
||||
// Convert `vmrange` label in each group of time series to `le` label.
|
||||
copyTS := func(src *timeseries, leStr string) *timeseries {
|
||||
var ts timeseries
|
||||
ts.CopyFromShallowTimestamps(src)
|
||||
values := ts.Values
|
||||
for i := range values {
|
||||
values[i] = 0
|
||||
}
|
||||
ts.MetricName.RemoveTag("le")
|
||||
ts.MetricName.AddTag("le", leStr)
|
||||
return &ts
|
||||
}
|
||||
for _, xss := range m {
|
||||
sort.Slice(xss, func(i, j int) bool { return xss[i].end < xss[j].end })
|
||||
xssNew := make([]x, 0, len(xss))
|
||||
endStrPrev := "0"
|
||||
xssNew := make([]x, 0, len(xss)+2)
|
||||
var xsPrev x
|
||||
for _, xs := range xss {
|
||||
ts := xs.ts
|
||||
if xs.startStr != endStrPrev {
|
||||
var tsDummy timeseries
|
||||
tsDummy.CopyFromShallowTimestamps(ts)
|
||||
values := tsDummy.Values
|
||||
for i := range values {
|
||||
values[i] = 0
|
||||
}
|
||||
tsDummy.MetricName.AddTag("le", xs.startStr)
|
||||
if xs.start != xsPrev.end {
|
||||
xssNew = append(xssNew, x{
|
||||
endStr: xs.startStr,
|
||||
end: xs.start,
|
||||
ts: &tsDummy,
|
||||
ts: copyTS(ts, xs.startStr),
|
||||
})
|
||||
}
|
||||
ts.MetricName.AddTag("le", xs.endStr)
|
||||
xssNew = append(xssNew, xs)
|
||||
endStrPrev = xs.endStr
|
||||
xsPrev = xs
|
||||
}
|
||||
if !math.IsInf(xsPrev.end, 1) {
|
||||
xssNew = append(xssNew, x{
|
||||
endStr: "+Inf",
|
||||
end: math.Inf(1),
|
||||
ts: copyTS(xsPrev.ts, "+Inf"),
|
||||
})
|
||||
}
|
||||
xss = xssNew
|
||||
for i := range xss[0].ts.Values {
|
||||
|
|
Loading…
Reference in a new issue