mirror of
https://github.com/VictoriaMetrics/VictoriaMetrics.git
synced 2025-01-10 15:14:09 +00:00
app/vmselect/promql: use linear regression in deriv
func like Prometheus does
Updates https://github.com/VictoriaMetrics/VictoriaMetrics/issues/73
This commit is contained in:
parent
f334908c22
commit
98eafdbd58
2 changed files with 52 additions and 33 deletions
|
@ -19,13 +19,13 @@ var rollupFuncs = map[string]newRollupFunc{
|
|||
// See funcs accepting range-vector on https://prometheus.io/docs/prometheus/latest/querying/functions/ .
|
||||
"changes": newRollupFuncOneArg(rollupChanges),
|
||||
"delta": newRollupFuncOneArg(rollupDelta),
|
||||
"deriv": newRollupFuncOneArg(rollupDeriv),
|
||||
"deriv": newRollupFuncOneArg(rollupDerivSlow),
|
||||
"holt_winters": newRollupHoltWinters,
|
||||
"idelta": newRollupFuncOneArg(rollupIdelta),
|
||||
"increase": newRollupFuncOneArg(rollupDelta), // + rollupFuncsRemoveCounterResets
|
||||
"irate": newRollupFuncOneArg(rollupIderiv), // + rollupFuncsRemoveCounterResets
|
||||
"predict_linear": newRollupPredictLinear,
|
||||
"rate": newRollupFuncOneArg(rollupDeriv), // + rollupFuncsRemoveCounterResets
|
||||
"rate": newRollupFuncOneArg(rollupDerivFast), // + rollupFuncsRemoveCounterResets
|
||||
"resets": newRollupFuncOneArg(rollupResets),
|
||||
"avg_over_time": newRollupFuncOneArg(rollupAvg),
|
||||
"min_over_time": newRollupFuncOneArg(rollupMin),
|
||||
|
@ -341,41 +341,53 @@ func newRollupPredictLinear(args []interface{}) (rollupFunc, error) {
|
|||
return nil, err
|
||||
}
|
||||
rf := func(rfa *rollupFuncArg) float64 {
|
||||
// There is no need in handling NaNs here, since they must be cleanup up
|
||||
// before calling rollup funcs.
|
||||
values := rfa.values
|
||||
timestamps := rfa.timestamps
|
||||
if len(values) == 0 {
|
||||
v, k := linearRegression(rfa)
|
||||
if math.IsNaN(v) {
|
||||
return nan
|
||||
}
|
||||
|
||||
// See https://en.wikipedia.org/wiki/Simple_linear_regression#Numerical_example
|
||||
// TODO: determine whether this shit really works.
|
||||
tFirst := rfa.prevTimestamp
|
||||
vSum := rfa.prevValue
|
||||
if math.IsNaN(rfa.prevValue) {
|
||||
tFirst = timestamps[0]
|
||||
vSum = 0
|
||||
}
|
||||
tSum := float64(0)
|
||||
tvSum := float64(0)
|
||||
ttSum := float64(0)
|
||||
for i, v := range values {
|
||||
dt := float64(timestamps[i]-tFirst) * 1e-3
|
||||
vSum += v
|
||||
tSum += dt
|
||||
tvSum += dt * v
|
||||
ttSum += dt * dt
|
||||
}
|
||||
n := float64(len(values))
|
||||
k := (n*tvSum - tSum*vSum) / (n*ttSum - tSum*tSum)
|
||||
v := (vSum - k*tSum) / n
|
||||
sec := secs[rfa.idx]
|
||||
return v + k*sec
|
||||
}
|
||||
return rf, nil
|
||||
}
|
||||
|
||||
func linearRegression(rfa *rollupFuncArg) (float64, float64) {
|
||||
// There is no need in handling NaNs here, since they must be cleanup up
|
||||
// before calling rollup funcs.
|
||||
values := rfa.values
|
||||
timestamps := rfa.timestamps
|
||||
if len(values) == 0 {
|
||||
return nan, nan
|
||||
}
|
||||
|
||||
// See https://en.wikipedia.org/wiki/Simple_linear_regression#Numerical_example
|
||||
tFirst := rfa.prevTimestamp
|
||||
vSum := rfa.prevValue
|
||||
n := 1.0
|
||||
if math.IsNaN(rfa.prevValue) {
|
||||
tFirst = timestamps[0]
|
||||
vSum = 0
|
||||
n = 0
|
||||
}
|
||||
tSum := float64(0)
|
||||
tvSum := float64(0)
|
||||
ttSum := float64(0)
|
||||
for i, v := range values {
|
||||
dt := float64(timestamps[i]-tFirst) * 1e-3
|
||||
vSum += v
|
||||
tSum += dt
|
||||
tvSum += dt * v
|
||||
ttSum += dt * dt
|
||||
}
|
||||
n += float64(len(values))
|
||||
if n == 1 {
|
||||
return vSum, 0
|
||||
}
|
||||
k := (n*tvSum - tSum*vSum) / (n*ttSum - tSum*tSum)
|
||||
v := (vSum - k*tSum) / n
|
||||
return v, k
|
||||
}
|
||||
|
||||
func newRollupQuantile(args []interface{}) (rollupFunc, error) {
|
||||
if err := expectRollupArgsNum(args, 2); err != nil {
|
||||
return nil, err
|
||||
|
@ -539,7 +551,14 @@ func rollupIdelta(rfa *rollupFuncArg) float64 {
|
|||
return lastValue - values[len(values)-1]
|
||||
}
|
||||
|
||||
func rollupDeriv(rfa *rollupFuncArg) float64 {
|
||||
func rollupDerivSlow(rfa *rollupFuncArg) float64 {
|
||||
// Use linear regression like Prometheus does.
|
||||
// See https://github.com/VictoriaMetrics/VictoriaMetrics/issues/73
|
||||
_, k := linearRegression(rfa)
|
||||
return k
|
||||
}
|
||||
|
||||
func rollupDerivFast(rfa *rollupFuncArg) float64 {
|
||||
// There is no need in handling NaNs here, since they must be cleanup up
|
||||
// before calling rollup funcs.
|
||||
values := rfa.values
|
||||
|
|
|
@ -192,7 +192,7 @@ func TestRollupNewRollupFuncSuccess(t *testing.T) {
|
|||
f("default_rollup", 34)
|
||||
f("changes", 10)
|
||||
f("delta", -89)
|
||||
f("deriv", -712)
|
||||
f("deriv", -266.85860231406065)
|
||||
f("idelta", 0)
|
||||
f("increase", 275)
|
||||
f("irate", 0)
|
||||
|
@ -543,7 +543,7 @@ func TestRollupFuncsNoWindow(t *testing.T) {
|
|||
})
|
||||
t.Run("deriv", func(t *testing.T) {
|
||||
rc := rollupConfig{
|
||||
Func: rollupDeriv,
|
||||
Func: rollupDerivSlow,
|
||||
Start: 0,
|
||||
End: 160,
|
||||
Step: 40,
|
||||
|
@ -551,7 +551,7 @@ func TestRollupFuncsNoWindow(t *testing.T) {
|
|||
}
|
||||
rc.Timestamps = getTimestamps(rc.Start, rc.End, rc.Step)
|
||||
values := rc.Do(nil, testValues, testTimestamps)
|
||||
valuesExpected := []float64{nan, -3290.3225806451615, -204.54545454545456, 550, 0}
|
||||
valuesExpected := []float64{nan, -2879.310344827587, 558.0608793686592, 422.84569138276544, 0}
|
||||
timestampsExpected := []int64{0, 40, 80, 120, 160}
|
||||
testRowsEqual(t, values, rc.Timestamps, valuesExpected, timestampsExpected)
|
||||
})
|
||||
|
|
Loading…
Reference in a new issue