Vmanomaly QuickStart (#5800)

* first edit

* typo 1

* typo 2

* fixes 3

* fixes 4

* fixes 5

* fixes, cross links

* v1.10 config

* models why, self-monitoring fix

* config next steps

* fixes

* minor fix

(cherry picked from commit b2baf7d472)
This commit is contained in:
Daria Karavaieva 2024-02-20 15:20:57 +01:00 committed by hagen1778
parent c065287757
commit a68518c0e0
No known key found for this signature in database
GPG key ID: 3BF75F3741CA9640
4 changed files with 128 additions and 8 deletions

View file

@ -136,7 +136,9 @@ optionally preserving labels).
## Usage
> Starting from [v1.5.0](/anomaly-detection/CHANGELOG.html#v150), vmanomaly requires a license key to run. You can obtain a trial license key [here](https://victoriametrics.com/products/enterprise/trial/).
> See [Getting started guide](anomaly-detection/guides/guide-vmanomaly-vmalert.html).
> See [Quickstart](/anomaly-detection/QuickStart.html).
> See [Integration guide: vmanomaly and vmalert](anomaly-detection/guides/guide-vmanomaly-vmalert.html).
### Config file
There are 4 required sections in config file:
@ -218,7 +220,7 @@ This will expose metrics at `http://0.0.0.0:8080/metrics` page.
To use *vmanomaly* you need to pull docker image:
```sh
docker pull victoriametrics/vmanomaly:v1.10.0
docker pull victoriametrics/vmanomaly:latest
```
> Note: please check what is latest release in [CHANGELOG](/anomaly-detection/CHANGELOG.html)
@ -228,16 +230,18 @@ docker pull victoriametrics/vmanomaly:v1.10.0
You can put a tag on it for your convinience:
```sh
docker image tag victoriametrics/vmanomaly:v1.10.0 vmanomaly
docker image tag victoriametrics/vmanomaly:latest vmanomaly
```
Here is an example of how to run *vmanomaly* docker container with [license file](#licensing):
```sh
export YOUR_LICENSE_FILE_PATH=path/to/license/file
export YOUR_CONFIG_FILE_PATH=path/to/config/file
docker run -it --net [YOUR_NETWORK] \
-v [YOUR_LICENSE_FILE_PATH]:/license.txt \
-v [YOUR_CONFIG_FILE_PATH]:/config.yml \
-v YOUR_LICENSE_FILE_PATH:/license \
-v YOUR_CONFIG_FILE_PATH:/config.yml \
vmanomaly /config.yml \
--license-file=/license.txt
--license-file=/license
```
### Licensing

View file

@ -0,0 +1,115 @@
---
sort: 1
weight: 1
title: VictoriaMetrics Anomaly Detection Quick Start
menu:
docs:
parent: "anomaly-detection"
weight: 1
title: Quick Start
aliases:
- /anomaly-detection/QuickStart.html
---
# VictoriaMetrics Anomaly Detection Quick Start
For service introduction visit [README](https://docs.victoriametrics.com/anomaly-detection/) page
and [Overview](https://docs.victoriametrics.com/anomaly-detection/overview.html) of how `vmanomaly` works.
## How to install and run `vmanomaly`
> To run `vmanomaly` you need to have VictoriaMetrics Enterprise license. You can get a trial license key [**here**](https://victoriametrics.com/products/enterprise/trial/index.html).
The following options are available:
- [To run Docker image](#docker-image)
- [To run in Kubernetes with Helm charts](#helm-charts)
### Docker
> To run `vmanomaly` you need to have a VictoriaMetrics Enterprise [licence](https://victoriametrics.com/products/enterprise/) or request a trial [here](https://victoriametrics.com/products/enterprise/trial/index.html).
Below are the steps to get `vmanomaly` up and running inside a Docker container:
1. Pull Docker image:
```sh
docker pull victoriametrics/vmanomaly:latest
```
2. (Optional step) tag the `vmanomaly` Docker image:
```sh
docker image tag victoriametrics/vmanomaly:latest vmanomaly
```
3. Start the `vmanomaly` Docker container with a *license file*, use the command below.
**Make sure to replace `YOUR_LICENSE_FILE_PATH`, and `YOUR_CONFIG_FILE_PATH` with your specific details**:
```sh
export YOUR_LICENSE_FILE_PATH=path/to/license/file
export YOUR_CONFIG_FILE_PATH=path/to/config/file
docker run -it -v $YOUR_LICENSE_FILE_PATH:/license \
-v $YOUR_CONFIG_FILE_PATH:/config.yml \
vmanomaly /config.yml \
--license-file=/license
```
See also:
- You can verify licence online and offline. See the details [here](https://docs.victoriametrics.com/anomaly-detection/overview/#licensing).
- [How to configure `vmanomaly`](#how-to-configure-vmanomaly)
### Kubernetes with Helm charts
You can run `vmanomaly` in Kubernetes environment
with [these Helm charts](https://github.com/VictoriaMetrics/helm-charts/blob/master/charts/victoria-metrics-anomaly/README.md).
## How to configure vmanomaly
To run `vmanomaly` you need to set up configuration file in `yaml` format.
Here is an example of config file that will run [Facebook Prophet](https://facebook.github.io/prophet/) model, that will be retrained every 2 hours on 14 days of previous data. It will generate inference (including `anomaly_score` metric) every 1 minute.
```yaml
scheduler:
infer_every: "1m"
fit_every: "2h"
fit_window: "14d"
models:
prophet_model:
class: "model.prophet.ProphetModel"
args:
interval_width: 0.98
reader:
datasource_url: "http://victoriametrics:8428/" # [YOUR_DATASOURCE_URL]
sampling_period: "1m"
queries:
# define your queries with MetricsQL - https://docs.victoriametrics.com/metricsql/
cache: "sum(rate(vm_cache_entries))"
writer:
datasource_url: "http://victoriametrics:8428/" # [YOUR_DATASOURCE_URL]
```
Next steps:
- Define how often to run and make inferences in the [scheduler](https://docs.victoriametrics.com/anomaly-detection/components/scheduler/) section of a config file.
- Setup the datasource to read data from in the [reader](https://docs.victoriametrics.com/anomaly-detection/components/reader/) section.
- Specify where and how to store anomaly detection metrics in the [writer](https://docs.victoriametrics.com/anomaly-detection/components/writer/) section.
- Configure built-in models parameters according to your needs in the [models](https://docs.victoriametrics.com/anomaly-detection/components/models/) section.
- Integrate your [custom models]((https://docs.victoriametrics.com/anomaly-detection/components/models/#custom-model-guide)) with `vmanomaly`.
- Define queries for input data use [MetricsQL](https://docs.victoriametrics.com/metricsql/).
## Check also
Here are other materials that you might find useful:
- [Guide: Anomaly Detection and Alerting Setup](https://docs.victoriametrics.com/anomaly-detection/guides/guide-vmanomaly-vmalert/)
- [FAQ](https://docs.victoriametrics.com/anomaly-detection/faq/)
- [Changelog](https://docs.victoriametrics.com/anomaly-detection/changelog/)
- [Anomaly Detection Blog](https://victoriametrics.com/blog/tags/anomaly-detection/)

View file

@ -14,6 +14,7 @@ In the dynamic and complex world of system monitoring, VictoriaMetrics Anomaly D
## Practical Guides and Installation
Begin your VictoriaMetrics Anomaly Detection journey with ease using our guides and installation instructions:
- **Quickstart**: Check out how to get `vmanomaly` up and running [here](/anomaly-detection/QuickStart.html).
- **Overview**: Find out how `vmanomaly` service operates [here](/anomaly-detection/Overview.html)
- **Integration**: Integrate anomaly detection into your observability ecosystem. Get started [**here**](/anomaly-detection/guides/guide-vmanomaly-vmalert.html).

View file

@ -446,9 +446,9 @@ The default metrics produced by vmanomaly include:
**Important**: Be aware that if `NaN` (Not a Number) or `Inf` (Infinity) values are present in the input data during `infer` model calls, the model will produce `NaN` as the `anomaly_score` for these particular instances.
## Healthcheck metrics
## `vmanomaly` monitoring metrics
Each model exposes [several healthchecks metrics](/anomaly-detection/components/monitoring.html#models-behaviour-metrics) to its `health_path` endpoint:
Each model exposes [several monitoring metrics](/anomaly-detection/components/monitoring.html#models-behaviour-metrics) to its `health_path` endpoint:
## Custom Model Guide