mirror of
https://github.com/VictoriaMetrics/VictoriaMetrics.git
synced 2025-01-10 15:14:09 +00:00
app/vmselect/promql: add absent_over_time(m[d])
func similar to the function in Prometheus 2.16
See https://github.com/prometheus/prometheus/issues/2882
This commit is contained in:
parent
a8360d04c0
commit
b1ded7cf9a
5 changed files with 93 additions and 25 deletions
|
@ -481,6 +481,13 @@ func evalRollupFuncWithSubquery(ec *EvalConfig, name string, rf rollupFunc, re *
|
|||
if err != nil {
|
||||
return nil, err
|
||||
}
|
||||
if len(tssSQ) == 0 {
|
||||
if name == "absent_over_time" {
|
||||
tss := evalNumber(ec, 1)
|
||||
return tss, nil
|
||||
}
|
||||
return nil, nil
|
||||
}
|
||||
|
||||
sharedTimestamps := getTimestamps(ec.Start, ec.End, ec.Step)
|
||||
preFunc, rcs := getRollupConfigs(name, rf, ec.Start, ec.End, ec.Step, window, ec.LookbackDelta, sharedTimestamps)
|
||||
|
@ -606,10 +613,14 @@ func evalRollupFuncWithMetricExpr(ec *EvalConfig, name string, rf rollupFunc,
|
|||
rssLen := rss.Len()
|
||||
if rssLen == 0 {
|
||||
rss.Cancel()
|
||||
var tss []*timeseries
|
||||
if name == "absent_over_time" {
|
||||
tss = getAbsentTimeseries(ec, me)
|
||||
}
|
||||
// Add missing points until ec.End.
|
||||
// Do not cache the result, since missing points
|
||||
// may be backfilled in the future.
|
||||
tss := mergeTimeseries(tssCached, nil, start, ec)
|
||||
tss = mergeTimeseries(tssCached, tss, start, ec)
|
||||
return tss, nil
|
||||
}
|
||||
sharedTimestamps := getTimestamps(start, ec.End, ec.Step)
|
||||
|
|
|
@ -532,6 +532,12 @@ func TestExecSuccess(t *testing.T) {
|
|||
resultExpected := []netstorage.Result{}
|
||||
f(q, resultExpected)
|
||||
})
|
||||
t.Run("absent_over_time(time())", func(t *testing.T) {
|
||||
t.Parallel()
|
||||
q := `absent_over_time(time())`
|
||||
resultExpected := []netstorage.Result{}
|
||||
f(q, resultExpected)
|
||||
})
|
||||
t.Run("absent(123)", func(t *testing.T) {
|
||||
t.Parallel()
|
||||
q := `absent(123)`
|
||||
|
@ -555,6 +561,17 @@ func TestExecSuccess(t *testing.T) {
|
|||
resultExpected := []netstorage.Result{r}
|
||||
f(q, resultExpected)
|
||||
})
|
||||
t.Run("absent_over_time(nan[200s:10s])", func(t *testing.T) {
|
||||
t.Parallel()
|
||||
q := `absent_over_time(nan[200s:10s])`
|
||||
r := netstorage.Result{
|
||||
MetricName: metricNameExpected,
|
||||
Values: []float64{1, 1, 1, 1, 1, 1},
|
||||
Timestamps: timestampsExpected,
|
||||
}
|
||||
resultExpected := []netstorage.Result{r}
|
||||
f(q, resultExpected)
|
||||
})
|
||||
t.Run(`absent(scalar(multi-timeseries))`, func(t *testing.T) {
|
||||
t.Parallel()
|
||||
q := `
|
||||
|
@ -571,6 +588,34 @@ func TestExecSuccess(t *testing.T) {
|
|||
resultExpected := []netstorage.Result{r}
|
||||
f(q, resultExpected)
|
||||
})
|
||||
t.Run(`absent_over_time(scalar(multi-timeseries))`, func(t *testing.T) {
|
||||
t.Parallel()
|
||||
q := `
|
||||
absent_over_time(label_set(scalar(1 or label_set(2, "xx", "foo")), "yy", "foo"))`
|
||||
r := netstorage.Result{
|
||||
MetricName: metricNameExpected,
|
||||
Values: []float64{1, 1, 1, 1, 1, 1},
|
||||
Timestamps: timestampsExpected,
|
||||
}
|
||||
r.MetricName.Tags = []storage.Tag{{
|
||||
Key: []byte("yy"),
|
||||
Value: []byte("foo"),
|
||||
}}
|
||||
resultExpected := []netstorage.Result{r}
|
||||
f(q, resultExpected)
|
||||
})
|
||||
t.Run(`absent(time() > 1500)`, func(t *testing.T) {
|
||||
t.Parallel()
|
||||
q := `
|
||||
absent(time() > 1500)`
|
||||
r := netstorage.Result{
|
||||
MetricName: metricNameExpected,
|
||||
Values: []float64{1, 1, 1, nan, nan, nan},
|
||||
Timestamps: timestampsExpected,
|
||||
}
|
||||
resultExpected := []netstorage.Result{r}
|
||||
f(q, resultExpected)
|
||||
})
|
||||
t.Run("clamp_max(time(), 1400)", func(t *testing.T) {
|
||||
t.Parallel()
|
||||
q := `clamp_max(time(), 1400)`
|
||||
|
@ -3177,11 +3222,11 @@ func TestExecSuccess(t *testing.T) {
|
|||
resultExpected := []netstorage.Result{r}
|
||||
f(q, resultExpected)
|
||||
})
|
||||
t.Run(`topk_min(histogram_over_time)`, func(t *testing.T) {
|
||||
t.Run(`topk_max(histogram_over_time)`, func(t *testing.T) {
|
||||
t.Parallel()
|
||||
q := `topk_min(1, histogram_over_time(alias(label_set(rand(0)*1.3+1.1, "foo", "bar"), "xxx")[200s:5s]))`
|
||||
q := `topk_max(1, histogram_over_time(alias(label_set(rand(0)*1.3+1.1, "foo", "bar"), "xxx")[200s:5s]))`
|
||||
r := netstorage.Result{
|
||||
Values: []float64{14, 15, 12, 13, 15, 11},
|
||||
Values: []float64{13, 11, 16, 19, 13, 16},
|
||||
Timestamps: timestampsExpected,
|
||||
}
|
||||
r.MetricName.Tags = []storage.Tag{
|
||||
|
@ -3191,7 +3236,7 @@ func TestExecSuccess(t *testing.T) {
|
|||
},
|
||||
{
|
||||
Key: []byte("vmrange"),
|
||||
Value: []byte("2.0e0...2.5e0"),
|
||||
Value: []byte("1.5e0...2.0e0"),
|
||||
},
|
||||
}
|
||||
resultExpected := []netstorage.Result{r}
|
||||
|
|
|
@ -37,6 +37,7 @@ var rollupFuncs = map[string]newRollupFunc{
|
|||
"quantile_over_time": newRollupQuantile,
|
||||
"stddev_over_time": newRollupFuncOneArg(rollupStddev),
|
||||
"stdvar_over_time": newRollupFuncOneArg(rollupStdvar),
|
||||
"absent_over_time": newRollupFuncOneArg(rollupAbsent),
|
||||
|
||||
// Additional rollup funcs.
|
||||
"sum2_over_time": newRollupFuncOneArg(rollupSum2),
|
||||
|
@ -793,6 +794,13 @@ func rollupGeomean(rfa *rollupFuncArg) float64 {
|
|||
return math.Pow(p, 1/float64(len(values)))
|
||||
}
|
||||
|
||||
func rollupAbsent(rfa *rollupFuncArg) float64 {
|
||||
if len(rfa.values) == 0 {
|
||||
return 1
|
||||
}
|
||||
return nan
|
||||
}
|
||||
|
||||
func rollupCount(rfa *rollupFuncArg) float64 {
|
||||
// There is no need in handling NaNs here, since they must be cleaned up
|
||||
// before calling rollup funcs.
|
||||
|
|
|
@ -146,29 +146,10 @@ func transformAbsent(tfa *transformFuncArg) ([]*timeseries, error) {
|
|||
return nil, err
|
||||
}
|
||||
arg := args[0]
|
||||
|
||||
if len(arg) == 0 {
|
||||
// Copy tags from arg
|
||||
rvs := evalNumber(tfa.ec, 1)
|
||||
rv := rvs[0]
|
||||
me, ok := tfa.fe.Args[0].(*metricsql.MetricExpr)
|
||||
if !ok {
|
||||
return rvs, nil
|
||||
}
|
||||
tfs := toTagFilters(me.LabelFilters)
|
||||
for i := range tfs {
|
||||
tf := &tfs[i]
|
||||
if len(tf.Key) == 0 {
|
||||
continue
|
||||
}
|
||||
if tf.IsRegexp || tf.IsNegative {
|
||||
continue
|
||||
}
|
||||
rv.MetricName.AddTagBytes(tf.Key, tf.Value)
|
||||
}
|
||||
rvs := getAbsentTimeseries(tfa.ec, tfa.fe.Args[0])
|
||||
return rvs, nil
|
||||
}
|
||||
|
||||
for _, ts := range arg {
|
||||
ts.MetricName.ResetMetricGroup()
|
||||
for i, v := range ts.Values {
|
||||
|
@ -183,6 +164,28 @@ func transformAbsent(tfa *transformFuncArg) ([]*timeseries, error) {
|
|||
return arg, nil
|
||||
}
|
||||
|
||||
func getAbsentTimeseries(ec *EvalConfig, arg metricsql.Expr) []*timeseries {
|
||||
// Copy tags from arg
|
||||
rvs := evalNumber(ec, 1)
|
||||
rv := rvs[0]
|
||||
me, ok := arg.(*metricsql.MetricExpr)
|
||||
if !ok {
|
||||
return rvs
|
||||
}
|
||||
tfs := toTagFilters(me.LabelFilters)
|
||||
for i := range tfs {
|
||||
tf := &tfs[i]
|
||||
if len(tf.Key) == 0 {
|
||||
continue
|
||||
}
|
||||
if tf.IsRegexp || tf.IsNegative {
|
||||
continue
|
||||
}
|
||||
rv.MetricName.AddTagBytes(tf.Key, tf.Value)
|
||||
}
|
||||
return rvs
|
||||
}
|
||||
|
||||
func transformCeil(v float64) float64 {
|
||||
return math.Ceil(v)
|
||||
}
|
||||
|
|
|
@ -26,6 +26,7 @@ var rollupFuncs = map[string]bool{
|
|||
"quantile_over_time": true,
|
||||
"stddev_over_time": true,
|
||||
"stdvar_over_time": true,
|
||||
"absent_over_time": true,
|
||||
|
||||
// Additional rollup funcs.
|
||||
"default_rollup": true,
|
||||
|
|
Loading…
Reference in a new issue