mirror of
https://github.com/VictoriaMetrics/VictoriaMetrics.git
synced 2025-01-10 15:14:09 +00:00
docs: vmanomaly fix formatting and remove unnecessary elements
Signed-off-by: Artem Navoiev <tenmozes@gmail.com>
This commit is contained in:
parent
6370ae2d88
commit
f3364bbd8b
4 changed files with 15 additions and 12 deletions
|
@ -34,7 +34,6 @@ VM Anomaly Detection (`vmanomaly` hereinafter) models support 2 groups of parame
|
|||
* [Isolation forest (Multivariate)](#isolation-forest-multivariate)
|
||||
* [Custom model](#custom-model)
|
||||
|
||||
---
|
||||
## [ARIMA](https://en.wikipedia.org/wiki/Autoregressive_integrated_moving_average)
|
||||
Here we use ARIMA implementation from `statsmodels` [library](https://www.statsmodels.org/dev/generated/statsmodels.tsa.arima.model.ARIMA.html)
|
||||
|
||||
|
@ -68,9 +67,9 @@ model:
|
|||
args:
|
||||
trend: 'c'
|
||||
```
|
||||
|
||||
</div>
|
||||
|
||||
---
|
||||
## [Holt-Winters](https://en.wikipedia.org/wiki/Exponential_smoothing)
|
||||
Here we use Holt-Winters Exponential Smoothing implementation from `statsmodels` [library](https://www.statsmodels.org/dev/generated/statsmodels.tsa.holtwinters.ExponentialSmoothing.html). All parameters from this library can be passed to the model.
|
||||
|
||||
|
@ -109,11 +108,11 @@ model:
|
|||
seasonal: 'add'
|
||||
initialization_method: 'estimated'
|
||||
```
|
||||
|
||||
</div>
|
||||
|
||||
Resulting metrics of the model are described [here](#vmanomaly-output).
|
||||
|
||||
---
|
||||
## [Prophet](https://facebook.github.io/prophet/)
|
||||
Here we utilize the Facebook Prophet implementation, as detailed in their [library documentation](https://facebook.github.io/prophet/docs/quick_start.html#python-api). All parameters from this library are compatible and can be passed to the model.
|
||||
|
||||
|
@ -152,11 +151,11 @@ model:
|
|||
interval_width: 0.98
|
||||
country_holidays: 'US'
|
||||
```
|
||||
|
||||
</div>
|
||||
|
||||
Resulting metrics of the model are described [here](#vmanomaly-output)
|
||||
|
||||
---
|
||||
## [Rolling Quantile](https://en.wikipedia.org/wiki/Quantile)
|
||||
|
||||
*Parameters specific for vmanomaly*:
|
||||
|
@ -174,11 +173,11 @@ model:
|
|||
quantile: 0.9
|
||||
window_steps: 96
|
||||
```
|
||||
|
||||
</div>
|
||||
|
||||
Resulting metrics of the model are described [here](#vmanomaly-output).
|
||||
|
||||
---
|
||||
## [Seasonal Trend Decomposition](https://en.wikipedia.org/wiki/Seasonal_adjustment)
|
||||
Here we use Seasonal Decompose implementation from `statsmodels` [library](https://www.statsmodels.org/dev/generated/statsmodels.tsa.seasonal.seasonal_decompose.html). Parameters from this library can be passed to the model. Some parameters are specifically predefined in vmanomaly and can't be changed by user(`model`='additive', `two_sided`=False).
|
||||
|
||||
|
@ -190,6 +189,7 @@ Here we use Seasonal Decompose implementation from `statsmodels` [library](https
|
|||
|
||||
|
||||
*Config Example*
|
||||
|
||||
<div class="with-copy" markdown="1">
|
||||
|
||||
```yaml
|
||||
|
@ -197,6 +197,7 @@ model:
|
|||
class: "model.std.StdModel"
|
||||
period: 2
|
||||
```
|
||||
|
||||
</div>
|
||||
|
||||
Resulting metrics of the model are described [here](#vmanomaly-output).
|
||||
|
@ -206,7 +207,6 @@ Resulting metrics of the model are described [here](#vmanomaly-output).
|
|||
* `trend` - The trend component of the data series.
|
||||
* `seasonal` - The seasonal component of the data series.
|
||||
|
||||
---
|
||||
## [MAD (Median Absolute Deviation)](https://en.wikipedia.org/wiki/Median_absolute_deviation)
|
||||
The MAD model is a robust method for anomaly detection that is *less sensitive* to outliers in data compared to standard deviation-based models. It considers a point as an anomaly if the absolute deviation from the median is significantly large.
|
||||
|
||||
|
@ -216,6 +216,7 @@ The MAD model is a robust method for anomaly detection that is *less sensitive*
|
|||
* `threshold` (float, optional) - The threshold multiplier for the MAD to determine anomalies. Defaults to `2.5`. Higher values will identify fewer points as anomalies.
|
||||
|
||||
*Config Example*
|
||||
|
||||
<div class="with-copy" markdown="1">
|
||||
|
||||
```yaml
|
||||
|
@ -224,9 +225,10 @@ model:
|
|||
threshold: 2.5
|
||||
```
|
||||
|
||||
</div>
|
||||
|
||||
Resulting metrics of the model are described [here](#vmanomaly-output).
|
||||
|
||||
---
|
||||
## [Z-score](https://en.wikipedia.org/wiki/Standard_score)
|
||||
*Parameters specific for vmanomaly*:
|
||||
|
||||
|
@ -234,6 +236,7 @@ Resulting metrics of the model are described [here](#vmanomaly-output).
|
|||
* `z_threshold` (float, optional) - [standard score](https://en.wikipedia.org/wiki/Standard_score) for calculation boundaries and anomaly score. Defaults to `2.5`.
|
||||
|
||||
*Config Example*
|
||||
|
||||
<div class="with-copy" markdown="1">
|
||||
|
||||
```yaml
|
||||
|
@ -262,6 +265,7 @@ Here we use Isolation Forest implementation from `scikit-learn` [library](https:
|
|||
* `args` (dict, optional) - Inner model args (key-value pairs). See accepted params in [model documentation](https://scikit-learn.org/stable/modules/generated/sklearn.ensemble.IsolationForest.html). Defaults to empty (not provided). Example: {"random_state": 42, "n_estimators": 100}
|
||||
|
||||
*Config Example*
|
||||
|
||||
<div class="with-copy" markdown="1">
|
||||
|
||||
```yaml
|
||||
|
@ -274,11 +278,11 @@ model:
|
|||
# i.e. to assure reproducibility of produced results each time model is fit on the same input
|
||||
random_state: 42
|
||||
```
|
||||
|
||||
</div>
|
||||
|
||||
Resulting metrics of the model are described [here](#vmanomaly-output).
|
||||
|
||||
---
|
||||
## Custom model
|
||||
You can find a guide on setting up a custom model [here](./custom_model.md).
|
||||
|
||||
|
|
|
@ -53,7 +53,7 @@ Future updates will introduce additional readers, expanding the range of data so
|
|||
<tr>
|
||||
<td><code>tenant_id</code></td>
|
||||
<td><code>"0:0"</code></td>
|
||||
<td>For VictoriaMetrics Cluster version only, tenants are identified by accountID or accountID:projectID. See VictoriaMetrics Cluster [multitenancy docs](https://docs.victoriametrics.com/Cluster-VictoriaMetrics.html#multitenancy)</td>
|
||||
<td>For VictoriaMetrics Cluster version only, tenants are identified by accountID or accountID:projectID. See VictoriaMetrics Cluster <a href="https://docs.victoriametrics.com/Cluster-VictoriaMetrics.html#multitenancy">multitenancy docs</a></td>
|
||||
</tr>
|
||||
<tr>
|
||||
<td><code>sampling_period</code></td>
|
||||
|
|
|
@ -46,7 +46,7 @@ Future updates will introduce additional export methods, offering users more fle
|
|||
<tr>
|
||||
<td><code>tenant_id</code></td>
|
||||
<td><code>"0:0"</code></td>
|
||||
<td>For VictoriaMetrics Cluster version only, tenants are identified by accountID or accountID:projectID. See VictoriaMetrics Cluster [multitenancy docs](https://docs.victoriametrics.com/Cluster-VictoriaMetrics.html#multitenancy)</td>
|
||||
<td>For VictoriaMetrics Cluster version only, tenants are identified by accountID or accountID:projectID. See VictoriaMetrics Cluster <a href="https://docs.victoriametrics.com/Cluster-VictoriaMetrics.html#multitenancy">multitenancy docs</a></td>
|
||||
</tr>
|
||||
<!-- Additional rows for metric_format -->
|
||||
<tr>
|
||||
|
|
|
@ -67,8 +67,7 @@ Practical use case is to put anomaly score generated by vmanomaly into alerting
|
|||
- Explore data for analysis in [Grafana](https://grafana.com/).
|
||||
- Explore vmanomaly results.
|
||||
- Explore vmalert alerts
|
||||
|
||||
_____________________________
|
||||
|
||||
|
||||
## 4. Data to analyze
|
||||
|
||||
|
|
Loading…
Reference in a new issue