Previously the time series could be put into dateMetricIDCache without
registering in the per-day inverted index if GetOrCreateTSIDByName
finds TSID entry in the global index. This could lead to missing
series in query results.
The issue has been introduced in the commit 55e7afae3a,
which has been included in VictoriaMetrics v1.78.0
The commit 5fb45173ae takes into account only newly registered series
when applying cardinality limits. This means that the cardinality limit could be exceeded with already registered series.
This commit returns back accounting for already registered series when applying cardinality limits.
Previously the creation of per-day indexes and global indexes
for the newly registered time series was decoupled.
Now global indexes and per-day indexes for the current day are created toghether for new time series.
This should speed up registering new time series a bit.
This allows filling the seriesCountByFocusLabelValue list in the /api/v1/status/tsdb response
with label values for the specified focusLabel, which contain the highest number of time series.
TODO: add this to Cardinality explorer at VMUI - https://docs.victoriametrics.com/#cardinality-explorer
* fix for issue 2255 - matchTagFilters for positive empty-match filters
* add example to comments
* formatting
* add test for positive empty match
* formatting
* lib/index: reduce read/write load after indexDB rotation
IndexDB in VM is responsible for storing TSID - ID's used for identifying
time series. The index is stored on disk and used by both ingestion and read path.
IndexDB is stored separately to data parts and is global for all stored data.
It can't be deleted partially as VM deletes data parts. Instead, indexDB is
rotated once in `retention` interval.
The rotation procedure means that `current` indexDB becomes `previous`,
and new freshly created indexDB struct becomes `current`. So in any time,
VM holds indexDB for current and previous retention periods.
When time series is ingested or queried, VM checks if its TSID is present
in `current` indexDB. If it is missing, it checks the `previous` indexDB.
If TSID was found, it gets copied to the `current` indexDB. In this way
`current` indexDB stores only series which were active during the retention
period.
To improve indexDB lookups, VM uses a cache layer called `tsidCache`. Both
write and read path consult `tsidCache` and on miss the relad lookup happens.
When rotation happens, VM resets the `tsidCache`. This is needed for ingestion
path to trigger `current` indexDB re-population. Since index re-population
requires additional resources, every index rotation event may cause some extra
load on CPU and disk. While it may be unnoticeable for most of the cases,
for systems with very high number of unique series each rotation may lead
to performance degradation for some period of time.
This PR makes an attempt to smooth out resource usage after the rotation.
The changes are following:
1. `tsidCache` is no longer reset after the rotation;
2. Instead, each entry in `tsidCache` gains a notion of indexDB to which
they belong;
3. On ingestion path after the rotation we check if requested TSID was
found in `tsidCache`. Then we have 3 branches:
3.1 Fast path. It was found, and belongs to the `current` indexDB. Return TSID.
3.2 Slow path. It wasn't found, so we generate it from scratch,
add to `current` indexDB, add it to `tsidCache`.
3.3 Smooth path. It was found but does not belong to the `current` indexDB.
In this case, we add it to the `current` indexDB with some probability.
The probability is based on time passed since the last rotation with some threshold.
The more time has passed since rotation the higher is chance to re-populate `current` indexDB.
The default re-population interval in this PR is set to `1h`, during which entries from
`previous` index supposed to slowly re-populate `current` index.
The new metric `vm_timeseries_repopulated_total` was added to identify how many TSIDs
were moved from `previous` indexDB to the `current` indexDB. This metric supposed to
grow only during the first `1h` after the last rotation.
https://github.com/VictoriaMetrics/VictoriaMetrics/issues/1401
Signed-off-by: hagen1778 <roman@victoriametrics.com>
* wip
* wip
Co-authored-by: Aliaksandr Valialkin <valyala@victoriametrics.com>
Remove the code that uses metricIDs caches for the current and the previous hour during metricIDs search,
since this code became unused after implementing per-day inverted index almost a year ago.
While at it, fix a bug, which could prevent from finding time series with names containing dots (aka Graphite-like names
such as `foo.bar.baz`).
Previously the time spent on inverted index search could exceed the configured `-search.maxQueryDuration`.
This commit stops searching in inverted index on query timeout.
This is a follow-up commit after 12b16077c4 ,
which didn't reset the `tsidCache` in all the required places.
This could result in indefinite errors like:
missing metricName by metricID ...; this could be the case after unclean shutdown; deleting the metricID, so it could be re-created next time
Fix this by resetting the cache inside deleteMetricIDs function.
v1.36.0 always returns empty responses for Graphite wildcards like the following
{__name__=~"foo\\.[^.]*\\.bar\\.baz"}
Temporary workaround for v1.36.0 is to add `[^.]*` to the end of the regexp.
Add index for reverse Graphite-like metric names with dots. Use this index during search for filters
like `__name__=~"foo\\.[^.]*\\.bar\\.baz"` which end with non-empty suffix with dots, i.e. `.bar.baz` in this case.
This change may "hide" historical time series during queries. The workaround is to add `[.]*` to the end of regexp label filter,
i.e. "foo\\.[^.]*\\.bar\\.baz" should be substituted with "foo\\.[^.]*\\.bar\\.baz[.]*".
Production workload shows that the index requires ~4Kb of RAM per active time series.
This is too much for high number of active time series, so let's delete this index.
Now the queries should fall back to the index for the current day instead of the index
for the recent hour. The query performance for the current day index should be good enough
given the 100M rows/sec scan speed per CPU core.
Issues fixed:
- Slow startup times. Now the index is loaded from cache during start.
- High memory usage related to superflouos index copies every 10 seconds.
Production load with >10M active time series showed it could
slow down VictoriaMetrics startup times and could eat
all the memory leading to OOM.
Remove inmemory inverted index for recent hours until thorough
testing on production data shows it works OK.
The origin of the error has been detected and documented in the code,
so it is enough to export a counter for such errors at `vm_index_blocks_with_metric_ids_incorrect_order_total`,
so it could be monitored and alerted on high error rates.
Export also the counter for processed index blocks with metricIDs - `vm_index_blocks_with_metric_ids_processed_total`,
so its' rate could be compared to `rate(vm_index_blocks_with_metric_ids_incorrect_order_total)`.