This is a follow-up commit after 12b16077c4 ,
which didn't reset the `tsidCache` in all the required places.
This could result in indefinite errors like:
missing metricName by metricID ...; this could be the case after unclean shutdown; deleting the metricID, so it could be re-created next time
Fix this by resetting the cache inside deleteMetricIDs function.
Previously the concurrency has been limited to GOMAXPROCS*2. This had little sense,
since every call to Storage.AddRows is bound to CPU, so the maximum ingestion bandwidth
is achieved when the number of concurrent calls to Storage.AddRows is limited to the number of CPUs,
i.e. to GOMAXPROCS.
Heavy queries could result in the lack of CPU resources for processing the current data ingestion stream.
Prevent this by delaying queries' execution until free resources are available for data ingestion.
Expose `vm_search_delays_total` metric, which may be used in for alerting when there is no enough CPU resources
for data ingestion and/or for executing heavy queries.
Updates https://github.com/VictoriaMetrics/VictoriaMetrics/issues/291
v1.36.0 always returns empty responses for Graphite wildcards like the following
{__name__=~"foo\\.[^.]*\\.bar\\.baz"}
Temporary workaround for v1.36.0 is to add `[^.]*` to the end of the regexp.
Add index for reverse Graphite-like metric names with dots. Use this index during search for filters
like `__name__=~"foo\\.[^.]*\\.bar\\.baz"` which end with non-empty suffix with dots, i.e. `.bar.baz` in this case.
This change may "hide" historical time series during queries. The workaround is to add `[.]*` to the end of regexp label filter,
i.e. "foo\\.[^.]*\\.bar\\.baz" should be substituted with "foo\\.[^.]*\\.bar\\.baz[.]*".
Newly added index entries can be missing after unclean shutdown, since they didn't flush to persistent storage yet.
Log about this and delete the corresponding metricID, so it could be re-created next time.
This eliminates the need for storing block data into temporary files on a single-node VictoriaMetrics
during heavy queries, which touch big number of time series over long time ranges.
This improves single-node VM performance on heavy queries by up to 2x.
Now it leaves only the first data point on each `-dedup.minScrapeInterval` interval.
Previously it may leave two data points on the interval. This could lead to unexpected results
for `histogram_quantile(phi, sum(rate(buckets)) by (le))` query.
This should reduce the frequency of the following errors:
cannot find tag filter matching less than N time series; either increase -search.maxUniqueTimeseries or use more specific tag filters
more than N time series found on the time range [...]; either increase -search.maxUniqueTimeseries or shrink the time range
This case is possible when the corresponding metricID->metricName entry didn't propagate to inverted index yet.
This should fix the following error:
error when searching tsids for tfss [...]: cannot find metricName by metricID 1582417212213420669: EOF
- Sort tag filters in the ascending number of matching time series
in order to apply the most specific filters first.
- Fall back to metricName search for filters matching big number of time series
(usually this are negative filters or regexp filters).