The metricID->metricName entry can be missing in the indexdb after unclean shutdown
when only a part of entries for new time series is written into indexdb.
Recover from such a situation by removing the broken metricID. New metricID
will be automatically created for time series with the given metricName
when new data point will arive to it.
The current day could miss entries for already stopped time series before
enabling per-day index.
This fixes the issue when queries return empty results during the first hour after
upgrading to v1.29.*
Production workload shows that the index requires ~4Kb of RAM per active time series.
This is too much for high number of active time series, so let's delete this index.
Now the queries should fall back to the index for the current day instead of the index
for the recent hour. The query performance for the current day index should be good enough
given the 100M rows/sec scan speed per CPU core.
Issues fixed:
- Slow startup times. Now the index is loaded from cache during start.
- High memory usage related to superflouos index copies every 10 seconds.
Production load with >10M active time series showed it could
slow down VictoriaMetrics startup times and could eat
all the memory leading to OOM.
Remove inmemory inverted index for recent hours until thorough
testing on production data shows it works OK.
The origin of the error has been detected and documented in the code,
so it is enough to export a counter for such errors at `vm_index_blocks_with_metric_ids_incorrect_order_total`,
so it could be monitored and alerted on high error rates.
Export also the counter for processed index blocks with metricIDs - `vm_index_blocks_with_metric_ids_processed_total`,
so its' rate could be compared to `rate(vm_index_blocks_with_metric_ids_incorrect_order_total)`.
Slow loops could require seeks and expensive regexp matching, while fast loops just scans
all the metricIDs for the given `tag=value` prefix. So these operations must have separate
max loops multiplier.
The fastest tag filters are non-negative non-regexp, since they are the most specific.
The slowest tag filters are negative regexp, since they require scanning
all the entries for the given label.
This should improve inverted index search performance for filters matching big number of time series,
since `lib/uint64set.Set` is faster than `map[uint64]struct{}` for both `Add` and `Has` calls.
See the corresponding benchmarks in `lib/uint64set`.
This should improve lookup performance if the same `label=value` pair exists
in big number of time series.
This should also reduce memory usage for mergeset data cache, since `tag->metricIDs` rows
occupy less space than the original `tag->metricID` rows.
The number of MetricID->TSID entries is smaller than the number of tag->MetricID entries
and MetricID->TSID entries are usually shorter than tag->MetricID entries.
This should improve performance when selecting all the metricIDs.