Previously the time spent on inverted index search could exceed the configured `-search.maxQueryDuration`.
This commit stops searching in inverted index on query timeout.
This is a follow-up commit after 12b16077c4 ,
which didn't reset the `tsidCache` in all the required places.
This could result in indefinite errors like:
missing metricName by metricID ...; this could be the case after unclean shutdown; deleting the metricID, so it could be re-created next time
Fix this by resetting the cache inside deleteMetricIDs function.
See the corresponding benchmark in Prometheus - 23c0299d85/tsdb/head_bench_test.go (L52)
The benchmark allows performing apples-to-apples comparison of time series search
in Prometheus and VictoriaMetrics. The following article - https://www.robustperception.io/evaluating-performance-and-correctness -
contains incorrect numbers for VictoriaMetrics, since there wasn't this benchmark yet. Fix this.
Benchmarks can be repeated with the following commands from Prometheus and VictoriaMetrics source code roots:
- Prometheus: GOMAXPROCS=1 go test ./tsdb/ -run=111 -bench=BenchmarkHeadPostingForMatchers
- VictoriaMetrics: GOMAXPROCS=1 go test ./lib/storage/ -run=111 -bench=BenchmarkHeadPostingForMatchers
Benchmark results:
benchmark old ns/op new ns/op delta
BenchmarkHeadPostingForMatchers/n="1" 272756688 364977 -99.87%
BenchmarkHeadPostingForMatchers/n="1",j="foo" 138132923 1181636 -99.14%
BenchmarkHeadPostingForMatchers/j="foo",n="1" 134723762 1141578 -99.15%
BenchmarkHeadPostingForMatchers/n="1",j!="foo" 195823953 1148056 -99.41%
BenchmarkHeadPostingForMatchers/i=~".*" 7962582919 8716755 -99.89%
BenchmarkHeadPostingForMatchers/i=~".+" 7589543864 12096587 -99.84%
BenchmarkHeadPostingForMatchers/i=~"" 1142371741 16164560 -98.59%
BenchmarkHeadPostingForMatchers/i!="" 9964150263 12230021 -99.88%
BenchmarkHeadPostingForMatchers/n="1",i=~".*",j="foo" 216995884 1173476 -99.46%
BenchmarkHeadPostingForMatchers/n="1",i=~".*",i!="2",j="foo" 202541348 1299743 -99.36%
BenchmarkHeadPostingForMatchers/n="1",i!="" 486285711 11555193 -97.62%
BenchmarkHeadPostingForMatchers/n="1",i!="",j="foo" 350776931 5607506 -98.40%
BenchmarkHeadPostingForMatchers/n="1",i=~".+",j="foo" 380888565 6380335 -98.32%
BenchmarkHeadPostingForMatchers/n="1",i=~"1.+",j="foo" 89500296 2078970 -97.68%
BenchmarkHeadPostingForMatchers/n="1",i=~".+",i!="2",j="foo" 379529654 6561368 -98.27%
BenchmarkHeadPostingForMatchers/n="1",i=~".+",i!~"2.*",j="foo" 424563825 6757132 -98.41%
The first column (old) is for Prometheus, the second column (new) is for VictoriaMetrics.
As you can see, VictoriaMetrics outperforms Prometheus by more than 100x in almost all the test cases of this benchmark.
Prometheus was using 3.5GB of RAM during the benchmark, while VictoriaMetrics was using 400MB of RAM.
This should reduce the amount of RAM required for processing time series
with non-zero churn rate.
The previous cache behavior can be restored with `-cache.oldBehavior` command-line flag.