Consistently using t.Fatal* simplifies the test code and makes it less fragile, since it is common error
to forget to make proper cleanup after t.Error* call. Also t.Error* calls do not provide any practical
benefits when some tests fail. They just clutter test output with additional noise information,
which do not help in fixing failing tests most of the time.
While at it, improve errors generated at app/victoria-metrics tests, so they contain more useful information
when debugging failed tests.
This is a follow-up for a9525da8a4
### Describe Your Changes
In most cases histograms are exposed in sorted manner with lower buckets
being first. This means that during scraping buckets with lower bounds
have higher chance of being updated earlier than upper ones.
Previously, values were propagated from upper to lower bounds, which
means that in most cases that would produce results higher than expected
once all buckets will become updated.
Propagating from upper bound effectively limits highest value of
histogram to the value of previous scrape. Once the data will become
consistent in the subsequent evaluation this causes spikes in the
result.
Changing propagation to be from lower to higher buckets reduces value
spikes in most cases due to nature of the original inconsistency.
See: https://github.com/VictoriaMetrics/VictoriaMetrics/issues/4580
An example histogram with previous(red) and updated(blue) versions:
![1719565540](https://github.com/VictoriaMetrics/VictoriaMetrics/assets/1367798/605c5e60-6abe-45b5-89b2-d470b60127b8)
This also makes logic of filling nan values with lower buckets values: [1 2 3 nan nan nan] => [1 2 3 3 3 3] obsolete.
Since buckets are now fixed from lower ones to upper this happens in the main loop, so there is no need in a second one.
---------
Signed-off-by: Zakhar Bessarab <z.bessarab@victoriametrics.com>
Signed-off-by: hagen1778 <roman@victoriametrics.com>
Co-authored-by: Andrii Chubatiuk <andrew.chubatiuk@gmail.com>
Co-authored-by: hagen1778 <roman@victoriametrics.com>
'any' type is supported starting from Go1.18. Let's consistently use it
instead of 'interface{}' type across the code base, since `any` is easier to read than 'interface{}'.
The change adds a new docs section with examples on how source can be
overridden. It should address questions like
https://github.com/VictoriaMetrics/VictoriaMetrics/issues/6536
While there, fix the example in `external.alert.source` cmd-line flag
and docker-compose examples.
### Checklist
The following checks are **mandatory**:
- [x] My change adheres [VictoriaMetrics contributing
guidelines](https://docs.victoriametrics.com/contributing/).
---------
Signed-off-by: hagen1778 <roman@victoriametrics.com>
Reason for revert:
There are many statsd servers exist:
- https://github.com/statsd/statsd - classical statsd server
- https://docs.datadoghq.com/developers/dogstatsd/ - statsd server from DataDog built into DatDog Agent ( https://docs.datadoghq.com/agent/ )
- https://github.com/avito-tech/bioyino - high-performance statsd server
- https://github.com/atlassian/gostatsd - statsd server in Go
- https://github.com/prometheus/statsd_exporter - statsd server, which exposes the aggregated data as Prometheus metrics
These servers can be used for efficient aggregating of statsd data and sending it to VictoriaMetrics
according to https://docs.victoriametrics.com/#how-to-send-data-from-graphite-compatible-agents-such-as-statsd (
the https://github.com/prometheus/statsd_exporter can be scraped as usual Prometheus target
according to https://docs.victoriametrics.com/#how-to-scrape-prometheus-exporters-such-as-node-exporter ).
Adding support for statsd data ingestion protocol into VictoriaMetrics makes sense only if it provides
significant advantages over the existing statsd servers, while has no significant drawbacks comparing
to existing statsd servers.
The main advantage of statsd server built into VictoriaMetrics and vmagent - getting rid of additional statsd server.
The main drawback is non-trivial and inconvenient streaming aggregation configs, which must be used for the ingested statsd metrics (
see https://docs.victoriametrics.com/stream-aggregation/ ). These configs are incompatible with the configs for standalone statsd servers.
So you need to manually translate configs of the used statsd server to stream aggregation configs when migrating
from standalone statsd server to statsd server built into VictoriaMetrics (or vmagent).
Another important drawback is that it is very easy to shoot yourself in the foot when using built-in statsd server
with the -statsd.disableAggregationEnforcement command-line flag or with improperly configured streaming aggregation.
In this case the ingested statsd metrics will be stored to VictoriaMetrics as is without any aggregation.
This may result in high CPU usage during data ingestion, high disk space usage for storing all the unaggregated
statsd metrics and high CPU usage during querying, since all the unaggregated metrics must be read, unpacked and processed
during querying.
P.S. Built-in statsd server can be added to VictoriaMetrics and vmagent after figuring out more ergonomic
specialized configuration for aggregating of statsd metrics. The main requirements for this configuration:
- easy to write, read and update (ideally it should work out of the box for most cases without additional configuration)
- hard to misconfigure (e.g. hard to shoot yourself in the foot)
It would be great if this configuration will be compatible with the configuration of the most widely used statsd server.
In the mean time it is recommended continue using external statsd server.
Updates https://github.com/VictoriaMetrics/VictoriaMetrics/pull/6265
Updates https://github.com/VictoriaMetrics/VictoriaMetrics/pull/5053
Updates https://github.com/VictoriaMetrics/VictoriaMetrics/issues/5052
Updates https://github.com/VictoriaMetrics/VictoriaMetrics/issues/206
Updates https://github.com/VictoriaMetrics/VictoriaMetrics/issues/4600
This reverts commit 5a3abfa041.
Reason for revert: exemplars aren't in wide use because they have numerous issues which prevent their adoption (see below).
Adding support for examplars into VictoriaMetrics introduces non-trivial code changes. These code changes need to be supported forever
once the release of VictoriaMetrics with exemplar support is published. That's why I don't think this is a good feature despite
that the source code of the reverted commit has an excellent quality. See https://docs.victoriametrics.com/goals/ .
Issues with Prometheus exemplars:
- Prometheus still has only experimental support for exemplars after more than three years since they were introduced.
It stores exemplars in memory, so they are lost after Prometheus restart. This doesn't look like production-ready feature.
See 0a2f3b3794/content/docs/instrumenting/exposition_formats.md (L153-L159)
and https://prometheus.io/docs/prometheus/latest/feature_flags/#exemplars-storage
- It is very non-trivial to expose exemplars alongside metrics in your application, since the official Prometheus SDKs
for metrics' exposition ( https://prometheus.io/docs/instrumenting/clientlibs/ ) either have very hard-to-use API
for exposing histograms or do not have this API at all. For example, try figuring out how to expose exemplars
via https://pkg.go.dev/github.com/prometheus/client_golang@v1.19.1/prometheus .
- It looks like exemplars are supported for Histogram metric types only -
see https://pkg.go.dev/github.com/prometheus/client_golang@v1.19.1/prometheus#Timer.ObserveDurationWithExemplar .
Exemplars aren't supported for Counter, Gauge and Summary metric types.
- Grafana has very poor support for Prometheus exemplars. It looks like it supports exemplars only when the query
contains histogram_quantile() function. It queries exemplars via special Prometheus API -
https://prometheus.io/docs/prometheus/latest/querying/api/#querying-exemplars - (which is still marked as experimental, btw.)
and then displays all the returned exemplars on the graph as special dots. The issue is that this doesn't work
in production in most cases when the histogram_quantile() is calculated over thousands of histogram buckets
exposed by big number of application instances. Every histogram bucket may expose an exemplar on every timestamp shown on the graph.
This makes the graph unusable, since it is litterally filled with thousands of exemplar dots.
Neither Prometheus API nor Grafana doesn't provide the ability to filter out unneeded exemplars.
- Exemplars are usually connected to traces. While traces are good for some
I doubt exemplars will become production-ready in the near future because of the issues outlined above.
Alternative to exemplars:
Exemplars are marketed as a silver bullet for the correlation between metrics, traces and logs -
just click the exemplar dot on some graph in Grafana and instantly see the corresponding trace or log entry!
This doesn't work as expected in production as shown above. Are there better solutions, which work in production?
Yes - just use time-based and label-based correlation between metrics, traces and logs. Assign the same `job`
and `instance` labels to metrics, logs and traces, so you can quickly find the needed trace or log entry
by these labes on the time range with the anomaly on metrics' graph.
- Export streamaggr.LoadFromData() function, so it could be used in tests outside the lib/streamaggr package.
This allows removing a hack with creation of temporary files at TestRemoteWriteContext_TryPush_ImmutableTimeseries.
- Move common code for mustParsePromMetrics() function into lib/prompbmarshal package,
so it could be used in tests for building []prompbmarshal.TimeSeries from string.
Updates https://github.com/VictoriaMetrics/VictoriaMetrics/issues/6205
Updates https://github.com/VictoriaMetrics/VictoriaMetrics/pull/6206
Move the code responsible for relabelCtx clearing into deferred function.
This allows making more clear the remoteWriteCtx.TryPush code.
This is a follow-up for 879771808b
Updates https://github.com/VictoriaMetrics/VictoriaMetrics/issues/6205
While at it, clarify the description of the bugfix at docs/CHANGELOG.md
Use metricsql.IsLikelyInvalid() function for determining whether the given query is likely invalid,
e.g. there is high change the query is incorrectly written, so it will return unexpected results.
The query is invalid most of the time if it passes something other than series selector into rollup function.
For example:
- rate(sum(foo))
- rate(foo + bar)
- rate(foo > bar)
Improtant note: the query is considered valid if it misses the lookbehind window in square brackes inside rollup function,
e.g. rate(foo), since this is very convenient MetricsQL extention to PromQL, and this query returns the expected results
most of the time.
Other unsafe query types can be added in the future into metricsql.IsLikelyInvalid().
TODO: probably, the -search.disableImplicitConversion command-line flag must be set by default in the future releases of VictoriaMetrics.
Updates https://github.com/VictoriaMetrics/VictoriaMetrics/issues/4338
Updates https://github.com/VictoriaMetrics/VictoriaMetrics/pull/6180
Updates https://github.com/VictoriaMetrics/VictoriaMetrics/pull/6450
- Clarify docs for `Ignore aggregation intervals on start` feature.
- Make more clear the code dealing with ignoreFirstIntervals at aggregator.runFlusher() functions.
It is better from readability and maintainability PoV using distinct a.flush() calls
for distinct cases instead of merging them into a single a.flush() call.
- Take into account the first incomplete interval when tracking the number of skipped aggregation intervals,
since this behaviour is easier to understand by the end users.
Updates https://github.com/VictoriaMetrics/VictoriaMetrics/pull/6137
Previously the in-memory buffer could remain unflushed for long periods of time under low ingestion rate.
The ingested logs weren't visible for search during this time.
### Describe Your Changes
- added stale metrics counters for input and output samples
- added labels for aggregator metrics =>
`name="{rwctx}:{aggrId}:{aggrSuffix}"`
- rwctx - global or number starting from 1
- aggrid - aggregator id starting from 1
- aggrSuffix - <interval>_(by|without)_label1_label2_labeln
e.g: `name="global:1:1m_without_instance_pod"`
### Checklist
The following checks are **mandatory**:
- [ ] My change adheres [VictoriaMetrics contributing
guidelines](https://docs.victoriametrics.com/contributing/).
---------
Signed-off-by: hagen1778 <roman@victoriametrics.com>
Co-authored-by: hagen1778 <roman@victoriametrics.com>
### Describe Your Changes
Fixes#6453
### Checklist
The following checks are **mandatory**:
- [ ] My change adheres [VictoriaMetrics contributing
guidelines](https://docs.victoriametrics.com/contributing/).
### Describe Your Changes
- Fixed the update of the relative time range when `Execute Query` is
clicked
- Optimized server requests: now, if an error occurs in the `/query`
request, the `/hits` request will not be executed.
#6345 (duplicates: #6440, #6312)
The TryParseTimestampRFC3339Nano() must properly parse RFC3339 timestamps with timezone offsets.
While at it, make tryParseTimestampISO8601 function private in order to prevent
from improper usage of this function from outside the lib/logstorage package.
Updates https://github.com/VictoriaMetrics/VictoriaMetrics/issues/6508
This reverts commit 6e395048d3.
Reason for revert: the previous logic was correct.
The purpose of `-search.maxSamplesPerQuery` command-line flag is to limit the amounts of CPU resources,
which could be taken by a single query - see https://docs.victoriametrics.com/#resource-usage-limits .
VictoriaMetrics processes samples in blocks during querying - it reads the block, then unpacks it,
then filters out samples outside the selected time range. This means that it _spends CPU time_
on reading and unpacking of _all the samples_ in every block on the requested time range,
even if only a single sample per each block matches the given time range.
The previous logic was effectively limiting CPU time a single query could take.
The new logic fails limiting CPU time a single query could take in some pathological cases
when only a small fraction of samples per each requested block fit the requested time range.
This allows performing multiplication DoS-attacks by querying very narrow time ranges over historical blocks,
which tend to be full. For example, if the `-search.maxSamplesPerQuery` equals to a billion,
and the query requests a single sample out of 8K samples per each block, this means that the query
may unpack a billion of such blocks without exceeding the limit, e.g. it may unpack and process 8K*1e9=8e12 samples.
This is not what the resource usage limits were created for originally - see https://docs.victoriametrics.com/#resource-usage-limits
Updates https://github.com/VictoriaMetrics/VictoriaMetrics/issues/5851
Updates https://github.com/VictoriaMetrics/VictoriaMetrics/pull/6464
* rm extra interface method for rw Client, as it has low applicability
and doesn't fit multitenancy well
* add `GetDroppedRows` method instead
Signed-off-by: hagen1778 <roman@victoriametrics.com>