The metricID->metricName entry can be missing in the indexdb after unclean shutdown
when only a part of entries for new time series is written into indexdb.
Recover from such a situation by removing the broken metricID. New metricID
will be automatically created for time series with the given metricName
when new data point will arive to it.
`start` arg has higher chances to be set properly comparing to `end` arg,
so it is expected that the `end` arg could be adjusted if it was set incorrectly.
Production workload shows that the index requires ~4Kb of RAM per active time series.
This is too much for high number of active time series, so let's delete this index.
Now the queries should fall back to the index for the current day instead of the index
for the recent hour. The query performance for the current day index should be good enough
given the 100M rows/sec scan speed per CPU core.
Issues fixed:
- Slow startup times. Now the index is loaded from cache during start.
- High memory usage related to superflouos index copies every 10 seconds.
Production load with >10M active time series showed it could
slow down VictoriaMetrics startup times and could eat
all the memory leading to OOM.
Remove inmemory inverted index for recent hours until thorough
testing on production data shows it works OK.
Continue trying to remove NFS directory on temporary errors for up to a minute.
The previous async removal process breaks in the following case during VictoriaMetrics start
- VictoriaMetrics opens index, finds incomplete merge transactions and starts replaying them.
- The transaction instructs removing old directories for parts, which were already merged into bigger part.
- VictoriaMetrics removes these directories, but their removal is delayed due to NFS errors.
- VictoriaMetrics scans partition directory after all the incomplete merge transactions are finished
and finds directories, which should be removed, but weren't still removed due to NFS errors.
- VictoriaMetrics panics when it finds unexpected empty directory.
Updates https://github.com/VictoriaMetrics/VictoriaMetrics/issues/162
Incremental aggregate functions don't keep all the selected time series in memory -
they keep only up to GOMAXPROCS time series for incremental aggregations.
Take into account that the number of time series in RAM can be higher if they are split
into many groups with `by (...)` or `without (...)` modifiers.
This should reduce the number of `not enough memory for processing ... data points` false
positive errors.
The origin of the error has been detected and documented in the code,
so it is enough to export a counter for such errors at `vm_index_blocks_with_metric_ids_incorrect_order_total`,
so it could be monitored and alerted on high error rates.
Export also the counter for processed index blocks with metricIDs - `vm_index_blocks_with_metric_ids_processed_total`,
so its' rate could be compared to `rate(vm_index_blocks_with_metric_ids_incorrect_order_total)`.