package decimal import ( "math" "sync" "github.com/VictoriaMetrics/VictoriaMetrics/lib/fastnum" ) // CalibrateScale calibrates a and b with the corresponding exponents ae, be // and returns the resulting exponent e. func CalibrateScale(a []int64, ae int16, b []int64, be int16) (e int16) { if ae == be { // Fast path - exponents are equal. return ae } if len(a) == 0 { return be } if len(b) == 0 { return ae } if ae < be { a, b = b, a ae, be = be, ae } upExp := ae - be downExp := int16(0) for _, v := range a { maxUpExp := maxUpExponent(v) if upExp-maxUpExp > downExp { downExp = upExp - maxUpExp } } upExp -= downExp for i, v := range a { adjExp := upExp for adjExp > 0 { v *= 10 adjExp-- } a[i] = v } if downExp > 0 { for i, v := range b { adjExp := downExp for adjExp > 0 { v /= 10 adjExp-- } b[i] = v } } return be + downExp } // ExtendFloat64sCapacity extends dst capacity to hold additionalItems // and returns the extended dst. func ExtendFloat64sCapacity(dst []float64, additionalItems int) []float64 { dstLen := len(dst) if n := dstLen + additionalItems - cap(dst); n > 0 { dst = append(dst[:cap(dst)], make([]float64, n)...) } return dst[:dstLen] } // ExtendInt64sCapacity extends dst capacity to hold additionalItems // and returns the extended dst. func ExtendInt64sCapacity(dst []int64, additionalItems int) []int64 { dstLen := len(dst) if n := dstLen + additionalItems - cap(dst); n > 0 { dst = append(dst[:cap(dst)], make([]int64, n)...) } return dst[:dstLen] } // AppendDecimalToFloat converts each item in va to f=v*10^e, appends it // to dst and returns the resulting dst. func AppendDecimalToFloat(dst []float64, va []int64, e int16) []float64 { // Extend dst capacity in order to eliminate memory allocations below. dst = ExtendFloat64sCapacity(dst, len(va)) if fastnum.IsInt64Zeros(va) { return fastnum.AppendFloat64Zeros(dst, len(va)) } if e == 0 { if fastnum.IsInt64Ones(va) { return fastnum.AppendFloat64Ones(dst, len(va)) } for _, v := range va { f := float64(v) dst = append(dst, f) } return dst } // increase conversion precision for negative exponents by dividing by e10 if e < 0 { e10 := math.Pow10(int(-e)) for _, v := range va { f := float64(v) / e10 dst = append(dst, f) } return dst } e10 := math.Pow10(int(e)) for _, v := range va { f := float64(v) * e10 dst = append(dst, f) } return dst } // AppendFloatToDecimal converts each item in src to v*10^e and appends // each v to dst returning it as va. // // It tries minimizing each item in dst. func AppendFloatToDecimal(dst []int64, src []float64) (va []int64, e int16) { if len(src) == 0 { return dst, 0 } if fastnum.IsFloat64Zeros(src) { dst = fastnum.AppendInt64Zeros(dst, len(src)) return dst, 0 } if fastnum.IsFloat64Ones(src) { dst = fastnum.AppendInt64Ones(dst, len(src)) return dst, 0 } // Extend dst capacity in order to eliminate memory allocations below. dst = ExtendInt64sCapacity(dst, len(src)) vaev := vaeBufPool.Get() if vaev == nil { vaev = &vaeBuf{ va: make([]int64, len(src)), ea: make([]int16, len(src)), } } vae := vaev.(*vaeBuf) vae.va = vae.va[:0] vae.ea = vae.ea[:0] // Determine the minimum exponent across all src items. v, exp := FromFloat(src[0]) vae.va = append(vae.va, v) vae.ea = append(vae.ea, exp) minExp := exp for _, f := range src[1:] { v, exp := FromFloat(f) vae.va = append(vae.va, v) vae.ea = append(vae.ea, exp) if exp < minExp { minExp = exp } } // Determine whether all the src items may be upscaled to minExp. // If not, adjust minExp accordingly. downExp := int16(0) for i, v := range vae.va { exp := vae.ea[i] upExp := exp - minExp maxUpExp := maxUpExponent(v) if upExp-maxUpExp > downExp { downExp = upExp - maxUpExp } } minExp += downExp // Scale each item in src to minExp and append it to dst. for i, v := range vae.va { exp := vae.ea[i] adjExp := exp - minExp for adjExp > 0 { v *= 10 adjExp-- } for adjExp < 0 { v /= 10 adjExp++ } dst = append(dst, v) } vaeBufPool.Put(vae) return dst, minExp } type vaeBuf struct { va []int64 ea []int16 } var vaeBufPool sync.Pool func maxUpExponent(v int64) int16 { if v == 0 { // Any exponent allowed. return 1024 } if v < 0 { v = -v } if v < 0 { // Handle corner case for v=-1<<63 return 0 } maxMultiplier := ((1 << 63) - 1) / uint64(v) switch { case maxMultiplier >= 1e19: return 19 case maxMultiplier >= 1e18: return 18 case maxMultiplier >= 1e17: return 17 case maxMultiplier >= 1e16: return 16 case maxMultiplier >= 1e15: return 15 case maxMultiplier >= 1e14: return 14 case maxMultiplier >= 1e13: return 13 case maxMultiplier >= 1e12: return 12 case maxMultiplier >= 1e11: return 11 case maxMultiplier >= 1e10: return 10 case maxMultiplier >= 1e9: return 9 case maxMultiplier >= 1e8: return 8 case maxMultiplier >= 1e7: return 7 case maxMultiplier >= 1e6: return 6 case maxMultiplier >= 1e5: return 5 case maxMultiplier >= 1e4: return 4 case maxMultiplier >= 1e3: return 3 case maxMultiplier >= 1e2: return 2 case maxMultiplier >= 1e1: return 1 default: return 0 } } // Round f to value with the given number of significant figures. func Round(f float64, digits int) float64 { if digits <= 0 || digits >= 18 { return f } if math.IsNaN(f) || math.IsInf(f, 0) || f == 0 { return f } n := int64(math.Pow10(digits)) isNegative := f < 0 if isNegative { f = -f } v, e := positiveFloatToDecimal(f) if v > vMax { v = vMax } var rem int64 for v > n { rem = v % 10 v /= 10 e++ } if rem >= 5 { v++ } if isNegative { v = -v } return ToFloat(v, e) } // ToFloat returns f=v*10^e. func ToFloat(v int64, e int16) float64 { f := float64(v) // increase conversion precision for negative exponents by dividing by e10 if e < 0 { return f / math.Pow10(int(-e)) } return f * math.Pow10(int(e)) } const ( vInfPos = 1<<63 - 1 vInfNeg = -1 << 63 vMax = 1<<63 - 3 vMin = -1<<63 + 1 ) // FromFloat converts f to v*10^e. // // It tries minimizing v. // For instance, for f = -1.234 it returns v = -1234, e = -3. // // FromFloat doesn't work properly with NaN values, so don't pass them here. func FromFloat(f float64) (int64, int16) { if f == 0 { return 0, 0 } if math.IsInf(f, 0) { return fromFloatInf(f) } if f > 0 { v, e := positiveFloatToDecimal(f) if v > vMax { v = vMax } return v, e } v, e := positiveFloatToDecimal(-f) v = -v if v < vMin { v = vMin } return v, e } func fromFloatInf(f float64) (int64, int16) { // Limit infs by max and min values for int64 if math.IsInf(f, 1) { return vInfPos, 0 } return vInfNeg, 0 } func positiveFloatToDecimal(f float64) (int64, int16) { // There is no need in checking for f == 0, since it should be already checked by the caller. u := uint64(f) if float64(u) != f { return positiveFloatToDecimalSlow(f) } // Fast path for integers. if u < 1<<55 && u%10 != 0 { return int64(u), 0 } return getDecimalAndScale(u) } func getDecimalAndScale(u uint64) (int64, int16) { var scale int16 for u >= 1<<55 { // Remove trailing garbage bits left after float64->uint64 conversion, // since float64 contains only 53 significant bits. // See https://en.wikipedia.org/wiki/Double-precision_floating-point_format u /= 10 scale++ } if u%10 != 0 { return int64(u), scale } // Minimize v by converting trailing zeros to scale. u /= 10 scale++ for u != 0 && u%10 == 0 { u /= 10 scale++ } return int64(u), scale } func positiveFloatToDecimalSlow(f float64) (int64, int16) { // Slow path for floating point numbers. var scale int16 prec := conversionPrecision if f > 1e6 || f < 1e-6 { // Normalize f, so it is in the small range suitable // for the next loop. if f > 1e6 { // Increase conversion precision for big numbers. // See https://github.com/VictoriaMetrics/VictoriaMetrics/issues/213 prec = 1e15 } _, exp := math.Frexp(f) scale = int16(float64(exp) * (math.Ln2 / math.Ln10)) f *= math.Pow10(-int(scale)) } // Multiply f by 100 until the fractional part becomes // too small comparing to integer part. for f < prec { x, frac := math.Modf(f) if frac*prec < x { f = x break } if (1-frac)*prec < x { f = x + 1 break } f *= 100 scale -= 2 } u := uint64(f) if u%10 != 0 { return int64(u), scale } // Minimize u by converting trailing zero to scale. u /= 10 scale++ return int64(u), scale } const conversionPrecision = 1e12