package logstorage import ( "fmt" "slices" "sync/atomic" "unsafe" "github.com/VictoriaMetrics/VictoriaMetrics/lib/bytesutil" "github.com/VictoriaMetrics/VictoriaMetrics/lib/encoding" "github.com/VictoriaMetrics/VictoriaMetrics/lib/logger" "github.com/VictoriaMetrics/VictoriaMetrics/lib/memory" ) // pipeUniq processes '| uniq ...' queries. // // See https://docs.victoriametrics.com/victorialogs/logsql/#uniq-pipe type pipeUniq struct { // fields contains field names for returning unique values byFields []string limit uint64 } func (pu *pipeUniq) String() string { s := "uniq" if len(pu.byFields) > 0 { s += " by (" + fieldNamesString(pu.byFields) + ")" } if pu.limit > 0 { s += fmt.Sprintf(" limit %d", pu.limit) } return s } func (pu *pipeUniq) updateNeededFields(neededFields, unneededFields fieldsSet) { neededFields.reset() unneededFields.reset() if len(pu.byFields) == 0 { neededFields.add("*") } else { neededFields.addAll(pu.byFields) } } func (pu *pipeUniq) newPipeProcessor(workersCount int, stopCh <-chan struct{}, cancel func(), ppBase pipeProcessor) pipeProcessor { maxStateSize := int64(float64(memory.Allowed()) * 0.2) shards := make([]pipeUniqProcessorShard, workersCount) for i := range shards { shards[i] = pipeUniqProcessorShard{ pipeUniqProcessorShardNopad: pipeUniqProcessorShardNopad{ pu: pu, m: make(map[string]struct{}), stateSizeBudget: stateSizeBudgetChunk, }, } maxStateSize -= stateSizeBudgetChunk } pup := &pipeUniqProcessor{ pu: pu, stopCh: stopCh, cancel: cancel, ppBase: ppBase, shards: shards, maxStateSize: maxStateSize, } pup.stateSizeBudget.Store(maxStateSize) return pup } type pipeUniqProcessor struct { pu *pipeUniq stopCh <-chan struct{} cancel func() ppBase pipeProcessor shards []pipeUniqProcessorShard maxStateSize int64 stateSizeBudget atomic.Int64 } type pipeUniqProcessorShard struct { pipeUniqProcessorShardNopad // The padding prevents false sharing on widespread platforms with 128 mod (cache line size) = 0 . _ [128 - unsafe.Sizeof(pipeUniqProcessorShardNopad{})%128]byte } type pipeUniqProcessorShardNopad struct { // pu points to the parent pipeUniq. pu *pipeUniq // m holds unique rows. m map[string]struct{} // keyBuf is a temporary buffer for building keys for m. keyBuf []byte // columnValues is a temporary buffer for the processed column values. columnValues [][]string // stateSizeBudget is the remaining budget for the whole state size for the shard. // The per-shard budget is provided in chunks from the parent pipeUniqProcessor. stateSizeBudget int } // writeBlock writes br to shard. // // It returns false if the block cannot be written because of the exceeded limit. func (shard *pipeUniqProcessorShard) writeBlock(br *blockResult) bool { if limit := shard.pu.limit; limit > 0 && uint64(len(shard.m)) >= limit { return false } m := shard.m byFields := shard.pu.byFields if len(byFields) == 0 { // Take into account all the columns in br. keyBuf := shard.keyBuf cs := br.getColumns() for i := range br.timestamps { keyBuf = keyBuf[:0] for _, c := range cs { v := c.getValueAtRow(br, i) keyBuf = encoding.MarshalBytes(keyBuf, bytesutil.ToUnsafeBytes(c.name)) keyBuf = encoding.MarshalBytes(keyBuf, bytesutil.ToUnsafeBytes(v)) } if _, ok := m[string(keyBuf)]; !ok { m[string(keyBuf)] = struct{}{} shard.stateSizeBudget -= len(keyBuf) + int(unsafe.Sizeof("")) } } shard.keyBuf = keyBuf return true } // Take into account only the selected columns. columnValues := shard.columnValues[:0] for _, f := range byFields { c := br.getColumnByName(f) columnValues = append(columnValues, c.getValues(br)) } shard.columnValues = columnValues keyBuf := shard.keyBuf for i := range br.timestamps { seenValue := true for _, values := range columnValues { if i == 0 || values[i-1] != values[i] { seenValue = false break } } if seenValue { continue } keyBuf = keyBuf[:0] for _, values := range columnValues { keyBuf = encoding.MarshalBytes(keyBuf, bytesutil.ToUnsafeBytes(values[i])) } if _, ok := m[string(keyBuf)]; !ok { m[string(keyBuf)] = struct{}{} shard.stateSizeBudget -= len(keyBuf) + int(unsafe.Sizeof("")) } } shard.keyBuf = keyBuf return true } func (pup *pipeUniqProcessor) writeBlock(workerID uint, br *blockResult) { if len(br.timestamps) == 0 { return } shard := &pup.shards[workerID] for shard.stateSizeBudget < 0 { // steal some budget for the state size from the global budget. remaining := pup.stateSizeBudget.Add(-stateSizeBudgetChunk) if remaining < 0 { // The state size is too big. Stop processing data in order to avoid OOM crash. if remaining+stateSizeBudgetChunk >= 0 { // Notify worker goroutines to stop calling writeBlock() in order to save CPU time. pup.cancel() } return } shard.stateSizeBudget += stateSizeBudgetChunk } if !shard.writeBlock(br) { pup.cancel() } } func (pup *pipeUniqProcessor) flush() error { if n := pup.stateSizeBudget.Load(); n <= 0 { return fmt.Errorf("cannot calculate [%s], since it requires more than %dMB of memory", pup.pu.String(), pup.maxStateSize/(1<<20)) } // merge state across shards shards := pup.shards m := shards[0].m shards = shards[1:] for i := range shards { if needStop(pup.stopCh) { return nil } for k := range shards[i].m { m[k] = struct{}{} } } // write result wctx := &pipeUniqWriteContext{ pup: pup, } byFields := pup.pu.byFields var rowFields []Field if len(byFields) == 0 { for k := range m { if needStop(pup.stopCh) { return nil } rowFields = rowFields[:0] keyBuf := bytesutil.ToUnsafeBytes(k) for len(keyBuf) > 0 { name, nSize := encoding.UnmarshalBytes(keyBuf) if nSize <= 0 { logger.Panicf("BUG: cannot unmarshal field name") } keyBuf = keyBuf[nSize:] value, nSize := encoding.UnmarshalBytes(keyBuf) if nSize <= 0 { logger.Panicf("BUG: cannot unmarshal field value") } keyBuf = keyBuf[nSize:] rowFields = append(rowFields, Field{ Name: bytesutil.ToUnsafeString(name), Value: bytesutil.ToUnsafeString(value), }) } wctx.writeRow(rowFields) } } else { for k := range m { if needStop(pup.stopCh) { return nil } rowFields = rowFields[:0] keyBuf := bytesutil.ToUnsafeBytes(k) fieldIdx := 0 for len(keyBuf) > 0 { value, nSize := encoding.UnmarshalBytes(keyBuf) if nSize <= 0 { logger.Panicf("BUG: cannot unmarshal field value") } keyBuf = keyBuf[nSize:] rowFields = append(rowFields, Field{ Name: byFields[fieldIdx], Value: bytesutil.ToUnsafeString(value), }) fieldIdx++ } wctx.writeRow(rowFields) } } wctx.flush() return nil } type pipeUniqWriteContext struct { pup *pipeUniqProcessor rcs []resultColumn br blockResult rowsWritten uint64 valuesLen int } func (wctx *pipeUniqWriteContext) writeRow(rowFields []Field) { if limit := wctx.pup.pu.limit; limit > 0 && wctx.rowsWritten >= limit { return } wctx.rowsWritten++ rcs := wctx.rcs areEqualColumns := len(rcs) == len(rowFields) if areEqualColumns { for i, f := range rowFields { if rcs[i].name != f.Name { areEqualColumns = false break } } } if !areEqualColumns { // send the current block to bbBase and construct a block with new set of columns wctx.flush() rcs = wctx.rcs[:0] for _, f := range rowFields { rcs = append(rcs, resultColumn{ name: f.Name, }) } wctx.rcs = rcs } for i, f := range rowFields { v := f.Value rcs[i].addValue(v) wctx.valuesLen += len(v) } if wctx.valuesLen >= 1_000_000 { wctx.flush() } } func (wctx *pipeUniqWriteContext) flush() { rcs := wctx.rcs br := &wctx.br wctx.valuesLen = 0 if len(rcs) == 0 { return } // Flush rcs to ppBase br.setResultColumns(rcs) wctx.pup.ppBase.writeBlock(0, br) br.reset() for i := range rcs { rcs[i].resetKeepName() } } func parsePipeUniq(lex *lexer) (*pipeUniq, error) { if !lex.isKeyword("uniq") { return nil, fmt.Errorf("expecting 'uniq'; got %q", lex.token) } lex.nextToken() var pu pipeUniq if lex.isKeyword("by", "(") { if lex.isKeyword("by") { lex.nextToken() } bfs, err := parseFieldNamesInParens(lex) if err != nil { return nil, fmt.Errorf("cannot parse 'by' clause: %w", err) } if slices.Contains(bfs, "*") { bfs = nil } pu.byFields = bfs } if lex.isKeyword("limit") { lex.nextToken() n, ok := tryParseUint64(lex.token) if !ok { return nil, fmt.Errorf("cannot parse 'limit %s'", lex.token) } lex.nextToken() pu.limit = n } return &pu, nil }