--- sort: 3 weight: 1 title: Presets menu: docs: parent: "anomaly-detection" weight: 1 title: Presets --- # Anomaly detection presets > Please check the [Quick Start Guide](/anomaly-detection/quickstart/) to install and run `vmanomaly` > Presets are available starting from [v1.13.0](/anomaly-detection/CHANGELOG/#v1130) **Preset** mode allows for simpler configuration and anomaly detection with `vmanomaly` on widely-recognized metrics, such as those generated by [node_exporter](https://github.com/prometheus/node_exporter), which are typically challenging to monitor using static threshold-based alerting rules. This approach represents a paradigm shift from traditional [static threshold-based alerting rules](https://victoriametrics.com/blog/victoriametrics-anomaly-detection-handbook-chapter-1/#rule-based-alerting), focused on *raw metric values*, to *static* rules based on [`anomaly_scores`](/anomaly-detection/faq/#what-is-anomaly-score). These scores offer a consistent, default threshold that remains stable over time, being adjusted for trends, seasonality, data scale, thus, reducing the engineering effort required for maintenance. Anomaly scores are produced by [machine learning models](/anomaly-detection/components/models), which are regularly retrained on varying time frames, ensuring alerts remain current and responsive to evolving data patterns. additionally, **preset mode** minimizes user input needed to run the service. You can configure `vmanomaly` by specifying only the preset name and data sources in the [`reader`](/anomaly-detection/components/reader/) and [`writer`](/anomaly-detection/components/writer/) sections of the configuration file. All other parameters are already preconfigured. Available presets: - [Node-Exporter](#node-exporter) Here is an example config file to enable [Node-Exporter](#node-exporter) preset: ```yaml preset: "node-exporter" reader: datasource_url: "http://victoriametrics:8428/" # your datasource url # tenant_id: '0:0' # specify for cluster version writer: datasource_url: "http://victoriametrics:8428/" # your datasource url # tenant_id: '0:0' # specify for cluster version ``` Run a service using config file with one of the [available options](/anomaly-detection/quickstart/#how-to-install-and-run-vmanomaly). After you run `vmanomaly` with `preset` arg specified, available assets can be viewed, copied and downloaded at `http://localhost:8490/presets/` endpoint. preset-localhost ## Node-Exporter > **Note: Preset assets can be also found [here](https://github.com/VictoriaMetrics/VictoriaMetrics/tree/master/deployment/docker/vmanomaly/vmanomaly-node-exporter-preset/)** For enabling Node-Exporter in config file use `preset` parameter: ```yaml preset: "node-exporter" ``` ### Generated anomaly scores Machine learning models will be fit for each timeseries, returned by underlying [MetricsQL](https://docs.victoriametrics.com/metricsql/) queries. Anomaly score metric labels will also contain [model classes](/anomaly-detection/components/models/) and [schedulers](/anomaly-detection/components/scheduler/) for labelset uniqueness. Here's an example of produced metrics: ```shell anomaly_score{for="cpu_seconds_total", instance="node-exporter:9100", preset="node-exporter", mode="system", model_alias="prophet", scheduler_alias="1d_1m"} 0.23451242720277776 anomaly_score{for="cpu_seconds_total", instance="node-exporter:9100", preset="node-exporter", mode="user", model_alias="prophet", scheduler_alias="1d_1m"} 0.2637952255694444 anomaly_score{for="page_faults", instance="node-exporter:9100", job="node-exporter", preset="node-exporter", model_alias="prophet", scheduler_alias="1d_1m"} 0.00593712535 anomaly_score{for="read_latency", instance="node-exporter:9100", preset="node-exporter", model_alias="mad", scheduler_alias="1d_1m"} 0.27773362795333334 anomaly_score{for="receive_bytes", instance="node-exporter:9100", preset="node-exporter", model_alias="mad", scheduler_alias="1d_1m"} 0.037753486136666674 anomaly_score{for="transmit_bytes", instance="node-exporter:9100", preset="node-exporter", model_alias="mad", scheduler_alias="1d_1m"} 0.17633085235 anomaly_score{for="write_latency", instance="node-exporter:9100", preset="node-exporter", model_alias="mad", scheduler_alias="1d_1m"} 0.019314370926666668 anomaly_score{for="cpu_seconds_total", instance="node-exporter:9100", preset="node-exporter", mode="idle", model_alias="mad", scheduler_alias="1d_1m"} 4.2323617935 anomaly_score{for="cpu_seconds_total", instance="node-exporter:9100", preset="node-exporter", mode="idle", model_alias="mad", scheduler_alias="2w_1m"} 1.5261359215 anomaly_score{for="cpu_seconds_total", instance="node-exporter:9100", preset="node-exporter", mode="idle", model_alias="prophet", scheduler_alias="2w_1m"} 0.5850743651 anomaly_score{for="cpu_seconds_total", instance="node-exporter:9100", preset="node-exporter", mode="idle", model_alias="z-score", scheduler_alias="1d_1m"} 1.6496064663 anomaly_score{for="cpu_seconds_total", instance="node-exporter:9100", preset="node-exporter", mode="idle", model_alias="z-score", scheduler_alias="2w_1m"} 0.924392581 anomaly_score{for="cpu_seconds_total", instance="node-exporter:9100", preset="node-exporter", mode="iowait", model_alias="mad", scheduler_alias="1d_1m"} 0.8571428657 ... ``` ### Alerts > For optimal alerting experience, we include [Awesome alerts](https://github.com/samber/awesome-prometheus-alerts) to cover indicators not addressed by the preset, as static thresholds can effectively complement our machine learning approach. > Provided `vmanomaly` alerts are set to fire only if *all anomaly detection models* vote that the datapoint is anomalous. You can find corresponding alerting rules here: - `vmanomaly` [Anomaly Detection alerts](https://github.com/VictoriaMetrics/VictoriaMetrics/tree/master/deployment/docker/vmanomaly/vmanomaly-node-exporter-preset/vmanomaly_alerts.yml): `http://localhost:8490/presets/vmanomaly_alerts.yml` - [Modified Awesome Alerts](https://github.com/VictoriaMetrics/VictoriaMetrics/tree/master/deployment/docker/vmanomaly/vmanomaly-node-exporter-preset/awesome_alerts.yml): `http://localhost:8490/presets/awesome_alerts.yml` #### Awesome Alerts replaced by Machine Learning alerts - HostMemoryUnderMemoryPressure - HostContextSwitching - HostHighCpuLoad - HostCpuIsUnderutilized - HostCpuStealNoisyNeighbor - HostCpuHighIowait - HostNetworkReceiveErrors - HostNetworkTransmitErrors - HostUnusualNetworkThroughputIn - HostUnusualNetworkThroughputOut ### Grafana dashboard Grafana dashboard `.json` file can be found [here](https://github.com/VictoriaMetrics/VictoriaMetrics/tree/master/deployment/docker/vmanomaly/vmanomaly-node-exporter-preset/dashboard.json): `http://localhost:8490/presets/dashboard.json` ### Indicators monitored by preset The produced anomaly scores will have a label `for` containing the name of corresponding indicator.
Indicator Based on metrics Description
page_faults node_vmstat_pgmajfault Number of major faults that have occurred since the last update. Major faults occur when a process tries to access a page in memory that is not currently mapped in the process's address space, and it requires loading data from the disk.
context_switch node_context_switches_total This metric represents the total number of context switches across all CPUs.
cpu_seconds_total node_cpu_seconds_total Total amount of CPU time consumed by the system in seconds by CPU processing mode (e.g., user, system, idle).
host_network_receive_errors & host_network_transmit_errors node_network_receive_errs_total, node_network_receive_packets_total, node_network_transmit_errs_total, node_network_transmit_packets_total Total number of errors encountered while receiving/transmitting packets on the network interfaces of a node.
receive_bytes & transmit_bytes node_network_receive_bytes_total, node_network_transmit_bytes_total Total number of bytes received/transmitted on network interfaces of a node.
read_latency & write_latency node_disk_read_time_seconds_total, node_disk_reads_completed_total, node_disk_write_time_seconds_total, node_disk_writes_completed_total Disk latency. The total read/write time spent in seconds. / The total number of reads/writes completed successfully.
## Example Here's how attached [Grafana dashboard](https://github.com/VictoriaMetrics/VictoriaMetrics/tree/master/deployment/docker/vmanomaly/vmanomaly-node-exporter-preset/dashboard.json) can be used to drill down anomalies: On the (global) graph **'Percentage of Anomalies'**, you can see a spike 8.75% of anomalies at the timestamp '2024-06-03 10:35:00'. The (global) graph **'Anomalies per Indicator'** shows the indicators that were anomalous at the corresponding time. global At this timestamp on the **'Number of Anomalous Indicators by Node'** graph we can identify the node that had the most anomalies: `10.142.0.27` by_node Now you can select anomalous node to drill down further (local): anomalous_node_selection For this node from the timestamp `2024-06-03 10:35:00` CPU time spent handling software interrupts started to grow. (`cpu_seconds_total{mode="softirq"}`) irq At the same time `cpu_seconds_total` for `steal` mode started to grow as well. steal