package logstorage import ( "fmt" "strings" "sync/atomic" "unsafe" "github.com/VictoriaMetrics/VictoriaMetrics/lib/bytesutil" "github.com/VictoriaMetrics/VictoriaMetrics/lib/encoding" "github.com/VictoriaMetrics/VictoriaMetrics/lib/logger" "github.com/VictoriaMetrics/VictoriaMetrics/lib/memory" ) // pipeStats processes '| stats ...' queries. // // See https://docs.victoriametrics.com/victorialogs/logsql/#stats-pipe type pipeStats struct { // byFields contains field names with optional buckets from 'by(...)' clause. byFields []*byStatsField // funcs contains stats functions to execute. funcs []pipeStatsFunc } type pipeStatsFunc struct { // f is stats function to execute f statsFunc // iff is an additional filter, which is applied to results before executing f on them iff *ifFilter // resultName is the name of the output generated by f resultName string } type statsFunc interface { // String returns string representation of statsFunc String() string // updateNeededFields update neededFields with the fields needed for calculating the given stats updateNeededFields(neededFields fieldsSet) // newStatsProcessor must create new statsProcessor for calculating stats for the given statsFunc // // It also must return the size in bytes of the returned statsProcessor newStatsProcessor() (statsProcessor, int) } // statsProcessor must process stats for some statsFunc. // // All the statsProcessor methods are called from a single goroutine at a time, // so there is no need in the internal synchronization. type statsProcessor interface { // updateStatsForAllRows must update statsProcessor stats for all the rows in br. // // It must return the change of internal state size in bytes for the statsProcessor. updateStatsForAllRows(br *blockResult) int // updateStatsForRow must update statsProcessor stats for the row at rowIndex in br. // // It must return the change of internal state size in bytes for the statsProcessor. updateStatsForRow(br *blockResult, rowIndex int) int // mergeState must merge sfp state into statsProcessor state. mergeState(sfp statsProcessor) // finalizeStats must return the collected stats result from statsProcessor. finalizeStats() string } func (ps *pipeStats) String() string { s := "stats " if len(ps.byFields) > 0 { a := make([]string, len(ps.byFields)) for i := range ps.byFields { a[i] = ps.byFields[i].String() } s += "by (" + strings.Join(a, ", ") + ") " } if len(ps.funcs) == 0 { logger.Panicf("BUG: pipeStats must contain at least a single statsFunc") } a := make([]string, len(ps.funcs)) for i, f := range ps.funcs { line := f.f.String() if f.iff != nil { line += " " + f.iff.String() } line += " as " + quoteTokenIfNeeded(f.resultName) a[i] = line } s += strings.Join(a, ", ") return s } func (ps *pipeStats) updateNeededFields(neededFields, unneededFields fieldsSet) { neededFieldsOrig := neededFields.clone() neededFields.reset() // byFields are needed unconditionally, since the output number of rows depends on them. for _, bf := range ps.byFields { neededFields.add(bf.name) } for _, f := range ps.funcs { if neededFieldsOrig.contains(f.resultName) && !unneededFields.contains(f.resultName) { f.f.updateNeededFields(neededFields) if f.iff != nil { neededFields.addFields(f.iff.neededFields) } } } unneededFields.reset() } func (ps *pipeStats) optimize() { for _, f := range ps.funcs { f.iff.optimizeFilterIn() } } func (ps *pipeStats) hasFilterInWithQuery() bool { for _, f := range ps.funcs { if f.iff.hasFilterInWithQuery() { return true } } return false } func (ps *pipeStats) initFilterInValues(cache map[string][]string, getFieldValuesFunc getFieldValuesFunc) (pipe, error) { funcsNew := make([]pipeStatsFunc, len(ps.funcs)) for i, f := range ps.funcs { iffNew, err := f.iff.initFilterInValues(cache, getFieldValuesFunc) if err != nil { return nil, err } f.iff = iffNew funcsNew[i] = f } psNew := *ps ps.funcs = funcsNew return &psNew, nil } const stateSizeBudgetChunk = 1 << 20 func (ps *pipeStats) newPipeProcessor(workersCount int, stopCh <-chan struct{}, cancel func(), ppBase pipeProcessor) pipeProcessor { maxStateSize := int64(float64(memory.Allowed()) * 0.3) shards := make([]pipeStatsProcessorShard, workersCount) funcsLen := len(ps.funcs) for i := range shards { shards[i] = pipeStatsProcessorShard{ pipeStatsProcessorShardNopad: pipeStatsProcessorShardNopad{ ps: ps, m: make(map[string]*pipeStatsGroup), bms: make([]bitmap, funcsLen), brs: make([]*blockResult, funcsLen), brsBuf: make([]blockResult, funcsLen), stateSizeBudget: stateSizeBudgetChunk, }, } maxStateSize -= stateSizeBudgetChunk } psp := &pipeStatsProcessor{ ps: ps, stopCh: stopCh, cancel: cancel, ppBase: ppBase, shards: shards, maxStateSize: maxStateSize, } psp.stateSizeBudget.Store(maxStateSize) return psp } type pipeStatsProcessor struct { ps *pipeStats stopCh <-chan struct{} cancel func() ppBase pipeProcessor shards []pipeStatsProcessorShard maxStateSize int64 stateSizeBudget atomic.Int64 } type pipeStatsProcessorShard struct { pipeStatsProcessorShardNopad // The padding prevents false sharing on widespread platforms with 128 mod (cache line size) = 0 . _ [128 - unsafe.Sizeof(pipeStatsProcessorShardNopad{})%128]byte } type pipeStatsProcessorShardNopad struct { ps *pipeStats m map[string]*pipeStatsGroup // bms, brs and brsBuf are used for applying per-func filters. bms []bitmap brs []*blockResult brsBuf []blockResult columnValues [][]string keyBuf []byte stateSizeBudget int } func (shard *pipeStatsProcessorShard) writeBlock(br *blockResult) { byFields := shard.ps.byFields // Apply per-function filters brs := shard.applyPerFunctionFilters(br) // Process stats for the defined functions if len(byFields) == 0 { // Fast path - pass all the rows to a single group with empty key. psg := shard.getPipeStatsGroup(nil) shard.stateSizeBudget -= psg.updateStatsForAllRows(brs) return } if len(byFields) == 1 { // Special case for grouping by a single column. bf := byFields[0] c := br.getColumnByName(bf.name) if c.isConst { // Fast path for column with constant value. v := br.getBucketedValue(c.valuesEncoded[0], bf) shard.keyBuf = encoding.MarshalBytes(shard.keyBuf[:0], bytesutil.ToUnsafeBytes(v)) psg := shard.getPipeStatsGroup(shard.keyBuf) shard.stateSizeBudget -= psg.updateStatsForAllRows(brs) return } values := c.getValuesBucketed(br, bf) if areConstValues(values) { // Fast path for column with constant values. shard.keyBuf = encoding.MarshalBytes(shard.keyBuf[:0], bytesutil.ToUnsafeBytes(values[0])) psg := shard.getPipeStatsGroup(shard.keyBuf) shard.stateSizeBudget -= psg.updateStatsForAllRows(brs) return } // Slower generic path for a column with different values. var psg *pipeStatsGroup keyBuf := shard.keyBuf[:0] for i := range br.timestamps { if i <= 0 || values[i-1] != values[i] { keyBuf = encoding.MarshalBytes(keyBuf[:0], bytesutil.ToUnsafeBytes(values[i])) psg = shard.getPipeStatsGroup(keyBuf) } shard.stateSizeBudget -= psg.updateStatsForRow(brs, i) } shard.keyBuf = keyBuf return } // Obtain columns for byFields columnValues := shard.columnValues[:0] for _, bf := range byFields { c := br.getColumnByName(bf.name) values := c.getValuesBucketed(br, bf) columnValues = append(columnValues, values) } shard.columnValues = columnValues // Verify whether all the 'by (...)' columns are constant. areAllConstColumns := true for _, values := range columnValues { if !areConstValues(values) { areAllConstColumns = false break } } if areAllConstColumns { // Fast path for constant 'by (...)' columns. keyBuf := shard.keyBuf[:0] for _, values := range columnValues { keyBuf = encoding.MarshalBytes(keyBuf, bytesutil.ToUnsafeBytes(values[0])) } psg := shard.getPipeStatsGroup(keyBuf) shard.stateSizeBudget -= psg.updateStatsForAllRows(brs) shard.keyBuf = keyBuf return } // The slowest path - group by multiple columns with different values across rows. var psg *pipeStatsGroup keyBuf := shard.keyBuf[:0] for i := range br.timestamps { // Verify whether the key for 'by (...)' fields equals the previous key sameValue := i > 0 for _, values := range columnValues { if i <= 0 || values[i-1] != values[i] { sameValue = false break } } if !sameValue { // Construct new key for the 'by (...)' fields keyBuf = keyBuf[:0] for _, values := range columnValues { keyBuf = encoding.MarshalBytes(keyBuf, bytesutil.ToUnsafeBytes(values[i])) } psg = shard.getPipeStatsGroup(keyBuf) } shard.stateSizeBudget -= psg.updateStatsForRow(brs, i) } shard.keyBuf = keyBuf } func (shard *pipeStatsProcessorShard) applyPerFunctionFilters(brSrc *blockResult) []*blockResult { funcs := shard.ps.funcs brs := shard.brs for i := range funcs { iff := funcs[i].iff if iff == nil { // Fast path - there are no per-function filters brs[i] = brSrc continue } bm := &shard.bms[i] bm.init(len(brSrc.timestamps)) bm.setBits() iff.f.applyToBlockResult(brSrc, bm) if bm.areAllBitsSet() { // Fast path - per-function filter doesn't filter out rows brs[i] = brSrc continue } // Store the remaining rows for the needed per-func fields to brDst brDst := &shard.brsBuf[i] if bm.isZero() { brDst.reset() } else { brDst.initFromFilterNeededColumns(brSrc, bm, iff.neededFields) } brs[i] = brDst } return brs } func (shard *pipeStatsProcessorShard) getPipeStatsGroup(key []byte) *pipeStatsGroup { psg := shard.m[string(key)] if psg != nil { return psg } sfps := make([]statsProcessor, len(shard.ps.funcs)) for i, f := range shard.ps.funcs { sfp, stateSize := f.f.newStatsProcessor() sfps[i] = sfp shard.stateSizeBudget -= stateSize } psg = &pipeStatsGroup{ sfps: sfps, } shard.m[string(key)] = psg shard.stateSizeBudget -= len(key) + int(unsafe.Sizeof("")+unsafe.Sizeof(psg)+unsafe.Sizeof(sfps[0])*uintptr(len(sfps))) return psg } type pipeStatsGroup struct { sfps []statsProcessor } func (psg *pipeStatsGroup) updateStatsForAllRows(brs []*blockResult) int { n := 0 for i, sfp := range psg.sfps { n += sfp.updateStatsForAllRows(brs[i]) } return n } func (psg *pipeStatsGroup) updateStatsForRow(brs []*blockResult, rowIdx int) int { n := 0 for i, sfp := range psg.sfps { n += sfp.updateStatsForRow(brs[i], rowIdx) } return n } func (psp *pipeStatsProcessor) writeBlock(workerID uint, br *blockResult) { if len(br.timestamps) == 0 { return } shard := &psp.shards[workerID] for shard.stateSizeBudget < 0 { // steal some budget for the state size from the global budget. remaining := psp.stateSizeBudget.Add(-stateSizeBudgetChunk) if remaining < 0 { // The state size is too big. Stop processing data in order to avoid OOM crash. if remaining+stateSizeBudgetChunk >= 0 { // Notify worker goroutines to stop calling writeBlock() in order to save CPU time. psp.cancel() } return } shard.stateSizeBudget += stateSizeBudgetChunk } shard.writeBlock(br) } func (psp *pipeStatsProcessor) flush() error { if n := psp.stateSizeBudget.Load(); n <= 0 { return fmt.Errorf("cannot calculate [%s], since it requires more than %dMB of memory", psp.ps.String(), psp.maxStateSize/(1<<20)) } // Merge states across shards shards := psp.shards m := shards[0].m shards = shards[1:] for i := range shards { shard := &shards[i] for key, psg := range shard.m { // shard.m may be quite big, so this loop can take a lot of time and CPU. // Stop processing data as soon as stopCh is closed without wasting additional CPU time. if needStop(psp.stopCh) { return nil } spgBase := m[key] if spgBase == nil { m[key] = psg } else { for i, sfp := range spgBase.sfps { sfp.mergeState(psg.sfps[i]) } } } } // Write per-group states to ppBase byFields := psp.ps.byFields if len(byFields) == 0 && len(m) == 0 { // Special case - zero matching rows. _ = shards[0].getPipeStatsGroup(nil) m = shards[0].m } rcs := make([]resultColumn, 0, len(byFields)+len(psp.ps.funcs)) for _, bf := range byFields { rcs = appendResultColumnWithName(rcs, bf.name) } for _, f := range psp.ps.funcs { rcs = appendResultColumnWithName(rcs, f.resultName) } var br blockResult var values []string rowsCount := 0 valuesLen := 0 for key, psg := range m { // m may be quite big, so this loop can take a lot of time and CPU. // Stop processing data as soon as stopCh is closed without wasting additional CPU time. if needStop(psp.stopCh) { return nil } // Unmarshal values for byFields from key. values = values[:0] keyBuf := bytesutil.ToUnsafeBytes(key) for len(keyBuf) > 0 { v, nSize := encoding.UnmarshalBytes(keyBuf) if nSize <= 0 { logger.Panicf("BUG: cannot unmarshal value from keyBuf=%q", keyBuf) } keyBuf = keyBuf[nSize:] values = append(values, bytesutil.ToUnsafeString(v)) } if len(values) != len(byFields) { logger.Panicf("BUG: unexpected number of values decoded from keyBuf; got %d; want %d", len(values), len(byFields)) } // calculate values for stats functions for _, sfp := range psg.sfps { value := sfp.finalizeStats() values = append(values, value) } if len(values) != len(rcs) { logger.Panicf("BUG: len(values)=%d must be equal to len(rcs)=%d", len(values), len(rcs)) } for i, v := range values { rcs[i].addValue(v) valuesLen += len(v) } rowsCount++ if valuesLen >= 1_000_000 { br.setResultColumns(rcs, rowsCount) rowsCount = 0 psp.ppBase.writeBlock(0, &br) br.reset() for i := range rcs { rcs[i].resetValues() } valuesLen = 0 } } br.setResultColumns(rcs, rowsCount) psp.ppBase.writeBlock(0, &br) return nil } func parsePipeStats(lex *lexer) (*pipeStats, error) { if !lex.isKeyword("stats") { return nil, fmt.Errorf("expecting 'stats'; got %q", lex.token) } lex.nextToken() var ps pipeStats if lex.isKeyword("by", "(") { if lex.isKeyword("by") { lex.nextToken() } bfs, err := parseByStatsFields(lex) if err != nil { return nil, fmt.Errorf("cannot parse 'by' clause: %w", err) } ps.byFields = bfs } var funcs []pipeStatsFunc for { var f pipeStatsFunc sf, err := parseStatsFunc(lex) if err != nil { return nil, err } f.f = sf if lex.isKeyword("if") { iff, err := parseIfFilter(lex) if err != nil { return nil, err } f.iff = iff } resultName, err := parseResultName(lex) if err != nil { return nil, fmt.Errorf("cannot parse result name for [%s]: %w", sf, err) } f.resultName = resultName funcs = append(funcs, f) if lex.isKeyword("|", ")", "") { ps.funcs = funcs return &ps, nil } if !lex.isKeyword(",") { return nil, fmt.Errorf("unexpected token %q; want ',', '|' or ')'", lex.token) } lex.nextToken() } } func parseStatsFunc(lex *lexer) (statsFunc, error) { switch { case lex.isKeyword("avg"): sas, err := parseStatsAvg(lex) if err != nil { return nil, fmt.Errorf("cannot parse 'avg' func: %w", err) } return sas, nil case lex.isKeyword("count"): scs, err := parseStatsCount(lex) if err != nil { return nil, fmt.Errorf("cannot parse 'count' func: %w", err) } return scs, nil case lex.isKeyword("count_empty"): scs, err := parseStatsCountEmpty(lex) if err != nil { return nil, fmt.Errorf("cannot parse 'count_empty' func: %w", err) } return scs, nil case lex.isKeyword("count_uniq"): sus, err := parseStatsCountUniq(lex) if err != nil { return nil, fmt.Errorf("cannot parse 'count_uniq' func: %w", err) } return sus, nil case lex.isKeyword("fields_max"): sms, err := parseStatsFieldsMax(lex) if err != nil { return nil, fmt.Errorf("cannot parse 'fields_max' func: %w", err) } return sms, nil case lex.isKeyword("fields_min"): sms, err := parseStatsFieldsMin(lex) if err != nil { return nil, fmt.Errorf("cannot parse 'fields_min' func: %w", err) } return sms, nil case lex.isKeyword("max"): sms, err := parseStatsMax(lex) if err != nil { return nil, fmt.Errorf("cannot parse 'max' func: %w", err) } return sms, nil case lex.isKeyword("median"): sms, err := parseStatsMedian(lex) if err != nil { return nil, fmt.Errorf("cannot parse 'median' func: %w", err) } return sms, nil case lex.isKeyword("min"): sms, err := parseStatsMin(lex) if err != nil { return nil, fmt.Errorf("cannot parse 'min' func: %w", err) } return sms, nil case lex.isKeyword("quantile"): sqs, err := parseStatsQuantile(lex) if err != nil { return nil, fmt.Errorf("cannot parse 'quantile' func: %w", err) } return sqs, nil case lex.isKeyword("sum"): sss, err := parseStatsSum(lex) if err != nil { return nil, fmt.Errorf("cannot parse 'sum' func: %w", err) } return sss, nil case lex.isKeyword("sum_len"): sss, err := parseStatsSumLen(lex) if err != nil { return nil, fmt.Errorf("cannot parse 'sum_len' func: %w", err) } return sss, nil case lex.isKeyword("uniq_values"): sus, err := parseStatsUniqValues(lex) if err != nil { return nil, fmt.Errorf("cannot parse 'uniq_values' func: %w", err) } return sus, nil case lex.isKeyword("values"): svs, err := parseStatsValues(lex) if err != nil { return nil, fmt.Errorf("cannot parse 'values' func: %w", err) } return svs, nil default: return nil, fmt.Errorf("unknown stats func %q", lex.token) } } func parseResultName(lex *lexer) (string, error) { if lex.isKeyword("as") { lex.nextToken() } resultName, err := parseFieldName(lex) if err != nil { return "", err } return resultName, nil } var zeroByStatsField = &byStatsField{} // byStatsField represents 'by (...)' part of the pipeStats. // // It can have either 'name' representation or 'name:bucket' or 'name:buket offset off' representation, // where `bucket` and `off` can contain duration, size or numeric value for creating different buckets // for 'value/bucket'. type byStatsField struct { name string // bucketSizeStr is string representation of the bucket size bucketSizeStr string // bucketSize is the bucket for grouping the given field values with value/bucketSize calculations bucketSize float64 // bucketOffsetStr is string representation of the offset for bucketSize bucketOffsetStr string // bucketOffset is the offset for bucketSize bucketOffset float64 } func (bf *byStatsField) String() string { s := quoteTokenIfNeeded(bf.name) if bf.bucketSizeStr != "" { s += ":" + bf.bucketSizeStr if bf.bucketOffsetStr != "" { s += " offset " + bf.bucketOffsetStr } } return s } func (bf *byStatsField) hasBucketConfig() bool { return len(bf.bucketSizeStr) > 0 || len(bf.bucketOffsetStr) > 0 } func parseByStatsFields(lex *lexer) ([]*byStatsField, error) { if !lex.isKeyword("(") { return nil, fmt.Errorf("missing `(`") } var bfs []*byStatsField for { lex.nextToken() if lex.isKeyword(")") { lex.nextToken() return bfs, nil } fieldName, err := getCompoundPhrase(lex, false) if err != nil { return nil, fmt.Errorf("cannot parse field name: %w", err) } fieldName = getCanonicalColumnName(fieldName) bf := &byStatsField{ name: fieldName, } if lex.isKeyword(":") { // Parse bucket size lex.nextToken() bucketSizeStr := lex.token lex.nextToken() if bucketSizeStr == "/" { bucketSizeStr += lex.token lex.nextToken() } if bucketSizeStr != "year" && bucketSizeStr != "month" { bucketSize, ok := tryParseBucketSize(bucketSizeStr) if !ok { return nil, fmt.Errorf("cannot parse bucket size for field %q: %q", fieldName, bucketSizeStr) } bf.bucketSize = bucketSize } bf.bucketSizeStr = bucketSizeStr // Parse bucket offset if lex.isKeyword("offset") { lex.nextToken() bucketOffsetStr := lex.token lex.nextToken() if bucketOffsetStr == "-" { bucketOffsetStr += lex.token lex.nextToken() } bucketOffset, ok := tryParseBucketOffset(bucketOffsetStr) if !ok { return nil, fmt.Errorf("cannot parse bucket offset for field %q: %q", fieldName, bucketOffsetStr) } bf.bucketOffsetStr = bucketOffsetStr bf.bucketOffset = bucketOffset } } bfs = append(bfs, bf) switch { case lex.isKeyword(")"): lex.nextToken() return bfs, nil case lex.isKeyword(","): default: return nil, fmt.Errorf("unexpected token: %q; expecting ',' or ')'", lex.token) } } } // tryParseBucketOffset tries parsing bucket offset, which can have the following formats: // // - integer number: 12345 // - floating-point number: 1.2345 // - duration: 1.5s - it is converted to nanoseconds // - bytes: 1.5KiB func tryParseBucketOffset(s string) (float64, bool) { // Try parsing s as floating point number if f, ok := tryParseFloat64(s); ok { return f, true } // Try parsing s as duration (1s, 5m, etc.) if nsecs, ok := tryParseDuration(s); ok { return float64(nsecs), true } // Try parsing s as bytes (KiB, MB, etc.) if n, ok := tryParseBytes(s); ok { return float64(n), true } return 0, false } // tryParseBucketSize tries parsing bucket size, which can have the following formats: // // - integer number: 12345 // - floating-point number: 1.2345 // - duration: 1.5s - it is converted to nanoseconds // - bytes: 1.5KiB // - ipv4 mask: /24 func tryParseBucketSize(s string) (float64, bool) { switch s { case "nanosecond": return 1, true case "microsecond": return nsecsPerMicrosecond, true case "millisecond": return nsecsPerMillisecond, true case "second": return nsecsPerSecond, true case "minute": return nsecsPerMinute, true case "hour": return nsecsPerHour, true case "day": return nsecsPerDay, true case "week": return nsecsPerWeek, true } // Try parsing s as floating point number if f, ok := tryParseFloat64(s); ok { return f, true } // Try parsing s as duration (1s, 5m, etc.) if nsecs, ok := tryParseDuration(s); ok { return float64(nsecs), true } // Try parsing s as bytes (KiB, MB, etc.) if n, ok := tryParseBytes(s); ok { return float64(n), true } if n, ok := tryParseIPv4Mask(s); ok { return float64(n), true } return 0, false } func parseFieldNamesInParens(lex *lexer) ([]string, error) { if !lex.isKeyword("(") { return nil, fmt.Errorf("missing `(`") } var fields []string for { lex.nextToken() if lex.isKeyword(")") { lex.nextToken() return fields, nil } if lex.isKeyword(",") { return nil, fmt.Errorf("unexpected `,`") } field, err := parseFieldName(lex) if err != nil { return nil, fmt.Errorf("cannot parse field name: %w", err) } fields = append(fields, field) switch { case lex.isKeyword(")"): lex.nextToken() return fields, nil case lex.isKeyword(","): default: return nil, fmt.Errorf("unexpected token: %q; expecting ',' or ')'", lex.token) } } } func parseFieldName(lex *lexer) (string, error) { fieldName, err := getCompoundToken(lex) if err != nil { return "", fmt.Errorf("cannot parse field name: %w", err) } fieldName = getCanonicalColumnName(fieldName) return fieldName, nil } func fieldNamesString(fields []string) string { a := make([]string, len(fields)) for i, f := range fields { if f != "*" { f = quoteTokenIfNeeded(f) } a[i] = f } return strings.Join(a, ", ") } func areConstValues(values []string) bool { if len(values) == 0 { return false } v := values[0] for i := 1; i < len(values); i++ { if v != values[i] { return false } } return true }